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Abstract— In this paper, utilizing Brune’s realization method, 

a new approach introduced to fit the Frequency Dependent 
Electric Networks (FDNEs) responses by means of passive 
circuits containing RLC elements. In this approach, by taking 
simple steps the frequency response can be directly transferred 
to the time domain simulation without need of mathematical 
curve-fitting. The fitting process is a numerical implementation 
of the Brune’s realization method and similar algorithm is used 
for the tabular functions of FDNEs. Therefore, the resulted 
circuit is always guaranteed passive network. The new method is 
applied to some case studies and the result verified to be properly 
matched in both frequency and time domain responses.  
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I.  INTRODUCTION 

RANSIENT simulation of power systems has always 
been essential for accurate study of different phenomenon 

in the network. To get the exact and realistic simulation result, 
it is necessary to have tools which provide precise and stable 
models of power system elements. Accurate modeling of 
Frequency Dependent Equivalent Networks (FDNEs) in time 
domain has been one of the most challenging problem for the 
Electromagnetic Transient (EMT) programs. In this work, a 
new approach is introduced to obtain the time-domain model 
of FDNEs which guaranties accuracy and stability. 

FDNEs are used to save computational resources in 
transient simulation of large electrical power systems or in 
case of modeling a black-box unidentified network. To do so, 
a frequency scan of the network portion either through 
measurement made on the actual network or via measurement 
on a highly detailed simulation model. The frequency scan 
will be stored as a table of frequency versus impedance 
(magnitude and phase) and then this tabular function is 
converted to a rational function of the Laplace transform 
variable ‘s’ using curve-fitting methods. Finally, the rational 
function can readily be converted into a time domain 
simulation model either by RLC branches or by means of 
recursive convolution of exponential terms. 

Marti in [1] introduced a method to model frequency 
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dependent characteristic impedance of a transmission line in 
time domain. Using Bode’s procedure, the tabular function 
has been approximated by a rational function and then 
expanded into partial fractions as (1).  
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The partial factions then can be readily realized by means 
of Foster I synthesis method which utilizes series combination 
of parallel RC components as it is shown in Fig. 1. 
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Fig. 1.  Foster I equivalent circuit for frequency dependent impedance. 

 
Where in the Fig. 1. 
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Although Marti’s method works well for smooth frequency 
responses, in case of many resonance peaks in the frequency 
response, such as with cable systems, it will cause a large 
number of poles and zeros and thus, makes the time domain 
simulation not efficient. 

Gustavsen introduced a far more efficient technique to fit 
the non-smooth frequency responses using vector fitting [2]. 
This method is currently used in the majority of modern 
transient simulation programs. In vector fitting, the tabular 
function is approximated by a rational function in form of (3). 
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Where cn and an are the residues and poles respectively and 
can be either real quantities or complex conjugate pairs. The 
partial fractions then can be converted to the time domain 
using recursive convolution of exponential terms [3] or by 
means of parallel RLC branches [4] as shown in Fig. 2. 

 
Fig. 2.  RLC branches to realize real and complex pole pairs of Yeq (ω). 

T



The vector fitting method sometimes results in passivity 
violations. It means the implemented network generates 
energy at some frequencies which is physically impossible. To 
avoid this, the fitting procedure must be closely monitored and 
changes enforced to ensure that the fitted function is passive. 
Different passivity enforcement methods have been explored 
in literatures [5], [6] and still being developed [7].    

In this work first, Brune’s analytical solution to realize 
driving point impedance of a network Z(s) is explained. This 
method inherently guaranties the passivity of the resultant 
circuit, and thus eliminates any requirement of passivity 
checking and correction as required by the main approaches in 
use today. Then, the idea is extended to realize a tabular 
function Z(jω) numerically. Finally, simulation result is given 
to verify the method.  

II.  BRUNE’S REALIZATION METHOD 

Brune [8] in 1931 showed that the necessary and sufficient 
condition for the function Z(s) to be impedance of an RLC 
circuit is to be Positive Real (PR). That means, Z(s) must be 
real when ‘s’ is real and real part of it must be positive when 
real part of ‘s’ is positive. Brune’s method uses several steps, 
each of which, using RLC elements realizes a portion of the 
passive network that represents the given PR function. The 
procedure ends when no further circuit is left to be realized.  

The preliminary steps to realize the PR function Z(s) is 
removing all imaginary axis poles and zeros which is 
described as follows. 

A. Step 1- Removing Imaginary Axis Poles 

All the poles of Z(s) on imaginary axis can be removed in 
form of series components as (4) shows. k∞, k0 and kj are the 
residues of the poles at infinity, zero and ωj respectively.  
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The imaginary axis poles can then be represented by a 
series network as depicted in Fig. 3, in series with the 
reminder Z1(s) which is still a PR function. 

 
Fig. 3.  Series network resulting from removing imaginary axis poles  

 
Where comparing (4) and Fig. 3, in can be found that 
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Then, all the imaginary axis zeros of function Z1(s) shall be 
removed. 

B. Step 2- Removing Imaginary Axis Zeros 

Zeros of the Z1(s) are the poles of function Y1(s)=1/Z1(s). 
So, removing poles of Y1(s) is the same as removing zeros of 

Z1 (s) which can be done in the same manner as part before as 
(6) in which k∞1, k01 and ki are the residues of the poles at 
infinity, zero and ωi respectively.  
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Poles of Y1(s) (or zeros of Z1(s)) shall be removed as shunt 
components as Fig. 4 shows. Where again comparing (6) and 
Fig. 4, in can be found that, 
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Fig. 4.  Shunt network resulting from removing imaginary axis zeros  

 
After imaginary axis poles and zeros removal by repeating 

the first 2 steps, a remainder function will be left which has no 
more poles and zeros on this axis which is called a minimum 
reactance – minimum susceptance function. 

C. Step 3- Removing Minimum Real Part  

Let Z2(s) be the reminder function of previous step. In this 
step, the minimum of real part of Z2(jω) is removed in form of 
a series resistance Rmin. 
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If this creates a zero at f=0 or f=∞, then there will be a zero 
at 0 or ∞, so a zero reduction as step 2 should be done (and 
the zero can be removed in form of shunt elements Lz or Cz), 
otherwise there will be frequency ω0 where Z3(jω0) is pure 
imaginary. Function Z3(s) is called minimum function now. 

D. Step 4- Brune’s first cycle 

 As mentioned, 
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The reactance X can be removed in form of a series 
inductance L1 = X / ω0.  
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This reduction will make a zero in Z4(s) at ω0 which can be 
removed in form of a pole of Y4(s) by shunt LC component. 
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Considering (10), there is also a pole at infinity in Z4(s) 
which can be realized now in form of a series inductance L3. 
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Therefore, after removing the minimum real part, the 
Brune’s first cycle will result in the network depicted in the 
Fig. 5. Brune has also proved that (13) is always true for the 
inductances L1, L2 and L3. Thus, even if L1 or L3 may be 



negative, the circuit is still physically realizable by replacing 
the “Tee” connection with a transformer with positive leakage 
and mutual impedances and suitable turn’s ratio.  
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Fig. 5.  Removing the minimum resistance and Brune’s first cycle 

 
Brune’s first cycle will reduce the order of the impedance 

by two.  
The above 4 steps (i.e., removing imaginary axis poles and 

zeros, removing minimum resistance and Brune’s first cycle) 
are again applied to Z6(s) to further reduce the order of the 
remainder. The process is continued till the order of the 
resulting impedance is zero, i.e., all that remains is a resistor. 

III.  NUMERICAL IMPLEMENTATION ON BRUNE’S REALIZATION 

In a practical application, Z(s) is available as a tabulated 
frequency response (either magnitude and phase or real and 
imaginary components). The aforementioned steps in Section 
II above to reduce the order of the function are as follows. 

A. Step 1- Removing Imaginary Axis Poles 

By observing phase angle of the tabulated function, 
presence of poles at imaginary axis can be determined in the 
following way. 

If the phase angle of Z(jω) at very high frequency ω∞ is 
close to +90˚, it means there is an imaginary pole at infinity. 
So, it can be removed in the form of series inductance. Lsr can 
be found by looking at the imaginary part of the impedance at 
ω∞ while the real part must negligible.  
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Likewise, if the tabulated phase angle of Z(jω) at very low 
frequency ω0 is close to –90˚, it means there is an imaginary 
pole at zero. So, it can be removed in form of series 
capacitance Csr. 
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Lastly, any sudden change in the phase angle from +90˚ to 
–90˚ at ωj, means an imaginary pole at that frequency. Usually 
this type of poles is not very common.  
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Cj and Lj of the corresponding branches can be found from 
kj and ωj as mentioned in (5). The imaginary axis poles 

reduction of the tabular function will be done numerically as 
shown in (17).  
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B. Step 2- Removing Imaginary Axis Zeros 

Also, observing the phase angle of tabulated function gives 
information of imaginary zero. For example, If the phase 
angle of Z(jω) at very high frequency ω∞ is close to –90˚, it 
means there is an imaginary zero at infinity. The imaginary 
axis zeros of Z1(jω) will be removed in form of poles of Y1(jω) 
with the same procedure as mentioned before by investigating 
the behaviors of phase angle at very high and very low 
frequencies and also sudden changes from +90˚ to –90˚. Then 
these poles can be removed numerically as 
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Ci and Li of the corresponding branches can be found from 
ki and ωi as mentioned in (7).    

C. Step 3- Removing Minimum Real Part  

The minimum of real part of Z2(jω) is can be easily found 
by looking into the tabular function and can be removed in 
form of a series resistance Rmin. 
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Likewise, the analytical one, if this removal creates a zero 
at f=0 or f=∞, the situation is similar to what happened in step 
2 (and the zero can be removed in form of shunt elements Lz 
or Cz). If not, there will be frequency ω0 where Z3(jω0) is pure 
imaginary.  

D. Step 4- Brune’s First Cycle 

 Same as before, the Brune’s first cycle can be applied 
numerically. So, if  
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Then reactance X will be removed in form of a series 

inductance L1.  
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The zero in Z4(jω) at ω0 will be removed in form of a pole 
of Y4(jω) by shunt LC component. 
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Also, the pole at the infinity in Z4(jω) will be realized in 
form of a series inductance L3. 
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The 4 steps will be repeated till the phase angle of the 
reminder impedance becomes almost zero in all frequencies. 
This means there is a constant impedance which can be 
modeled by a resistor. 

IV.  SIMULATION RESULT 

The functionality of the new approach of fitting is verified 
trough out study of three different scenarios. The proposed 



method always guarantees the passivity of the realized 
network.  However, at this stage, comparison of its 
performance with other methods, i.e., examples where vector 
fitting produces non-passive results has not been investigated 
and is left for future work. 

A. Simple PR Function 

As of first scenario, the following simple function of 
frequency is examined using Brune’s “analytical” solution. 
Then the function is calculated in a range of frequency and the 
tabulated function is fitted “numerically” using proposed 
method. 
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The presence of poles and zeroes can be determined in 
numerical method by observing the phase angle at very low 
and very high frequencies. In this example, it approaches zero 
at both very low and very high frequencies which means there 
are no imaginary poles or zeros. The next step will be 
removing the minimum real part of Z(jω) which results in a 
resistance of 0.5Ω at ω0 =1.732≈√3. 
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Then, inductance L1 of Brune’s first cycle will be realized 
as: 
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Now, this inductance can be removed which creates a zero 
at ω0 in the remaining impedance; 
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The zero of Z4(s) will be realized in form of a pole of 
admittance Y4(s) utilizing a shunt LC branch. To find the 
residue of this pole;  
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Which means L2 = 3H, and this also gives; 
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 Then, removing this pole from the admittance Y4(s),  
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Then we can realize L3 in Brune’s first cycle using (13) 
which results an inductance L3 = 6H. 

Finally, removing L3 will gives a remainder constant 
impedance, i.e., a 9Ω resistance.  
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Fig. 6 shows the realized circuit and it can be seen that the 
analytical solution using Brune’s method (the red quantities 
on the figure) is almost the same as numerical solution. 

Fig. 7 also shows the frequency response of the original 
function comparing to the realized circuit. The two responses 

agree very well as it was expected from the resulted circuits. 
Deviation is not depicted as it was less than 0.014%. 

 
Fig. 6  The fitted circuit using analytical solution (red) and the proposed 
method (black). 

 

 
Fig. 7  Frequency response of the original function and the fitted circuit. 

B. Higher Order PR Function 

The second scenario is to fit an arbitrary high order PR 
function. A network scan was performed on a passive 
network. To do so, a 17th order rational function has been 
scanned in frequency domain. The function is presumed to be 
in form of (32). 
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Which poles and zeros of the function is prescribed in 
Table I. 

TABLE I 
POLES AND RESIDUES OF THE 17TH ORDER POSITIVE REAL FUNCTION 

Poles (rad/sec) Residues (ohm.rad/sec) 

– 4500 + 3000 

– 120  ± j1500 – 250  ± j18 

– 300  ± j45000 – 6000  ± j155 

– 70  ± j50 – 50  ± j70 

– 500  ± j9000 – 1400  ± j60 

– 90  ± j1000 – 1550  ± j31000 

– 80000  ± j5000 – 5000  ± j70000 

– 40000  ± j450 – 800  ± j150000 

– 20000  ± j5000 – 10000  ± j1500000 

d = 0.2 and h = 0 

The above function was tabulated at 10000 data points and 
then was fitted with an equivalent circuit using the proposed 
method. 

Fig. 8 shows the configuration of the realized circuit using 
the proposed method. Only one block is shown due to space 
limitation, but there are total of 12 cascaded blocks terminated 
by Rend which is the aforementioned constant impedance at the 
end. 

For the given 17th order PR function, quantities of the 
circuit’s elements are realized as specified in Table II. 



TABLE II 
QUANTITIES OF EACH ELEMENT IN EACH BLOCK OF THE REALIZED CIRCUIT OF THE 17TH ORDER POSITIVE REAL FUNCTION. 

 
Block #  

1 2 3 4 5 6 7 8 9 10 11 12 

Lsr (H) 0 0 0 2.255e-9 0 0 0 0 0 0 0 0 

Rmin(Ω) 7.659e-4 0.0726 0.0128 0 0.0248 0.1457 0.0090 0.0966 0.4183 0.0341 0.0587 0.0382 

Lz (H) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0.0136 ∞ ∞ 

Cz (F) 0 0 9.101e-6 0 0 0 0 0 0 0 0.0014 0.0077 

L1 (H) 5.547e-5 2.232e-8 0 0 4.973e-6 1.264e-5 2.280e-6 5.535e-5 3.668e-4 0 0 0 

C2 (F) 1.100e-4 7.531e-7 0 0 4.272e-6 1.058e-4 1.105e-5 2.080e-4 0.0015 0 0 0 

L2 (H) 1.067e-4 6.608e-7 ∞ ∞ 1.026e-5 1.460e-5 4.026e-5 8.149e-5 4.936e-4 ∞ ∞ ∞ 

L3 (H) -3.65e-5 -2.16e-8 0 0 -3.35e-6 -6.78e-6 -2.16e-6 -3.30e-5 -2.10e-4 0 0 0 

Rend(Ω) 0.63966 

 
TABLE III 

QUANTITIES OF EACH ELEMENT IN EACH BLOCK OF THE REALIZED CIRCUIT OF THE REALISTIC NETWORK. 

 
Block #  

1 2 3 4 5 6 7 8 9 10 11 12 13 

Rmin(Ω) 1.9895 1.9749 2.0602 0.2033 24.828 2.8615 6.7948 13.825 11.359 1.8787 11.281 2.8260 4.3591 

Lz (H) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0.0745 0.0883 ∞ ∞ 

L1 (H) -0.0020 -0.0054 1.35e-4 -0.0055 0.0314 0.0333 0.0075 0.0175 8.36e-4 0 0 0.0014 6.94e-4 

C2 (F) 4.29e-7 6.36e-7 1.64e-6 1.59e-6 4.13e-6 2.97e-5 2.98e-6 1.52e-5 1.88e-6 0 0 1.57e-6 1.76e-6 

L2 (H) 0.0212 0.1013 0.0103 0.0570 0.0860 0.083 0.0470 0.0665 0.0397 ∞ ∞ 0.0283 0.0163 

L3 (H) 0.0022 0.0058 -1.3e-4 0.006 -0.0230 -0.0238 -0.0065 -0.0139 -8.2e-4 0 0 -0.0013 -6.7e-4 

Rend(Ω) 14.8097 

 
There are some missing elements from the circuit of Fig. 8 in 
the table which means they have not happened in the realizing 
process. 

Fig. 8.  The realized circuit’s configuration. 

 
Fig. 9 shows the response of the original function and the 

response of the fitted circuit in frequency domain as well as 
the deviation of the two. It can be seen that both amplitude 
and the phase angle of the fitted circuit agree the original 
function very well. 

 
Fig. 9.  Frequency response of the fitting result from the proposed method 
comparing with the original function. 

 

C. Fitting a Realistic Network 

In the third scenario, a more realistic network which is 
shown in Fig.10 was modeled. The data is given in the 
Appendix. The figure shows a 22kV source connected to a 
100 remote loads with a 100km long cable. A filter bank is 
also present. The frequency response (FDNE) of this network 
was tabulated using a frequency scan in a time-domain 
simulator (PSCAD) module from the Fault terminal point of 
view. Then using the proposed method, the FDNE of the 
network is reduced. 

Cable (100km )

22kV Fault

Short Line Short Line

Is

 
Fig. 10  The more realistic example showing the network and the fault 
location and the sending end current (Is). Data is in the appendix 

 
Fig. 11 shows the frequency response of the two circuits 

from the point of coupling. It can be seen that the fitted circuit 
response is very close to the original one.  

The realized circuit will have 13 blocks of the type shown 
in Fig. 8 with the quantities given in Table III. In this table 
also those missing elements of Fig. 8 have not happened in the 
realizing process. 



 
Fig. 11.  Frequency response of the fitting result from the proposed method 
comparing with the original circuit’s response.  
 

In this scenario, to verify the fitting result in the time 
domain simulation (PSCAD), both of the original circuit and 
the fitted one are examined in both transient and steady state 
situation after applying a fault. Fig. 12 is the sending end 
current Is, which shows the initial transient and then the 
settling to steady state after fault application at 0.12 seconds 
and fault clearance at 0.18 seconds. The time domain 
responses of the two circuits also are essentially identical. 

 
Fig. 12.  Sending end current of the original circuit comparing to the fitted 
circuit during and after applying fault, simulated in PSCAD. 
 

From the simulation speed point of view, the original 
circuit has a CPU runtime of 577 ms and the fitted circuit 
results in 124 ms which means it could reasonably reduce the 
network size and speed up the simulation. As of now, the 
FDNE was directly implemented in PSCAD. Further time 
savings are likely possible if the FDNE is modelled as an 
external module using a nested and fast simultaneous solution 
as reported in [9] and [10]. This is planned for future work. 

V.  APPENDIX: EXAMPLE SYSTEM DATA 

Small T-line sections modelled as L-R circuits: 
L=50 mH, R =5 Ω 
RL Loads: 
R = 125 Ω, L =180 mH 
Filters: 1 MVAR equally distributed between 3rd, 11th/13th 
double tuned and 24th/26th double tuned HP filters. 
Cable: 
Resistivity = 1.68e-8 Ω.m, Relative Permittivity = 4.1 and 
Relative Permeability = 1. 
 

 

 
Fig. 13  Cross section of the cable buried 1 meter underground.  

VI.  CONCLUSION 

In this paper, a new approach of fitting the frequency 
response of the FDNEs has been presented. In this method, the 
frequency scan can be directly transferred to the time domain 
simulation by means of an RLC network with the same 
frequency response. This new technique is a numerical 
extension to the Brune’s network realization method which 
guarantees passivity of the resulted circuit in all range of the 
frequencies. Thus, there will not be any instability problem 
whatsoever due to violation of passivity. It is shown that the 
Brune’s synthesis method can be implemented algorithmically 
and coded easily in simulation tools. Verification of the 
method is done by some case studies both in time domain and 
frequency domain and the results are shown to be very closely 
matched. The new fitting method also increased the time 
domain simulation speed comparing the original network. 
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