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Abstract-- A numerical investigation of the series solution by 

Wedepohl et al., for calculating ground-return impedances of 
underground power cables is presented in this paper. Although 
this series solution was proposed in 1973, its accuracy, 
convergence and required processing-time have not been 
determined. From this investigation, a new hybrid technique is 
proposed (analytical-numerical) for the practical evaluation of 
ground-return impedances of underground cables for most 
engineering application cases. 

The results obtained here show that its accuracy is comparable 
to the direct solution of the Pollaczeck´s integral, its convergence 
is uniform as the Wedepohl series solution and its processing-time 
is short as a closed-form approximation. 
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I.  INTRODUCTION 
N 1973 Wedepohl et al. presented a mathematical model for 
the analysis of frequency dependent travelling-wave 

phenomena in underground transmission systems suitable for 
steady-state or transient analyzes. In this model the wave-
propagation characteristics of the system are given by the 
natural modes where the skin effect in conductors and ground 
is directly taken into account [1]. An important contribution of 
this paper is the solution of the Pollaczek´s integral through 
low-frequency infinite series. 

In 1926, Pollaczek presented a set of non-analytic integral 
expressions to calculate the electric field due to an infinite thin 
filament of current in the presence of an imperfect conducting 
ground [2]. 

An initial study of the model solution developed in [1] 
indicates that combining the rapidly converging series for the 
low frequency range with the trapezoidal integration of the 
exponential integral expression for high frequencies can be 
used to obtain an accurate and rapid ground-return impedance 
(Zg) evaluation [3]. 

However, to the best knowledge of the authors, an efficient 
solution of Wedepohl et al. series has not been implemented or 
included yet in any EMTP type software. This may be due to 
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the preferred use of closed-form approximations for many 
practical engineering applications, which are accurate enough, 
although up to date their applicability ranges remain unknown 
[4, 5]. 

A numerical investigation of the Wedepohl et al. series 
solution for calculating Zg of buried power cables is performed 
in this paper. Resulting from a complementary investigation 
derived from [3] a new revised vector-based version of this 
series is interpreted and implemented here. The behavior of 
this series solution is analyzed here to evidence its rapid and 
uniform convergence at the low-frequency range [6]. 

From the above results we propose a new Zg analytical-
numerical evaluation technique combining the solution of 
Bessel functions with the simple numerical integration (i.e., 
using the trapezoidal rule) of the exponential function 
expressions that precedes the series expansion solution in [1]. 

Further, a computational analysis is developed in this paper 
similar to the one in [7] comparing three different techniques 
to solve Pollaczek integral regarding accuracy and CPU-time. 
The first is with the Wedepohl et al. series, the second uses the 
direct numerical integration of Pollaczek integral with infinite 
limits applying the Gauss-Kronrod routine and the third is with 
the closed-form approximation proposed by Saad, Gaba & 
Giroux based in part on the method of images [4]. 

Finally, the obtained results show that the here proposed 
methodology can be used for accurate calculation of Zg of 
cable systems and also as an aid to validate other 
methodologies or closed-form approximations. 

II.  EARTH-RETURN IMPEDANCES 
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Fig. 1.  Geometry of an underground power transmission system 
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A.  Basic Relations 
The self and mutual earth-return impedances for a quasi-

TEMz mode is described by (check Fig. 1 for reference 
directions) [1]: 
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where ω represents the angular frequency (in rad/s), µ 
corresponds to the magnetic permeability (H/m) of the soil, 
and the complex depth (considering displacement currents) is 
given by 

1/ ( )                               (1b)o rp j jω σ ωε ε µ= +  

After the second term of the integral in (1a) is expressed via 
Bessel functions, (1a) becomes (parameters D and d are shown 
in Fig.1): 
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According to (3b) and (3d), the solution for I2 and I4 is 
given by: 
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respectively, where K1 and K2 represent modified Bessel 
functions of first and second order, respectively. For I3, we 
have [1]: 
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The first component of the integral in (4c) can be easily 
evaluated by using traditional integration rules; the second part 
corresponds to K2(D/p). In [1], it is proposed that the third 
component of (4c) be evaluated by a series expansion of the 
exponential function and then be integrated term-by-term to 
give Sser(D/p, |x|, l), with ℓ=h+y.  

This is, 

[ ]
2 2

( )/
3 4

22

2

2 2

[( ) ] 1 ( ) /

( ) ( / )

( ) , ,        (4d)

h y p

ser

h y xI h y p e
D

jx h y K D p
D

x h y DS x
pD p

− ++ −
= + + +

+
+ +

 +
+  

 

2

2 2

2 

 
 
The series term Sser from (4d) is further analyzed in the 

following sections. 

B.  Wedepohl and Wilcox series 
Despite a few typographical errors in [1] regarding the 

converging series, these can be split up into the following four 
types of terms: 
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S1 to S4 are rearranged into a different form than in [1] and 

presented in this paper. This is due in part to the fact that the 
original paper presented typographical errors that can confuse 
the non-specialist reader. For instance, an analysis of S1, given 
by (6a), reveals that the leading terms: 
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can be stored into two separate vectors and used whenever is 
required. In addition, it can be observed in (6)-(9) the nesting 
nature of the numerical remaining terms. As an example, a 
pseudo-code (based on Matlab® programming notation) has 
been added after the first term (6a). For the second, third, and 
fourth terms, very similar pseudo-codes (not shown here) can 
be generated. 
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Pseudo-code for S1 
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Second term S2 
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Fourth term S4 
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It is noted that the aforementioned leading terms are frequency 
dependent whilst the nested terms depend only on the 
geometry of the cable system. 

III.  CONVERGENCE ANALYSIS OF THE SERIES 

A.  Series and numerical integration 
Consider the three cable application case reported in [1] 

which is also reproduced here below in Fig. 2. For this case, 
the frequency range has been uniformly sampled testing from 
1Hz to 10MHz by using 100 equidistant points. 

As a first evaluation step, we use the series proposed by 
Wedepohl-Wilcox, Sser, given by (5). The second evaluation 
corresponds to the trapezoidal numerical integration (a step 
equal to 10–4 is used) of the third right-hand-side integral 
expression in (4c), labeled as Sint. 

The behavior of both evaluations is presented in Fig. 3a. In 
this figure, the real and complex components of Sint are 
presented in black continuous dotted line. As for Sser, the 
number of terms has been varied and the corresponding result 
is shown in gray dashed line. 

From the results shown in Fig. 3a, it can be noticed that the 
first four terms of each Sn, n = 1, …, 4, give a fairly good 
agreement compared to Sint. Further evaluations including 
more than four terms did not produce important differences 
between evaluation methods for Sser. This corresponds to the 
theory of convergence of a series around a given point [6]. 

 
B.  Ratio test 

In addition, the uniform convergence of the sequence of 
partial sums (or series solution Sn) has been calculated by 
using the following ratio test [3], for n = 1, 2, 3, and 4: 
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The results of evaluating (10) are shown in Fig. 3b. From 
this numerical analysis, one can observe the smooth behavior 
of the four set of curves Sn when approximating to Sser, thus 
indicating a uniform convergence feature, as defined in [6]. 

 

C.  Alternative series-based solution 
As presented in [3] and here in Fig. 3, it can be seen that all 

four terms of the series give accurate results, at very low 
computational expenses, up to D/|p| ≈ 2. Therefore, it was 
proposed in [3] to use this ratio as a limit criterion to generate 
a hybrid algorithm that switches between series and any simple 
numerical integration routine. 

 

h=75cm

m1 ε1 σ1=0

ε2=10m2 ρ2=20Ωm

Aiρ

Soil
x=15cm

ρPVC=2.795cm

Cablε 1 Cablε 2 Cablε 3

1
2

3
4 6

5

 
Fig. 2. Underground cable transmission system, taken from [1]. 
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Fig. 3.  Series convergence test. (a) Comparison between series solution and 
hybrid technique regarding the number of terms. (b) Ratio test 
 

Notice that this condition contrasts with the one proposed in 
[1] where D/|p| = 1/4 is used to switch between the series 
solution and the closed form solution of (2) obtained from the 
leading terms of the same series expansion developed in (5). 

Furthermore, an important aspect in the proposed hybrid 
algorithm in [3], is the inclusion of the displacement currents 
in the ground, as indicated in (1b). 

The here presented results have been obtained for the 
particular case of analyzing the underground cable system 
configuration proposed in [1] which is shown in this paper in 
Fig. 2. However, a similar analysis can be directly extended to 
a broad range of real cable configurations. 

 

D.  Hybrid technique 
In the here proposed technique to calculate Zg the simple 

analytical functions from (2), (3a) and (4) are combined with 
the numerical integration of Sint as shown below: 
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where, as described in section III. A: 
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As shown in Fig. 3a, it is evidenced that the behavior of Sser 

and Sint are very similar for values D/|p| ≈ 2. From this point of 
view a new methodology based on the mathematical properties 
of Sint can be proposed regarding the improvement of accuracy 
and CPU-time. 

As an illustrative example, the integrand behavior of (12) is 
shown in Fig. 4 taking 100 regular samples of frequency from 
1Hz to 10MHz, for the cable system in Fig. 2. 

The numerical integration of (12) is shown in Fig. 5. This 
solution has been obtained testing three different types of 
quadrature routines: Gauss-Kronrod quadrature, Romberg 
Mid-pint-rule and Trapezoidal integration. 

As it can be seen from Fig. 4 and Fig. 5, the asymptotic 
oscillatory behavior of the integrand of (12) strongly depends 
on the physical and media parameters of the cable system. 

After testing several cases of different cable systems solving 
(12) with the aforementioned numerical integration routines, 
an optimal calibrated trapezoidal solution is obtained. In the 
sense of a fast and accurate enough for this paper application 
cases. 

Thus, for simplicity the trapezoidal numerical solution of 
Sint is chosen to complement the calculation of Zg in (11) which 
is the here proposed technique taken as a reference which 
performance and accuracy are tested in the following paper 
section.      

 

IV.  MUTUAL GROUND-RETURN IMPEDANCES 
COMPUTATIONAL ANALYSIS 

In this section the computational performance of the: 1) 
Hybrid technique solving (11), 2) Wedepohl et al., series (4d), 
3) Direct Pollaczek integral evaluation through Gauss-Kronrod 
in (2) and 4) Images based formula (SGG) from [4] for 
calculating mutual Zg for the underground cable system shown 
in Fig. 2 is analyzed here regarding rms-error and CPU-time. 
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Fig. 4.  Phase plane for the integrand behavior for the cable system shown in 
Fig.2 sampled for a vector frequency of 1Hz≤ f ≥10MHz. 
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Fig. 5. Numerical solution of (12) for the cable system in Fig.2 using three 
different generic quadrature routines. 
 

This test is performed for calculating mutual Zg varying the 
horizontal distance “x”, between two buried cables (see Fig. 
1), according to 0.001m≤ x ≥2km. 

The ground resistances are shown in Fig. 6a testing three 
frequencies, while in Fig. 6b the mutual ground inductances 
are also depicted. 

It can be seen from these two figures that the curves 
behavior calculated with the aforementioned methods are in 
good agreement with the here proposed hybrid technique 
(taken here as a reference solution and also in Table I). 

On one hand, for a quantitative evaluation, the relative 
errors (%εrel) for each of the three frequency curves between 
the hybrid technique solving (11) and the other three 
approximate techniques are shown in Fig. 7, through the 
following expression: 

 

( )13100
exactf
aproxf

1% rel ×−=e  

 
where faprox and fexact, mean the corresponding approximated 
and exact function evaluations, respectively. 

In this numerical experiment, the series solution of [1] 
implemented in [3], has presented small discontinuities at the 
bottom of Fig. 7. As in the case of Carson´s series [3] and [5] 
this is due in part to the switch between low and high 
frequency boundary series. 

The Gauss-Kronrod quadrature routine presented small 
numerical oscillations at the final stage of the figure. The 
presence of this type of discontinuities is the evidence that the 
integrand may have a singularity at one of the integration 
limits. 

The SGG formula presented a relative error as much as 24% 
for the three frequency tested curves at certain distances, only. 
However, SGG formula was based in the method of images 
taken the ground plane as a mirror, which means that the closer 
the cable conductors, the accurate the calculation of Zg. 

On the other hand, for a qualitative evaluation, Table I 
resumes the obtained rms-error and the computational CPU-
time required for calculating Zg for each frequency curve with 
the four tested methods.  
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Fig. 6. Mutual ground impedances calculated solving (12) with hybrid 
technique and applying for comparison Wedepohl series, Gauss-Kronrod 
routine and SGG Formula. a) Resistances. b) Inductances 
 

In electromagnetic transients calculation [5], the required 
accuracy and CPU-time are very important variables, even 
more when certain line or cable models can be considered for 
further real-time applications [7].  

The numerical results shown in Table I were obtained using 
Matlab® v7.8 on a 2.4GHz processor with 4GHz of RAM. 

From Table I can be observed that the computational time 
required by the Gauss-Kronrod method is larger than any other 
of the compared methods, as expected. 

The Wedepohl et al., series solution also takes more CPU 
time compared to the hybrid technique proposed here; also, the 
rms-error increases for larger values of frequency. 

This is perhaps due to the criterion for switching between 
the series and the closed-form formula in [1]. 
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Fig. 7. Relative errors between the proposed method in comparison with SGG 
formula, Wedepohl series and the Gauss-Kronrod quadrature routine. 
 



The SGG formula presented a very similar CPU-time than 
the proposed hybrid technique for the last frequency case. 
However, its rms-error is the largest one between any of the 
here treated approximate solutions, but this is indicating that 
probably this formula was not developed for large horizontal 
distances between underground cables bigger than usual 
engineering practical installations. In many other cases, this 
formula has proven to be very accurate [4]. 

 
TABLE I 

RMS ERROR AND CPU TIME 
 

Test Methodology
Hybrid 

technique
Gauss-Kronrod

Wedepohl 
Series

SGG 
Formula

50
H

z CPU time
(Sec)

0.0312 2.1840 0.1404 0.0156

rms error (base) 0.0006e-3 0.1930e-3 0.0247

50
0H

z CPU time
(Sec)

0.0468 1.8720 0.0312 0.0156

rms error (base) 0.0117e-3 0.3913e-3 0.0186

5K
H

z CPU time
(Sec)

0.0156 1.4508 0.0468 0.0156

rms error (base) 0.1163e-3 0.6558e-3 0.0127
 

 

V.  CONCLUSIONS 
The Wedepohl et al., series formulation to calculate ground-

return impedances of underground power cables has been 
implemented and the numerical results are analyzed in this 
paper. 

This series solution is highly efficient and converges rapidly 
at the low-frequency range. However, when combined with the 
closed-form solution taken from the only leading terms of the 
series as indicated in [1], lacks precision in the range of about 
1×10-3 rms. 

There are some other techniques for the direct numerical 
integration of Pollaczek´s using automatic or adaptive 
quadrature routines as the Gauss-Kronrod technique. 

In the here presented application case the Gauss-Kronrod 
technique results to be accurate for almost the entire frequency 
range. However, it requires a long CPU-processing time and at 
certain ranges this quadrature routine has produced numerical 
discontinuities. 

It has been already reported in the literature that the SGG 
formula is accurate enough for many practical engineering 
applications. In this paper the horizontal distance between 
cables has been set to 2km, which is probably out of the 
application range of this image based formula. However, this 
validity range has not been reported yet in the specialized 
literature. 

Thus, a new hybrid technique for calculating Zg (partly 

analytical-numerical) is proposed and its performance is 
analyzed here. The obtained results yields that this method is 
accurate enough that can be compared with the direct solution 
of the Pollaczek integral and its required processing time is 
short as in the case of solving an analytical formula. 

Finally, this method can be used to define practical 
application ranges for other approximate formulas and also to 
assess other numerical methods (as the ones based on 
quadrature, infinite series, conformal mapping, numerical 
optimization, etc.) for improving accuracy on transient 
calculations. 

 

VI.  APPENDIX 
Cable layout for the transient case reported in [1] and also 
depicted in Fig. 2. 
 

Cable Design Data

Core (Cu)

Sheath (Pb)

EP Insulation

sCu=5.8×108 S/m

PVC Jacket
rPVC= 2.795cm

Material 
Conductivity

sPb=7.24×106 S/m
ePVC=3.7

Insulation 
Permittivity

rn= 1.27cm

rs-e= 2.54cm

eEP=3.3  
 
 

Fig. 8. Original cable layout for the cable system taken from [1]. 
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