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Abstract-- The objective of this paper is to provide a clear 

derivation of the Multi-Area Thévenin Equivalent Concept 

(MATE) including current- and voltage dependent sources. The 

links concept in MATE is advantageous in representing branches 

connecting subsystems. MATE deviates from Diakoptics and 

from the Modified Nodal Analysis (MNA) methods in the way it 

is solved, by manipulating the submatrices in a form that 

preserves the individuality of the internal subsystems while 

solving their interdependences at the level of Thévenin 

Equivalents. The generalization presented in this paper expands 

the link branch equations to dependent, coupled, linear or 

nonlinear relations, thus resulting in unsymmetrical matrices. Its 

significance occurs when complex control systems and power 

system equations are simultaneously solved in an 

Electromagnetic Transients Program (EMTP). In this case, exact 

results can be achieved with less computational effort for power 

system dynamics studies. A test case with simulation results 

illustrates the main modelling concepts. 
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I.  INTRODUCTION 

HIS paper presents an extension of the Multi-Area 

Thévenin Equivalent Concept (MATE) [1]-[5] for 

electromagnetic transients program (EMTP)- based 

simulations [6],[7] including building functions for controllers 

and other asymmetrical branches. The application is useful in 

real-time power systems dynamics simulations [8].  

The proposed MATE modelling easily incorporates 

dependent branches and control blocks in a simultaneous (no 

time delay decoupling) EMTP solution. In this paper, firstly, 

the mathematical conceptual derivation of the MATE [1] 

method is reviewed. Then, current and voltage dependent 

sources [9] are incorporated. Finally, control blocks, realized 
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using one of these dependent sources [10] are proposed to be 

incorporated into the model in the future.  

The MATE algorithm generalization presented in this paper 

expands the link branch equations to dependent, coupled, 

linear or non-linear relations, thus resulting in unsymmetrical 

matrices. A test case with simulation results from [2] 

illustrates the main modelling concepts especially with regards 

to the simultaneous solution of complex control systems and 

the power system equations. Simultaneous solution of the 

control system equations and the power network equations [2], 

[10]-[12] are particularly relevant in the development of 

distributed control strategies in the emerging smart grid real 

time supervisory control applications. 

II.  MATHEMATICAL CONCEPTUAL DERIVATION OF THE MATE 

CONCEPT 

The Multi-Area Thévenin Equivalent (MATE) concept 

provides an effective means for partitioning large systems of 

equations into subsystems connected through links. The 

subsystems are solved independently (even with different 

solution techniques and with parallel processing) and the 

overall solution is integrated at the level of the links. In the 

Multilevel MATE algorithm each subsystem becomes the 

basis for another level of MATE partitioning, thus improving 

solution efficiency [2], [3]. 

A.  General Formulation of MATE 

Consider initially, for didactic reasons, any power system 

composed of only two subsystems, A and B, and any set of 

dependent, independent, coupled, uncoupled, linear or 

nonlinear branch relations among them, as illustrated in Fig. 1. 

Then, the Multi-Area Thévenin Equivalent concept allows 

that the two subsystems can be solved independently (even 

with different solution techniques and with parallel 

processing) and the overall solution is integrated at the level of 

the branch links with the compensation method. If the branch 

equations are nonlinear, then the fixed point iteration method 

or a Newton-Raphson type algorithm can be used for the 

solution, as illustrated in Fig. 2. The system of Fig. 1, with the 

“assumed conventions for voltage polarities and current 

directions”, can be represented by the matrix equations in (1): 

 [

[𝐺𝐴] [0] [𝑝]

[0] [𝐺𝐵] [𝑞]

[𝑚] [𝑛] −[𝑧]
] ∙ [

[𝑣𝐴]

[𝑣𝐵]

[𝑖𝛼]
] = [

[ℎ𝐴]

[ℎ𝐵]

[𝑉𝑠]
] 

T 



 

Fig. 1. MATE concept expansion considering link branch equations for 

dependent, coupled, linear or nonlinear relations. 

where: 

 

[GA] is the EMTP conductance matrix of subsystem A; 

[vA] is the vector of nodal voltages of subsystem A; 

[hA] is the vector of current sources of subsystem A; 

[p], [q], [m], [n] are “connectivity” submatrices needed to 

express the branch relations between the subsystems A and B;  

[z] is the submatrix of impedance relations of the branches 

connecting subsystems A and B; 

[Vs] is the vector of equivalent voltage sources in each 

branch connecting subsystems A and B. 

Similar meaning stands for subsystem B, and eventually 

other subsystems (C , D , etc.), if more partitioning is realized, 

or if Multilevel MATE concept [2], [3] is used. 

By pre-multiplying the first row in (1) by [GA]−1, and the 

second row by [GB]−1, results in (2). The third row in (1) 

becomes the third row in (2) as derived from (7)-(16). 

 [

[1] [0] [a]

[0] [1] [b]

[0] [0] [zα]
] ∙ [

[vA]

[vB]

[iα]
] = [

[eA]

[eB]

[eα]
] (2) 

where: 

 [a] = [GA]−1 ∙ [p] (3) 

 [b] = [GB]−1 ∙ [q] (4) 

 [eA] = [GA]−1 ∙ [hA] (5) 

 [eB] = [GB]−1. [hB] (6) 

From (2) one can derive that: 

 

Fig. 2. MATE concept solution in partitioned subsystems with dependent, 

coupled, linear or nonlinear branch relations. 

 [vA] + [a] ∙ [iα] = [eA] (7) 

 [vA] = [eA] − [a] ∙ [iα] (8) 

 [vB] + [b] ∙ [iα] = [eB] (9) 

 [vB] = [eB] − [b] ∙ [iα] (10) 

Multiplying the third row of (1), but using (8) to express 

[vA], and (10) to express [vB], results in: 

 [m] ∙ [vA] + [n] ∙ [vB] − [z] ∙ [iα] = [Vs] (11) 

 [m] ∙ [eA] − [m] ∙ [a] ∙ [iα] + [n] ∙ [eB] − [n] ∙ [b] ∙ [iα] 

 −[z] ∙ [iα] = [Vs] (12) 

 {[m] ∙ [a] + [n] ∙ [b] + [z]} ∙ [iα] = [m] ∙ [eA] 

 +[n] ∙ [eB] − [Vs] (13) 

By defining [zα] and [eα] as: 

 [zα] = [m] ∙ [a] + [n] ∙ [b] + [z] (14) 

 [eα] = [m] ∙ [eA] + [n] ∙ [eB] − [Vs] (15) 

the third row of (2), is obtained, as in (16): 

 [zα] ∙ [iα] = [eα] (16) 

The solution for link currents is now independent from the 

solution of the nodal subsystems’ voltages. The interaction of 

the subsystems Thévenin equivalents is solved at the links 
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level and returned to each subsystem in the form of injected 

link currents [iα] at the linking nodes: 

 [iα] =  [zα]−1 ∙ [eα] (17) 

The subsystems´ nodal equations are then solved 

independently of each other at the subsystem level as: 

 [vA] = [eA] − [a] ∙ [iα] (18) 

 [vB] = [eB] − [b] ∙ [iα] (19) 

Now, the really important issues of this matrix partitioning 

and manipulation are the meaning of the new variables, such 

as: 

[eA] is the Thévenin Equivalent Source vector of subsystem 

A; 

[eB] is the Thévenin Equivalent Source vector of subsystem 

B; 

[a] is the Thévenin Impedance submatrix of subsystem A, 

as seen from the link nodes connecting the two subsystems; 

[b] is the Thévenin Impedance submatrix of subsystem B, 

as seen from the link nodes connecting the two subsystems; 

The reduced system at the Thévenin linking nodes is given 

by: 

[eα] is the Thévenin Equivalent Source vector of the 

reduced system; 

[zα] is the Thévenin Impedance submatrix of the reduced 

system; 

[iα] is the links´ branch current vector solution; 

 

The interaction between the two subsystems A and B occurs 

when injecting the link currents [iα] into the corresponding 

nodes into subsystems A and B.  

Therefore, the final solution for the node voltages in both 

subsystems is comparable to applying the superposition of the 

calculated voltages, due to all internal voltage and current 

sources for the open circuit solution (each subsystem solved 

separately), to the voltages obtained only due to the link 

current injections (compensation theorem as used in the M-

phase Thévenin Equivalent [6]). 

A particular formulation of MATE is achieved for the case 

of branch links formed only with impedances. In this case, the 

sub matrices needed to express the branch relations between 

the subsystems A and B, i.e., [p], [q], [m], [n], [z] have 

special properties such as [m] = [p]t, [n] = [q]t, and [z] 
contains only branch impedances. They usually contain unit 

and/or zero values. In the case of links representing ideal 

switches, either the branch current is equal to zero for an ideal 

opened switch (switch OFF in Fig. 1), or the branch voltage is 

equal to zero for an ideal closed switch (switch ON in Fig. 1). 

Concluding, all advantages of using MATE are preserved 

in this general formulation, which can be used for the 

Multilevel MATE concept [2], [3] as well, where branch 

equations are treated as sublinks and contribute to the 

subsystems´ Thévenin equivalents obtained from nodal 

equations to form Modified Thévenin Equivalents (MTEs). 

III.  CURRENT AND VOLTAGE DEPENDENT SOURCES 

MODELLING IN MATE 

If the branch equations are linear, as in the case of 

dependent sources, they can be represented in the form of a 

voltage source behind an impedance, or in the form of a 

current source in parallel with an impedance. In this paper, it 

is assumed that the branch impedances (Zs) of the sources are 

not coupled and that they are resistive (Rout). This section 

presents the necessary equations for implementing current and 

voltage dependent sources in the MATE concept. The 

following assumptions are made: 

 A Thévenin equivalent circuit can be calculated where 
the dependent source is to be connected, and also where 
the controlling current or voltage is to be measured. In 
cases where this calculation fails, the connection of 
large resistors in parallel may make a Thévenin 
equivalent circuit possible; 

 Proper precautions are taken to handle extremely large 
numbers and zero values; 

The following models are derived: Current Controlled 

Voltage Source (CCVS), Current Controlled Current Source 

(CCCS), Voltage Controlled Voltage Source (VCVS) and 

Voltage Controlled Current Source (VCCS). 

 

A.  Current Controlled Voltage Source (CCVS) 

Assume that the controlling current is measured through a 

branch between nodes a and b in a circuit, such that vj is its 

branch voltage and iαj is its branch current, i.e.: 

 vj = va − vb (20) 

 iαj = iab (21) 

and the dependent source, CCVS, is connected between nodes 

𝑐 and 𝑑, with branch voltage: 

 vk = vc − vd (22) 

and branch current: 

 iαk = icd. (23) 

Then, based on Fig. 3 the following equations can be 

derived: 

 vj = Rin. iαj (24) 

 vk = Ω. iαj + Rout. iαk (25) 

From (20)-(25) follows that: 

 1va − 1vb − Rin. iαj − 0iαk = 0 (26) 

 1vc − 1vd − Ω. iαj − Rout. iαk = 0 (27) 
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Fig. 3. Current Controlled Voltage Source (CCVS) in MATE concept. 

where: 

Rin = input resistance of branch j; 
Rout = output resistance of the dependent source in branch 

k; 

Ω = gain over the controlling or measured current, applied 

as a dependent source at branch k; 

For an ideal current controlled voltage source, Rin = 0, and 

Rout = 0, which leads to: 

 1va − 1vb − 0iαj − 0iαk = 0 (28) 

 1vc − 1vd − Ω. iαj − 0iαk = 0 (29) 

Equations (26)-(27) or (28)-(29) can easily be inserted into 

the matrix formulation presented in (1), as illustrated in (30): 

[
 
 
 
 
 
 
 [GA]

⋮
[0]
⋮

⋯ +1 0
⋯ 0 +1
⋮ ⋮ ⋮

[0]
⋮

[GB]
⋮

⋯ −1 0
⋯ 0 −1
⋮ ⋮ ⋮

+1 0
0 +1

⋯ −1 0
⋯ 0 −1

⋯ 0 0
⋯ −Ω 0 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
va

vc

⋮
vb

vd

⋮
iαj

iαk]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
iha

ihc

⋮
ihb

ihd

⋮
0
0 ]

 
 
 
 
 
 
 

 (30) 

 

B.  Current Controlled Current Source (CCCS) 

Based on Fig. 4, the necessary equations for the 

implementation of a current controlled current source into the 

MATE concept are: 

 vj = Rin. iαj (31) 

 vk = Rout. Β. iαj + Rout. iαk (32) 

From (20)-(23) and (31)-(34) it follows that: 

 1va − 1vb − Rin. iαj − 0iαk = 0 (33) 

 1vc − 1vd − Rout. Β. iαj − Rout. iαk = 0 (34) 

where: 

Rin = input resistance of branch j; 
Rout = output resistance of the dependent source in branch 

k; 

Β = gain over the controlling or measured current, applied 

as a dependent source at branch k; 
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Fig. 4. Current Controlled Current Source (CCCS) in MATE concept. 

For an ideal current controlled current source, Rin = 0, and 

Rout → ∞. When dividing (34) by Rout it follows that: 

 1va − 1vb − 0iαj − 0iαk = 0 (35) 

 0vc − 0vd − Β. iαj − 1iαk = 0 (36) 

Equations (33)-(34) or (35)-(36) can easily be inserted into 

the matrix formulation presented in (1). 

 

C.  Voltage Controlled Voltage Source (VCVS) 

Based on Fig. 5, the necessary equations for the 

implementation of a voltage controlled voltage source into the 

MATE concept are: 

 vj = Rin. iαj (37) 

 vk = A. vj + Rout. iαk = A. Rin. iαj + Rout. iαk (38) 

From (20)-(23) and (37)-(38) it follows that: 

 1va − 1vb − Rin. iαj − 0iαk = 0 (39) 

 1vc − 1vd − A. Rin. iαj − Rout. iαk = 1vc − 1vd − A. va +
A. vb − 0iαj − Rout. iαk = 0  (40) 

where: 

Rin = input resistance of branch j; 
Rout = output resistance of the dependent source in branch 

k; 

Α = gain over the controlling or measured voltage, applied 

as a dependent source at branch k; 
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Fig. 5. Voltage Controlled Voltage Source (VCVS) in MATE concept. 



For an ideal voltage controlled voltage source, Rin → ∞, 

and Rout = 0. When dividing (39) by Rin, it follows that: 

 0va − 0vb − 1iαj − 0iαk = 0 (41) 

 1vc − 1vd − A. va + A. vb − 0iαj − 0iαk = 0 (42) 

If Α → ∞, Rin → ∞, and Rout = 0, VCVS can be used to 

model ideal operational amplifiers. By dividing (42) by the 

gain Α, results in the following equations: 

 0va − 0vb − 1iαj − 0iαk = 0 (43) 

 0vc − 0vd − 1va + 1vb − 0iαj − 0iαk = 0 (44) 

Equation (43) implies that iαj = 0, and (44) implies that 

vj = 0, thus meaning that ideal operational amplifiers have, at 

the same time, an “open circuit” and a “virtual ground”, 

respectively, at their input terminals. 

Equations (39)-(40) or (41)-(42) or (43)-(44) can easily be 

inserted into the matrix formulation presented in (1). Equation 

(45) illustrates the modelling of an ideal operational amplifier, 

which can be used for transfer functions control modelling as 

proposed in [8], resulting in  unsymmetrical matrices: 

[
 
 
 
 
 
 
 [GA]

⋮
[0]
⋮

⋯ +1 0
⋯ 0 +1
⋮ ⋮ ⋮

[0]
⋮

[GB]
⋮

⋯ −1 0
⋯ 0 −1
⋮ ⋮ ⋮

0 0
+1 0

⋯ 0 0
⋯ −1 0

⋯ +1 0
⋯ 0 0 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
va

vc

⋮
vb

vd

⋮
iαj

iαk]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
iha

ihc

⋮
ihb

ihd

⋮
0
0 ]

 
 
 
 
 
 
 

   (45) 

 

D.  Voltage Controlled Current Source (VCCS) 

Based on Fig. 6, the necessary equations for the 

implementation of a voltage controlled current source into the 

MATE concept are: 

 vj = Rin. iαj (46) 

vk = Rout. Γ. vj + Rout. iαk = Rout. Γ. Rin. iαj + Rout. iαk (47) 

From (20)-(23) and (46)-(47) it follows that: 

 1va − 1vb − Rin. iαj − 0iαk = 0 (48) 

 1vc − 1vd − Rout. Γ. Rin. iαj − Rout. iαk = 1vc − 1vd −
Rout. Γ. va + Rout. Γ. vb − 0iαj − Rout. iαk = 0 (49) 

where: 

 

Rin = input resistance of branch j; 
Rout = output resistance of the dependent source in branch 

k; 

Γ = gain over the controlling or measured voltage, applied 

as a dependent source at branch k; 

A B
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Fig. 6. Voltage Controlled Current Source (VCCS) in MATE concept. 

 

For an ideal voltage controlled current source, Rin → ∞, 

and Rout → ∞.  

When dividing (48) by Rin, and (49) by Rout, it follows 

that: 

 0va − 0vb − 1iαj − 0iαk = 0 (50) 

 0vc − 0vd − Γ. va + Γ. vb − 0iαj − 1iαk = 0 (51) 

Equations (48)-(49) or (50)-(51) can easily be inserted into 

the matrix formulation presented in (1). 

 

IV.  CONTROL BLOCKS MODELLING WITH MATE AND 

MULTILEVEL MATE 

 

The implementation of current and voltage dependent 

sources in the MATE concept expand its capabilities for 

modelling many electric and electronic circuits and devices. 

With a voltage controlled voltage source, for example, it 

becomes easy to simulate ideal operational amplifiers. These 

can then be used to set up control circuits with analog-

computer block-diagrams.  

As long as the equations of the dependent sources are 

linear, one direct solution is performed using a solver for 

linear unsymmetrical matrices and pivoting techniques. 

Nonlinear effects arise with the inclusion of saturation or 

limits in the dependent sources. The fixed point iteration 

method or a Newton-Raphson type algorithm can be used in 

these and other nonlinear cases. 

A circuit approach for the computer modelling of control 

transfer functions is given in [9], originally developed for 

EMTP-based simulations. Its implementation in the MATE 

concept is possible, based on the work presented here, 

especially with the inclusion of models for ideal operational 

amplifiers. Linear coupled branches, such as ideal 

transformers, or nonlinear coupled branches can also be 

modelled in MATE.  

Therefore, the application of the enhanced MATE and 

Multilevel MATE [2]-[3] concepts allows the modeling, with 

more computational efficiency, of complex engineering 

systems and control devices. Fig. 7 presents an example 

system to demonstrate the “multilevel MATE” concept, which 



allows that any system can be partitioned using links and 

sublinks connecting systems or subsystems, respectively. 

 

Fig. 7. Example system to demonstrate the “multilevel MATE” concept [2]-

[3]. 

V.  TEST CASE SIMULATIONS 

To illustrate the application of the Multilevel MATE to a 

power system dynamics simulation, including control 

modelling as sublinks branch equations, Fig. 8 shows a 

schematic of a double fed induction generator (DFIG) wind 

turbine system. Fig. 9 presents the stator-side converter 

controller and Fig. 10 presents the rotor-side converter 

controller. Details of the modelling and other data are 

available in [2]: 

Rated power = 7.5 kW 

Stator voltage = 415 V 

Rotor voltage = 440 V 

Rated stator current = 19 A 

Rated rotor current  11 A 

Pole pairs = 3 

Rated speed  970 rpm 

Base frequency = 50 Hz 

Ns/Nr = 1.7 

J = 7.5 kgm
2 

Stator connection = delta 

Rotor connection = wye 

Machine resistances and inductances per phase: 

Rs = 1.06 W 

Rr = 0.80 W 

Ls = 0.0664 H 

L0 = 0.0810 H 

Lr = 0.0320 H 

Control Parameters: 

Stator-side converter 

Kv = 0.12 

av = 0.9248 

Ki = 4.72 

ai = 0.96 

Rotor-side converter 

K = 0.49 

a = 0.988 

Kir = 20 

air = 0.985 

 
 

Fig. 8. Schematic of a double fed induction generator (DFIG) wind turbine 

system [2]. 

 

Fig. 9. Stator-side converter controller [2]. 

 

 

Fig. 10. Rotor-side converter controller [2]. 

The double fed induction generator wind turbine system 

model consists of the three-phase domain induction generator 

discrete model [2], the discrete phase-domain model of the 

voltage converter and the voltage-converter controllers 

operating in the dq reference frame. The phase-domain voltage 

converter model is composed of the voltage transfer 

characteristics of the stator and rotor side converters plus the 



differential equation of the DC link. 

“An experimental setup from the literature [13] was 

replicated and simulated for two types of disturbances: 

decrease in wind velocity and a three-phase fault in the 

connecting double-circuit transmission line, illustrated in Fig. 

11. The results were successfully compared against the results 

in the literature and against a traditional stability simulation 

tool [14]. The comparison has shown the advantages of using 

more detailed modelling, especially when control and 

protection devices plays a major role in the system´s response” 

[2]. 

 

 

Fig. 11. Double fed induction generator (DFIG) wind turbine test case [2]. 

 

Fig. 12 presents the transient response of a double fed 

induction generator (DFIG) wind turbine to a step decrease in 

wind velocity [2].  

“Fig. 12 depicts the DIFG currents and voltages in the 

pahse domain. Figs. 12 (c) and Fig. 12 (d) show the smooth 

operation of the DFIG through synchronous speed. By 

examining Fig. 12 (f) we note the change of “direction” of the 

stator-side converter current, indicating the change in 

converter power from generation to consumption” [2]. 

 

 

 
 

Fig. 12. Transient response of a double fed induction generator (DFIG) wind 

turbine to a step decrease in wind velocity [2]: (a) stator phase to neutral 

voltage, (b) stator phase current, (c) rotor phase to neutral voltage, (d) rotor 
phase current, (e) stator-side converter phase voltage, (f) stator-side converter 

phase current. 

Fig. 13 presents the transient response of a double fed 

induction generator (DFIG) to a three-phase short circuit. 

 

 

Fig. 13. Transient response of a double fed induction generator (DFIG) to a 

three-phase short circuit: (a) stator phase-to-neutral voltage, (b) stator phase 
current, (c) rotor phase-to-neutral voltage, (d) rotor phase current, (e) stator-

side converter phase voltage, (f) stator-side converter phase current. 

 

VI.  CONCLUSIONS 

 

This paper has provided a clear derivation of the Multi-

Area Thévenin Equivalent Concept (MATE) [1], also 

including current- and voltage dependent sources. The 

generalization presented in this paper expands the link branch 

equations to dependent, independent, coupled, uncoupled, 

linear or nonlinear relations.  

The links concept in MATE is advantageous in 

representing branches connecting subsystems. The subsystems 

can be solved independently (even with different solution 

techniques and with parallel processing) and the overall 

solution is then integrated at the level of the links. In the 

Multilevel MATE algorithm each subsystem becomes the 

basis for another level of MATE partitioning, thus improving 

solution efficiency [2], [3].  

The algorithm has to take into account the particular 

system´s topology and characteristics (fast or slow dynamics,  

linear, nonlinear, etc.) to choose the partitioning. Optimal 

network partitioning algorithm is needed in future work, 

especially for very large power systems simulations. 

Therefore, the application of the enhanced MATE and 

Multilevel MATE concepts allows the modelling and the 

simultaneous solution of control and power systems equations 

with more computational efficiency for complex engineering 

systems and control devices.  
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