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Abstract- This paper presents brief review of different methods 

for calculation of eigenvalues and eigenvectors for application in 

the modal transmission line theory. In this field of particular 

interest is the numerical phenomenon known as “mode 

switching”. “Mode switching” is related to very specific 

frequencies and must be properly treated in modal domain 

models of overhead lines and underground cables. This paper 

summarizes the methods and identifies the differences among 

them. Impedance and admittance matrices of overhead lines and 

underground cables are calculated in wide range of frequencies in 

order to compare different methods.     
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I.  INTRODUCTION 

nderground cables and overhead lines are in EMTP-

based simulation programs modeled as frequency-

dependent elements known as FD (frequency-dependent) or 

ULM (Universal line model). A number of papers are strictly 

dealing with modeling electromagnetic transient behavior of 

overhead lines and cables [1]-[7]. Most of them use modal 

decomposition theory to decouple phase system in equivalent 

modal system as if it is consisted of single phase lines. In this 

process it is very important to develop suitable algorithm that 

will calculate eigenvalues belonging to the same set of 

eigenvectors. One of the most important condition that has to 

be fulfilled is that eigenvectors calculated from YZ are 

continuous and smooth throughout wide range of frequencies. 

If the standard routines are used for calculation of eigenvalues 

and eigenvectors it is found that eigenvalues and eigenvectors 

are not sorted properly and inevitable switching between 

modes can occur. For example, this can occur if we use 

standard Matlab function eig() or implementing basic QR or 

power method algorithm for calculation of eigenvalues and 

eigenvectors. To avoid this problem three methods which are 

commonly used in reported literature [1]-[3] are presented. 

The first one uses modified Jacobi algorithm [1], [2]. Jacobi 
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algorithm is commonly used for solving eigenvalues and 

eigenvectors problems of real symmetric matrices and with 

certain changes it can be used for solving asymmetrical 

complex matrices [8]. The second one is the Newton-Raphson 

method [3]. This method is not often used in reported literature 

but can derive smooth and continuous eigenvectors and 

eigenvalues throughout wide range of frequencies. Since this 

routine utilizes the results from previous frequency as starting 

value for next frequency it is recommended to use another 

algorithm in order to get started with Newton-Raphson 

method. This will work efficiently only if the eigenvalues and 

eigenvectors do not vary widely from one frequency to the 

other. The third one also utilizes standard routines (power 

method, Jacobi method, matlab function eig and others) with 

correlation technique [3]. In this case mode switching is 

inevitable but can be recognized using correlation technique. 

The correlation technique checks if the eigenvectors belonging 

to the same set of eigenvalues are orthogonal from one 

frequency to the other. 

Basic description and algorithm of aforementioned methods 

are provided in this paper. For this purpose, frequency 

dependent impedance and admittance matrices are calculated 

for underground cables and overhead lines using equations 

reported in [4]-[6]. The main objective of this paper is to 

review reported methods for solving eigenvalue and 

eigenvector problem in modal decomposition theory and to 

provide comprehensive description and implementation of 

them. 

This paper is structured as follows: Section II outlines the 

problem of mode switching. Section III describes basic 

information of methods reported in literature for solving 

problem of mode switching. Section IV underlines the 

commonly used normalization routines for eigenvectors 

matrices. Section V presents simulation examples and results 

for simple circuits of overhead lines and cables. Section VI 

concludes with a discussion of the obtained results.   

II.  MODE SWITCHING IN THE MODAL DOMAIN MODELS 

Figure 1. shows an example of multiple eigenvalue 

switchovers when calculating modal velocity for underground 

cable given in section V. Modal velocity is obtained for six 

modes of propagation a-f. In modal theory of underground 

cables, mode a in fig. 1 presents a zero sequence mode of 

conductor which is energized by injecting unit current into 

each cable conductor and extracting it from corresponding 

sheath. Modes b and c represent interconductor modes of 

propagation. Mode e is a zero sequence sheath mode and 

U 



 

 

modes b and c are intersheath modes of propagation. Mode e 

has lowest modal velocity due to high inductive impedance of 

soil path. Modes a-c have amount of modal velocity in amount 

of 2/3 speed of light in cases of frequency larger than 1000 Hz. 

Eigenvalues and eigenvector for every specific frequency 

are calculated using standard Jacobi routine. Almost the same 

results can be obtained when using other standard routines as 

matlab function eig(), QR algorithm, power methods and 

others. In this case when eigenvalues switching has occurred it 

also means that eigenvectors switch places at certain 

frequencies. Figure 1. shows an example of switchovers with 

modes a, b and c and f at frequencies near 10 Hz, 30 Hz, 40 

Hz, 500 Hz, and 500 kHz.     
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Fig. 1.  Modal velocity characteristics of natural modes of propagation for the 

110 kV underground cable with mode switching 

 

According to [1], [2] two conditions have to be fulfilled in 

order to model FD model of underground cables and power 

lines in modal domain:    

 The eigenvectors calculated from products YZ have 

to be continuous and smooth throughout wide range 

of frequencies. 

 In order to obtain minimum-phase–shift functions, 

eigenvectors of YZ matrices need to be normalized 

so that one of their elements becomes real and 

constant throughout wide range of frequencies.    

It is obvious that first condition cannot be fulfilled with 

standard eigenproblem routines. For this reason special 

methods are developed in order to deal with the first condition. 

The second condition can be easily managed using appropriate 

normalization routine with eigenvectors.  

III.  DEALING WITH MODE SWITCHING  

This section presents basic information about three 

aforementioned methods. In order to avoid undesired overflow 

errors properly scaling is utilized dividing each element of 

matrix with element (-ω
2
ε0μ0) before calling eigenvalue and 

eigenvector routine. At the end calculated eigenvalues must be 

multiplied with same element in order to obtain good results. 

A.  Modified Jacobi method 

Standard Jacobi method uses Jacobi rotations to diagonalize 

real and symmetric matrices and to find appropriate 

eigenvalues and eigenvectors [1], [2], [7]. The first assumption 

that has to be fulfilled is that matrix product YZ is 

diagonalizable. Our experience and data presented in literature 

show that in practical cases YZ for power cables and lines is 

always diagonalizable throughout wide range of frequencies 

(0.001-1 MHz). If this is not a case it is still possible to obtain 

eigenvector matrices using perturbation techniques in order to 

insure that eigenvalues are distinct [2].      

In order to utilize Jacobi method adequate transformation is 

needed to insure that matrix is symmetric. Since matrix 

product YZ is asymmetric, eigenproblem (1) has to be 

transformed in (2).  
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where: 

 Y - admittance matrix, 

 Z - impedance matrix, 

 YZ - product of Y and Z matrices, 

 Q - eigenvectors of matrix YZ, 

  λ – eigenvalues of matrix YZ, 

 H – symmetric matrix, 

 R – eigenvectors of matrix H, 

 S – eigenvectors of matrix Y, 

 λY  - eigenvalues of matrix Y. 

 Eigenproblem (2) means that: 

 The matrix H is symmetric throughout wide range of 

frequencies and the eigenvalues λ of H are the same 

as eigenvalues of YZ. 

 Since H is symmetric, the eigenvector matrix satisfies 

R
-1

=R
T
.  

 Eigenvectors Q of matrix product YZ can be obtained 

using equation (4). 

 Eigenvectors S of Y can be easily obtained using 

standard routines. Admittance matrix is almost 

diagonal matrix and eigenproblem can be easily 

solved.   

Using this approach it is possible to calculate eigenvalues λ 

and eigenvectors R applying standard Jacobi routine. After 

calculating eigenvector matrix R it is possible to calculate 

eigenvectors of matrix YZ using equation (4). In order to 

insure continuous and smooth eigenvectors and eigenvalues 

throughout wide range of frequencies it is necessary to utilize 

eigenvectors obtained in previous frequency step. This is done 

by equation (6) in which matrix H for present frequency is pre- 

and post – multiplied with eigenvectors calculated for previous 

frequency. 
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 Where: 

 RP is eigenvector calculated for previous frequency. 

 Inversion of RP is not needed since it is orthogonal 

and satisfies R
-1

=R
T
. 

 Hn is new matrix which is almost diagonal and used 

for calculating eigenvalues and eigenvectors for 

present frequency. 

 Since matrix Hn is almost diagonal Jacobi rotations 

will be almost unit matrix and this will effectively 

speedup calculations. 

This method is tested for underground cables in [1], [2]. 

B.  Newton – Raphson method  

In Newton-Raphson method there is no need for symmetric 

matrix to calculate eigenvalues and eigenvectors of YZ. It 

utilizes equation (7) in order to find eigenvalues and 

eigenvectors 

 70)( 
k
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kk
YZ 

Where: 

 Qk  is eigenvector belonging to the eigenvalue λkk. 

 U is unit matrix. 

Equation (7) is repeated for all eigenvectors and 

eigenvalues in order to calculate exact values. As an example 

for a three phase power line or cable these equations can be 

written as: 
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In equations (8) there are four unknowns and three 

equations. In order to obtain solution it is possible to replace 

largest value at the initial frequency and set it equal to one for 

all frequencies. According to [3] this normalization is not good 

because it can sometimes lead to undesirable errors. Instead, 

they recommend specifying sums of the squares of the 

elements of the eigenvector to unity (8.4).  
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Using aforementioned four equations (8.1 to 8.4) and 

standard Newton Raphson method new function G(x) can be 

defined as: 

 9)(
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 Where J(x) is the Jacobian matrix and F(x) is matrix formed 

by equations (8). Since Newton–Raphson is iteration method, 

initial values of eigenvalues and belonging eigenvectors is 

needed. Obviously the eigenvalues and eigenvectors obtained 

from previous frequency are used as starting values for present 

frequency. Also this method is not self-starting method and 

another routine must be used to calculate eigenvalues and 

eigenvectors for first frequency. This method is tested for 

overhead lines in [3].   

C.  Correlation technique 

Correlation technique can be used to avoid multiple 

switchovers between eigenvectors. In order to find out 

“switching frequencies” it is necessary to track eigenvectors 

throughout the wide frequency range. The correlation 

technique proposed in [3] is based on the fact that the 

eigenvectors belonging to the same set of eigenvalue are 

orthogonal from one frequency to the other. The algorithm for 

correlation technique proposed in [3] can be summarized in 

five steps: 

 Calculate the eigenvector matrix Q for present 

frequency. 

 Obtain complex conjugate transpose matrix Q
T
*. 

 Calculate matrix product (Q
T
*)Qp. Qp is eigenvector 

matrix from previous frequency. 

 In each row of the aforementioned product find the 

largest elements. The row number of this element 

defines the column number of the eigenvector from 

the previous frequency. Conversely, column number 

defines column number of the eigenvector at the 

present frequency. This means if mode switching has 

not occurred, all largest numbers will be sorted in 

diagonal of aforementioned matrix product.  

 If eigenvector switching has occurred it is necessary 

to switch eigenvectors and eigenvalues in order to 

match previous frequency.     

  Our experience shows that this method works efficiently 

with standard eigenproblems routines (power method, matlab 

function eig() and jacobi method) but also shows that it cannot 

be applied with QR method.  

IV.  EIGENVECTOR NORMALIZATION 

According to [1], [2] author recommends to normalize 

eigenvectors of YZ matrices in order to obtain minimum phase 

shift functions. For underground cables author recommends to 

multiply each eigenvector by a factor such that one of its 

elements becomes constant and real throughout whole 

frequency range. This scaling process automatically forces all 

elements of eigenvector to be minimum-phase-shift-functions. 

In [3] authors recommend using sums of squares of the 

elements of the eigenvectors to unity. In this paper author 

presents that forcing one element to be real and constant can 

sometimes take away natural variation behavior and produce 

undesirable errors. In this paper for the purpose of comparison 

in section V the first normalization routine will be utilized for 

all methods. In future research it is recommended to define 

optimal normalization routines for overhead lines and 

underground cables. 

V.  SIMULATION EXAMPLES AND RESULTS 

For simulation purposes two examples are presented. First 

simulation example with results is presented for 110 kV 

underground cables and second one for 110 kV overhead lines. 

Matrices Y and Z for underground cables with sheaths are 

calculated throughout wide range of frequencies (0.001 Hz – 



 

 

10 MHz) with 15 points for every decade in log scale. Matlab 

function is implemented to calculate elements of impedance 

and admittance matrices using well known equations [4]. 

Frequency dependent internal impedance of core and sheaths 

are calculated using full classical formulas. Earth-return 

impedance and mutual earth-return impedance are calculated 

solving Pollaczek integral with convergent series and by 

implementing numerical integration method using cautious, 

adaptive Romberg extrapolation [4]. Also calculations are 

implemented and compared with approximate formulas given 

in [4]. All results are obtained based on homogenous soil 

resistivity. Physical and geometry data for 110 kV three phase 

underground cables with sheaths and isolation are shown in 

figure 2. The cables used as an example in figure 2. are single 

core, with aluminium phase conductors, with cross–linked 

polyethylene insulation (XLPE) and semi-conductive layer 

beneath and over insulation. Outer insulation is high-density 

polyethylene (PEHD).  

ρ=1000 Ωm

h
=

1
m

s=15 cm

r1= 19 mm

r2= 35 mm

r3= 35.42 mm

r4= 43 mm

ρC=2.82∙10
-8

 Ωm

ρS=1.72∙10
-8

 Ωm

tanδ XLPE = 0.001

tanδ PE-HD = 0.001

εrXLPE=2.3

εrPE-HD=2.5

μr=1

L=5 km

r1

r2 r3 r4

 
Fig. 2.  Data and geometry for 110 kV three phase underground cables 

For comparison purposes smooth and continuous functions 

of amplitude and angle of eigenvectors for cables are 

presented in Figure 4. Figure 3 shows modal velocity for six 

natural modes of propagation (a-f). Correlation technique is 

used with standard matlab function eig() and scaling process of 

eigenvectors is made according to section IV. Simulation with 

different kinds of cables geometry and physical data shows 

that all methods give good and almost identical results. 

Newton-Raphson method and modified Jacobi methods give 

reasonably good results after few iteration. Maximum relative 

error between these methods in this example do not exceed 

0,3%, which is negligible. The differences among correlation 

technique and Newton-Raphson method (4 iteration used in 

simulations) used in this simulation are shown in figure 5. 

Figure 6 shows differences among correlation technique and 

modified Jacobi method. In this case for modified Jacobi 

algorithm is implemented with average 9 iteration for column 

5 eigenvector.  
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Fig. 3.  Modal velocity characteristics of natural modes of propagation for the 

110 kV underground cable without mode switching 
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Fig. 4.  Amplitude and angle of eigenvectors 1 to 6 for underground cable 
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Fig. 5.  Magnitude difference of Newton-Raphson (iter. 4) compared to 

Correlation technique 
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Fig. 6.  Magnitude difference of Jacobi method (average iteration 9) 

compared to Correlation technique 

 

 

Similarly, for overhead lines, calculation of matrices Y and 

Z are also implemented in matlab throughout same range of 

frequencies. For overhead lines explanations about modes of 

propagation are similar with cables.  

Figure 8 shows continuous and smooth function of modal 

velocity for four natural modes of propagation (zero sequence 

modes and interconductor modes) for overhead lines with 

assumption of uniform soil resistivity. At high frequencies 



 

 

modal velocity for all modes has amount near speed of light.  

Physical and geometry data for three phase overhead line 

with one sky wire is shown in figure 7. Figure 9 shows 

calculation functions of angle and amplitude of four 

eigenvectors scaled in accordance with section IV.   

Conductors: 

n= 3

rC= 9.48 mm

RC=0.1188 Ω/km

Sky wire:

n=1

rew= 6.97 mm

Rew=0.3412 Ω/km

Line length: 5 km

3,5

2,5

3,0

31,8 m

2,2 m

2,2 m

3,0 m

ρearth=1000 Ωm

Sky wire

 
Fig. 7.  Data and geometry for 110 kV three phase overhead line 
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Fig. 8.  Modal velocity characteristics of natural modes of propagation for the 

110 kV overhead lines without mode switching 
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Fig. 9.  Amplitude and angle of eigenvectors 1 to 4 for overhead line 

VI.  CONCLUSIONS 

This paper provides review, implementation and simulation 

examples of methods for dealing with mode switching in 



 

 

modal transmission line theory. The methods reported in 

literature are: modified Jacobi algorithm, Newton – Raphson 

method and correlation technique. All methods can be easily 

implemented in EMTP programs and produce smooth and 

continuous functions of eigenvalues and eigenvectors 

throughout wide range of frequencies. The comparison 

between methods using aforementioned underground cables 

and overhead lines shows that differences are negligible but 

future analysis with more complicated geometry models of 

cables (pipe type cable and others) and overhead lines need to 

be investigated. According to reported literature mode 

switching is important to solve only in modal domains FD 

models because eigenvectors functions need to be continuous 

and smooth throughout wide range of frequencies. If phase 

models are used then mode switching is not important. 

 Newton-Raphson method and modified Jacobi method 

utilize eigenvectors calculation from previous frequency step 

and that is reason way functions are smooth, continuous and 

the calculation process is very fast. Correlation method uses 

tracking algorithm in order to recognize mode switching.  
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