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Abstract--This paper presents comparative solutions of 

different algorithms to the problem of numerical oscillations, 

which are caused by the trapezoidal integration rule, used by 

EMTP-based programs. These numerical oscillations emerge 

mostly from the abrupt variation of the voltage between the 

terminals of a capacitor, or from the abrupt current change in 

inductors, or even when non-linear elements, with piece-wise 

linearized models swap among linear regions. The importance of 

this review work stands on the exact understanding of the 

numerical oscillations problem and the evaluation of different 

methods proposed to solve this problem. Indeed, several 

approaches have been developed, but not all of them are really 

effective and only someones have been implemented in public or 

commercial software to eliminate numerical oscillations. 
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I.  INTRODUCTION 

HE Electromagnetics Transients Program (EMTP) is one 

of the most versatile and important tools for studies in the 

continuous-time domain related to electrical systems, 

such as transmission lines projects, insulation coordination 

and fault analysis. Back in the 60s, a series of papers, 

originated the EMTP [1]-[2], and since then various others 

researches contributed to improvements and development of 

new models. Nowadays, several EMTP-based programs are 

available for studies and research in academia and 

professional use in the electricity industry, as for instance: 

ATP [3], MicroTran [4], EMTP-RV [5], eMEGAsim and 

HYPERsim [6], RTDS [7]. Therefore, it is essential for 

electrical engineers and other users to fully comprehend both 

the potentialities and the limitations of the fundamental 

algorithm of the EMTP. The correct interpretation of physical 
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phenomena in electrical systems must be clearly distinguished 

from numerical problems from the computational simulation 

scheme, therefore justifying this paper. 

The strategy used in the EMTP algorithm to solve any 

circuit is to transform the continuous-time differential 

equations, which describes the behavior of the system under 

simulation, into discrete-time difference equations with 

solutions in time intervals of fixed time-step size Δ𝑡. The 

trapezoidal integration rule was preferred by its accuracy and 

stability [8]-[9] added to its simplicity in computational code, 

when compared to other existing integration rules. 

However, it is intrinsic to the trapezoidal integration rule 

the possibility of introducing artificial numerical oscillation 

(non-existent in the analytic response) in the time domain 

simulation. These numerical oscillations may harmfully 

interfere the correct interpretation of the simulation response 

when the user is unaware of its causes and possible solutions. 

Specifically, some variables of the circuit oscillate around the 

correct value in a way that the average at each two points is 

the correct answer. These numerical oscillations are 

essentially caused by two situations [9]-[10]. The first occurs 

in the switch (between linearized regions) of non-linear 

elements, when used the piece-wise linearization, given the 

fact there is an abrupt change in the digital equivalent 

conductance of the element. The second situation is due to 

switching operation, causing a modification in the system's 

topology and, consequently, abruptly changing the inductor's 

current and/or the capacitor's voltage. 

Several strategies were proposed and developed aiming to 

solve the problem of numerical oscillations in EMTP-based 

programs, but not all of them are really effective and only 

someones were implemented in the available software. This 

paper presents comparative solutions of different algorithms to 

the problem of numerical oscillations, which are caused by the 

trapezoidal integration rule, used by computer programs based 

on the EMTP. 

One possibility is to average every two points of the output 

data, after completion of the simulation, technique also called 

output averaging.  

Another strategy is to restart the simulation (re-solve) 

taking as initial conditions the state immediately preceding the 

beginning of the oscillation in the system.  

The Alternative Transients Program (ATP) adopts the 

strategy of introducing a damping resistor (𝑅𝑃 = 𝐾𝑃 ∙ 2𝐿/𝛥𝑡, 

where 𝛥𝑡 is time step size) in parallel with inductances, or a 

resistor (𝑅𝑆 = 𝐾𝑆 ∙ 𝛥𝑡/2𝐶) in series with capacitances. The 

insertion of this artificial resistor is easy to implement in the 

T 



program, and results in a gradual damping of the oscillations, 

but it also introduces a distortion in the response throughout 

the whole simulation. 

The use of Backward Euler integration method along all 

simulation time, results in no occurrence of numerical 

oscillations, but this method has not a good precision as the 

trapezoidal, and also introduces large phase distortion [12]-

[13]. 

The CDA - Critical Damping Adjustment technique 

proposed in [10]-[11] changes temporarily the time-integration 

method from trapezoidal to Backward Euler during two time 

steps sizes of 𝛥𝑡/2, when specific conditions that may cause 

numerical oscillations are detected. After two numerical 

solutions, solved with 𝛥𝑡/2, the program returns to the 

trapezoidal method for better precision in the remaining of the 

simulations. The CDA technique has been implemented, for 

example, in the software Microtran [11].  

Another technique, equivalent to the CDA, was proposed 

by J. R. Cogo and H. W. Dommel. Instead of changing the 

method of integration, even temporarily with the CDA 

technique, this proposal is to use the average of the last two 

historical source values calculated for the trapezoidal method, 

as the historical source for the next iteration, during two 

subsequent half-steps, whenever there is occurrence of 

conditions for oscillations. This technique, for now called 

THTA – Trapezoidal History Term Averaging seems to be 

equivalent to the CDA technique. With this, it is guaranteed 

the advantages of accuracy by using the trapezoidal 

integration method, and eliminating numerical oscillations 

without need to change to the Backward Euler method as in 

the CDA strategy.  

Therefore, this paper reviews the main causes of numerical 

oscillations in the trapezoidal method and provides a 

comparative analysis among some algorithms available to 

eliminate such problem in EMTP-based programs. 

II.  EMTP DIGITAL COMPONENTS MODELING 

The component modeling approach adopted in the EMTP is 

to transform the continuous-time differential equations to 

discrete-time difference equations. This transformation is 

made using an integration rule, typically the Trapezoidal or 

Backward Euler methods. 

A.  Modeling using the Trapezoidal Integration Rule 

In the case of an inductor, one can obtain its digital model 

starting from its basic equation [2], as follows: 

v(t) = L
di(t)

dt
→ ∫ v(τ) dτ

t

t−Δt
= L ∫ di(τ)

t

t−Δt
  (1) 

The first integral represents the area below the curve v(t) 

from t − Δt until t. Applying the trapezoidal rule to it, one 

may approximate to a trapezoid-like area: 

∫ v(τ) dτ
t

t−Δt
= Area ≅

[v(t−Δt)+v(t)] Δt

2
  (2) 

The Thévenin equivalent discrete-time inductor model 

recurrence formula is: 

vL(t) =
2L

Δt
. iL(t) + [−

2L

Δt
. iL(t − Δt) − vL(t − Δt)] (3) 

The EMTP algorithm uses the nodal method to solve the 

digital equivalent circuits [2]. It is necessary to convert (3) to 

obtain the "Norton discrete-time equivalent model" of an 

inductor, expressed in (4) and (5).  

iL(t) =
Δt

2L
. vL(t) − ihTr

(t)   (4) 

ihTr
(t) = [−iL(t − Δt) −

Δt

2L
. vL(t − Δt)] (5) 

Fig. 1 shows the graphical representation of the three 

models for an inductor. Analogous derivation can be done for 

a capacitor. 

 

 

Fig. 1.  Inductor and its “Thévenin and Norton discrete-time equivalent 

models”. 

Several techniques intend to minimize the numerical 

oscillations caused by the use of the trapezoidal rule under 

certain conditions, mentioned in the introduction. Here it is 

presented a comprehensive analysis of two techniques which 

completely eliminates the numerical oscillations in an 

effective way, and in the shortest time possible - the CDA and 

THTA. 

B.  Backward Euler's discrete model of an inductor 

The CDA scheme uses the Backward Euler (BE) rule 

temporarily. Therefore, it requires a new approximation  for 

the area below the curve v(t). Equation (7) shows the 

“Thévenin discrete equivalent model” for an inductor with BE 

rule, while (8) and (9) shows the “Norton's discrete equivalent 

model”. 

∫ v(τ) dτ
t

t−Δt
= Area ≅ v(t). Δt  (6) 

v(t) =
L

Δt
. iL(t) + [−

L

Δt
. iL(t − Δt)]  (7) 

iL(t) =
Δt

L
. v(t) − ihBE

  (t)   (8) 

ihBE
(t) = −iL(t − Δt)   (9) 

C.  Comparative results between the Trapezoidal and 

Backward Euler methods 

It is now important to compare the two integration method 

when faced to a situation that causes a numerical oscillation. 



Let the circuit in the Fig. 2 be the most didactic example. The 

step current of 1 [A] is applied in a 1 [H] inductor. The circuit 

is initially de-energized. 

 

Fig. 2.  Voltage and current at the inductor under analysis. 

Analyzing the example, it is known from the 

electromagnetic transients theory that, facing an abrupt current 

change, the inductor generates an voltage impulse on its 

terminals and after that the voltage falls to zero. To make the 

analysis easier, the variable of interest v(t) is presented in 

(10)-(13). 

 

Trapezoidal Rule 

vL(t) =
2L

Δt
. iL(t) +

2L

Δt
. ih(t) (10) 

ih(t) = [−iL(t − Δt) −
Δt

2L
. vL(t − Δt)] (11) 

Backward Euler Rule 

vL(t) =
L

Δt
. iL(t) +

L

Δt
. ih(t) (12) 

ih(t) = −iL(t − Δt) (13) 

 

Table I presents the results of five iterations following the 

EMTP fundamental algorithm with (10)-(13). A graphical 

representation is shown in Fig. 2.  

One can fill the Table I using the trapezoidal rule following 

the steps: 

a. At the time t = 0 all the variables are null, considering 

the circuit as initially de-energized. 

b. At t = 1 ∆t, IhTr
(Δt) is calculated using the recurrence 

formulae ( 11 ) and (10): 

ihTr
(Δt) = [−iL(0) −

Δt

2L
. vL(0)] = 0 

vLTr
(Δt) =

2L

Δt
∙ 1 + 0 = +

2L

Δt
 

a. The next step, at t = 2Δt, vLTr
(2 Δt) becomes: 

ihTr
(2 Δt) = [−1 −

Δt

2L
∙

2L

Δt
] = −2 

vLTr
(2 Δt) =

2L

Δt
∙ 1 +

2L

Δt
∙ (−2) = −

2L

Δt
 

b. Repeat until the end of the simulation. 
TABLE I 

CALCULATION OF VL USING THE TRAPEZOIDAL AND BACKWARD EULER 

METHODS. 

𝐭 𝐢𝐋(𝐭) 
𝐈𝐡(𝐭)

𝐓𝐫
 

𝐯𝐋(𝐭)

𝐓𝐫
 

𝐈𝐡(𝐭)

𝐁𝐄
 

𝐯𝐋(𝐭)

𝐁𝐄
 

𝟎 0 0 0 0 0 

𝟏 𝚫𝐭 1 0 +2L Δt⁄  0 L Δt ⁄  

𝟐 𝚫𝐭 1 −2 − 2L Δt⁄  −1 0 

𝟑 𝚫𝐭 1 0 +2L Δt⁄  −1 0 

𝟒 𝚫𝐭 1 −2 − 2L Δt⁄  −1 0 

𝟓 𝚫𝐭 1 0 +2L Δt⁄  −1 0 
 

To calculate the two remaining columns, with the results 

for the Backward Euler rules, use the recurrence formulae (13) 

and (12). The results in the Table I shows that the numerical 

oscillation exist only with the use of trapezoidal method. It 

also is sustained and alternates between +2L/Δt and −2L/Δt, 
showing that the oscillation is not damped and will continue 

with these values until the end of the simulation or another 

change in the circuit happens. Reducing the time step size 

does not solve numerical oscillations. The results also show 

that numerical oscillations always assume values around the 

correct value, following that the average at each two points is 

the correct value. A capacitor presents similar behavior when 

confronted with a voltage step, but now the numerical 

oscillation occurs in current variable. 

 
Fig. 3.  Current across and Voltage at the terminals of the inductor. 

Fig. 3 and the last two columns in Table I also show that 

the Backward Euler method is critically damped. It needs just 

one more iteration after the current step happens to bring the 

voltage back to 0 [V], the correct value for t ≥ 2 ∆𝑡. The 

comparison between (11) and (13) shows the exact origin of 

the numerical oscillations. The trapezoidal method requires 

the inductor´s voltage in the last step in order to calculate the 

historical current. If, at any given time, the conditions to start 

numerical oscillations are met, which in this case is a step-

change in the current, the inductor produces a voltage impulse. 

And then, the term −(
Δt

2L
) ∙ vL(t − Δt) carries this impulse 

through all the rest of the simulation. Also, the negative sign 

makes the result oscillate around the correct value. Therefore, 

the problem of numerical oscillation is inherent from the 

trapezoidal method, and an efficient solution requires an attack 

at the root of the cause. 



III.  THE CDA AND THTA SCHEMES TO ELIMINATE  

NUMERICAL OSCILLATIONS 

A.  Critical Damping Adjustment - CDA 

The CDA technique uses the Backward Euler rule to 

eliminate the numerical oscillation, taking advantage of its 

critically damped characteristic. In order to avoid changes in 

the conductance matrix, the CDA scheme runs for two 

integration steps of Δt 2⁄ , which brings the same equivalent 

conductance for all the elements in the circuit and no 

modification in the conductance matrix needs to be done, 

which does save computational effort [10]. The limitation for 

just two time step integration is due to fact that the Backward 

Euler introduces a phase shift in the simulation result at the 

long run, and also because the trapezoidal method is much 

more accurate for the same Δt. An important comparison study 

between the two methods is developed in [10]. 

B.  Trapezoidal History Term Averaging - THTA 

Professor Dommel, during a graduation course at The 

University of British Columbia, mentioned another possibility 

to eliminate numerical oscillations, while continue using the 

trapezoidal method, based on some ideas proposed by 

Professor João Roberto Cogo from UNIFEI. This method, 

freely denominated by Prof. Bonatto as "THTA-Trapezoidal 

History Term Averaging" consists in the determination of the 

average of the history source values, during two time 

integration steps of  Δt 2⁄ , as in (14)-(15): 

ITHTA(t) =
IhTr

(t−
Δt

2
)+IhTr

(t)

2
  (14) 

vLTHTA
(t) =

2L

Δt
. iL(t) +

2L

Δt
. ITHTA(t) (15) 

Equation (14) requires the calculation of the value of the 

history current source in time t. After that, the average is 

computed and this value is used as the new history source 

value. This technique seems to be equivalent to CDA, with the 

computational advantage of keep using the trapezoidal method 

during all the simulation. For this the program needs to store 

the last history vector in memory in case a numerical 

oscillation arises. Table II provides a step-by-step solution for 

the didactic circuit of Fig. 2 using this technique, and Fig. 4 

shows its graphical representation. 

To fill the table, use the following script: 

a. Initially, all the variables are null, given the circuit is de-

energized. 

b. The current in the inductor is 1 [A] starting from the first 

solution until the end of the simulation. 

c. Calculate the history source IhTr
(

Δt

2
) using (11). 

d. Calculate ITHTA (
Δt

2
) and vL (

Δt

2
) using (14) and (15). This 

is the first step of the THTA. 

ITHTA (
Δt

2
) =

IhTr
(0) + IhTr

(
Δt
2

)

2
=

0 + 0

2
= 0 

vLTHTA
(

Δt

2
) =

2L

Δt
. iL (

Δt

2
) +

2L

Δt
. iTHTA (

Δt

2
) =

2L

Δt
 

e. Repeat the steps (c) and (d) for the second step of THTA. 

ihTr
(Δt) = [−iL (

Δt

2
) −

Δt

2L
. vL (

Δt

2
) ] = −1 −

Δt

2L
∙

2L

Δt
= −2 

ITHTA(Δt) =
IhTr

(
Δt
2

) + IhTr
(Δt)

2
=

0 − 2

2
= −1 

vLTHTA
(Δt) =

2L

Δt
. iL(Δt) +

2L

Δt
. iTHTA(Δt) =

2L

Δt
− 1 ∙

2L

Δt
= 0 

f. Continue with the EMTP solution method using 

the trapezoidal method. 

TABLE II 

COMPARATIVE ANALYSIS OF VL USING THTA AND CDA. 
 

𝐭 𝐢𝐋(𝐭) 
𝐈𝐡(𝐭)

𝐓𝐫
 𝐈𝐓𝐇𝐓𝐀(𝐭) 

𝐯𝐋(𝐭)

𝐓𝐇𝐓𝐀
 

𝐈𝐡(𝐭)

𝐁𝐄
 

𝐯𝐋(𝐭)

𝐂𝐃𝐀
 

0 0 0 − 0 0 0 

Δt 2⁄  1 0 
0 + 0

2
= 0 

2L

Δt
 0 

2L

Δt
 

1 Δt 1 −2 
0 − 2

2
= −1 0 −1 0 

2 Δt 1 −1 − 0 −1 0 

3 Δt 1 −1 − 0 −1 0 

4 Δt 1 −1 − 0 −1 0 

5 Δt 1 −1 − 0 −1 0 

 

 

Fig. 4.  Voltage and current at the inductor. Numerical oscillations are 

eliminated. 

One can see, while observing the Table II and Fig. 4, that 

CDA and THTA are equivalent, considering that the area 

below the impulse voltage is equal to L. The MicroTran [4] 

package removes the peak voltage from the final answer 

considering this as an intermediate solution step, and possibly 

due that an extremely high frequency event would be quickly 

damped in a realistic power system [11]. 



For a practical verification of this technique, an educational 

computer program based in the EMTP algorithm was 

developed in the Matlab platform. The simulation results for 

some selected circuits obtained from this program are shown 

in the next section. 

IV.  SIMULATION RESULTS AND DISCUSSIONS 

The first case presents the simulation of a simple RL circuit 

powered by a 10 [V] sinusoidal source, as show in Fig. 5. The 

switch will open after the current passes through zero and 

numerical oscillations will then arise in the inductor´s voltage. 

The second case shows another didactic example, where 

numerical oscillations will start two times, showing the need 

to effectively eliminate these oscillations to ensure the 

reliability of the results. 

A.  Test Circuit 1 

 

Fig. 5.  Simple RL circuit and switch powered by a sinusoidal source. 

The switch is scheduled to open at t = 5 [ms], but its 

effective opening happened at t = 8,2 [ms] as shown in Fig. 

6. This is the moment when the current crosses zero and the 

switch model allows the interruption of the current [8]-[9].  

 

 

Fig. 6.  Voltage and current in the inductor using the trapezoidal method. 

The current interruption causes an abrupt change in the rate 

of change of the current. The inductor responds that with a 

voltage impulse on its terminals, trying to maintain the current 

flow. The trapezoidal method, based in (10)-(11), uses 

information of both current and voltage in the previous step to 

calculate the new current and voltage. The starting of the 

numerical oscillations happens exactly because of this 

dependency of the voltage history value in the previous step, 

which is an impulse, right after the opening of the switch. As 

seen in (11), there is a variation in the voltage at each step 

because the value of the voltage impulse is added or 

subtracted from the correct value. In the present example, the 

expected voltage value is 0 [V], while the results obtained with 

the trapezoidal method are +23.8 and −23.8 [V]. The average 

of the two values is exactly 0 [V]. 
The next analyses are restricted to the voltages because this 

is the variable with possible numerical oscillation. In a similar 

analysis, the current across a capacitor may present the same 

characteristics. 

The first alternative to remove the numerical oscillations is 

to use a moving average of two points, called "output 

averaging". The results using this technique are presented in 

Fig. 7.  

Observe that the plot clearly shows the voltage impulse on 

the terminals of the inductor. The voltage impulse of 6,93 [V] 
is just representative of an interruption of the current. This 

technique is not recommended for studies of overvoltages 

caused by switching operation. Although is a simple technique 

requiring only the post-processing of the data output. Also, no 

modification in the core of the program is required. 

 

 

Fig. 7.  Output averaging of the voltage. 

The software ATP through its graphical interface  

ATPDraw adopts another strategy, consisting in the insertion 

of a fictitious resistor connected in parallel to the inductor 

(and in series with capacitors). This solution causes a damping 

in the numerical oscillation, which takes some time to 

disappear.  

The speed of the damping may be adjusted by the variable 

KP. The ATPDraw documentation recommends KP values 

between 5 and 10. The value of the fictitious resistor is 

calculated by (16).  

RP = KP ∙ 2L/Δt    (16) 

For this example, 

RP = KP ∙
2∗500∙10−3

100∙10−6 = KP ∙ 10 ∙ 103 (17) 

Fig. 8 presents the ATP results for KP = 7.5. Fig. 9 shows 

how the value of the KP variable changes the damping time. 

The plots are for KP = 5, 7.5 and 10, respectively.  

Lower values of KP eliminate the numerical oscillations 

faster, but it inserts an artificial element to the circuit and may 

lead to incorrect results values in certain studies. 



 

Fig. 8.  Damping of numerical oscillations using KP = 7.5. 

 

 

Fig. 9.  Comparative damping of numerical oscillations using a parallel 

resistor. 

The Backward Euler integration method offers the best path 

to remove numerical oscillations, for it is critically damped 

and totally immune to them. Fig. 10 presents the result for the 

same test circuit of Fig. 5 using this method.  

One of the greatest drawbacks, however, is the phase 

distortion introduced in the result.  

For equivalent errors to the trapezoidal method, it would be 

necessary to reduce ∆t, rising the simulation time considerably 

in the simulation of complex power systems. 

 

 

Fig. 10.  Simulation using the Backward Euler integration method. 

If the Backward Euler rule is used for two steps, the time 

enough for elimination of the oscillations, together with the 

Trapezoidal method, for the rest of the simulation, the best 

results are obtained. This is the case of the CDA scheme, 

which is applied every time the conditions for numerical 

oscillations are met. Fig. 11 shows the result using the CDA 

technique. 

 

 

Fig. 11.  Computational simulation using the CDA technique. 

The voltage peak of 5.35 [𝑉] is the exact same if the 

simulation was conducted using the THTA scheme, shown in 

Fig 12. 

 

 

Fig. 12.  Computational simulation using the THTA technique. 

B.  Test Circuit 2 

The second circuit solved is one representative of a 

substation connected to a transmission line with a fault, 

illustrated in Fig. 13. The problem was adapted from [9]. The 

switch CH6 is closed at 𝑡 =  5[𝑚𝑠], simulating the 

transmission line energization. The switch CH2 is initially 

closed, acting as a ground fault. To clear the fault and create 

two situations for numerical oscillations, thus testing the 

robustness of the proposed THTA technique, both switches are 

set to  open. The first situation is the closing of the switch 

CH6, putting a charged capacitor in parallel with an uncharged 

capacitor. The second situation will be the opening of SW2, 

interrupting current across the line inductor. 

 

 

Fig. 13.  Substation connected to a transmission line with a fault. 

Fig. 14 shows the simulation with the trapezoidal method. 

The numerical oscillation begins at 𝑡 = 5 [𝑚𝑠], instant when 

the switch CH6 closes and, as a result, the voltage on capacitor 

C7 was instantaneously applied to C5. Notice that the 

numerical oscillations in the capacitor current are sustained 



and stop only by the opening of both switches, interrupting the 

supply and the short-circuit. 

 

 

Fig. 14.  Computational simulation using the trapezoidal rule. 

Fig. 15 shows the "output averaging" of the current on the 

capacitor C5. Fig. 16 illustrates the use of an artificial resistor 

to damp the numerical oscillation. Fig. 17 and 18 shows the 

equivalence between the CDA and THTA techniques. 

The second element to be analysed in this educational test 

case is the inductor, presenting numerical oscillations on its 

voltage signal after the opening of the switch CH2 at 𝑡 =
22.5 [𝑚𝑠], as illustrated in Fig. 19. The values swings around 

0 [𝑉], the expected value after the interruption of the current. 

Fig. 20 illustrates the output averaging for the inductor's 

voltage. Fig. 20 shows the effect of an artificial resistor. It is 

important to know that each artificial resistor must be adjusted 

by the user via each one of its respective variables 𝐾𝑃 and 𝐾𝑆.  

Fig. 21 and Fig. 22 illustrate the equivalence for the CDA 

and THTA techniques, respectively. 

 

Fig. 15.  Averaging of the C5 Capacitor's current. 

 

 

Fig. 16.  Current at the C5 capacitor with a damping resistor.  

 

Fig. 17.  Current at C5 capacitor using CDA. 

 

 

Fig. 18.  Current at C5 capacitor using THAT. 

 

Fig. 19.  Voltage and current at L3 inductor, when Trapezoidal method is 

used. 

 

Fig. 20.  Output averaged L3 inductor's voltage. 

 

Fig. 21.  Voltage at L3 inductor damped by a fictitious resistor. 



 

Fig. 22.  Voltage at L3 inductor using CDA. 

 

Fig. 23.  Voltage at L3 inductor using THTA. 

Fig. 24 shows the equivalence of CDA and THTA by 

comparing the values at each point. The unique mismatches 

found are the ones when the switches operate. A closer look at 

the numbers in Fig. 24 proves this to be truncation errors of 

the numerical framework, around the order of 10−19. 

 

 

Fig. 24.  “Mismatch” between CDA and THTA results. 

Since the voltage impulse occurs in the intermediate step 

( ∆𝑡/2 ), and is probably quickly damped in a real power 

system, therefore, the voltage impulse may be skipped while 

plotting the final result. A final plot is shown in Fig. 25. 

 

 

Fig. 25.  Voltage at L3 inductor without impulse 

V.  CONCLUSIONS 

This paper presented a clear review of numerical 

oscillations problems in EMTP-based programs, its causes and 

some techniques for effectively damping such oscillations. 

Among them, the CDA and the THTA techniques completely 

solves the problem by treating the root cause. These schemes 

require just half time step solutions to fully remove the 

numerical oscillations. They are the most elegant and 

effective, but as far as the authors now CDA technique was 

only implemented in the software MicroTran, the UBC's 

version of EMTP e probably a similar form of it in the EMTP-

RV. 

One important technical advantage of the THTA technique 

is that, unlike the CDA, it is not needed to derive and code all 

the components using the Backward Euler integration rule. It 

only needs the value of the history source of the previous 

solution step to produce a new value immune to numerical 

oscillations. 

This paper initially focused on the didactic analysis of RLC 

circuits with the numerical oscillations started by operation of 

switches. Another important cause for numerical oscillations 

are the non-linear elements, based in the piece-wise 

linearization and switching of equivalent components. At each 

swap in the linearized region there is an abrupt change in the 

system, which may be abrupt enough to start new numerical 

oscillations. Therefore, further studies of the effectiveness of 

the THTA are possible, working with non-linear elements, and 

power electronics applications. The relevance of this work 

relies on its educational use by students and engineers and 

eventually the facilitation of implementation of CDA or 

THTA in other EMTP-based programs.  
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