
1

Comparison of system identification methods
applied to analysis of inter-area modes

Kaur Tuttelberg, Jako Kilter, and Kjetil Uhlen

Abstract—This paper analyses and compares the applicability
of various system identification techniques for modal analysis
of a multi-area power system. The paper considers system
identification applied on PMU measurements of frequency and
active power to find a linear multi-input multi-output dynamic
model of the primary frequency control of the power system. The
multiple input–output pairs correspond to areas of the power
system, enabling analysis of inter-area modes. The frequencies
and damping ratios of inter-area modes obtained from the
identified models are compared to the results of conventional
modal analysis (i.e. small signal stability analysis of a linearised
power system). Different system identification techniques are
compared on simulated wide area PMU measurement data in
order to determine the most suitable method for possible on-line
analyses.

Keywords: Inter-area oscillations, Modal analysis, System iden-
tification, Wide area monitoring

I. INTRODUCTION

Information about critical modes and their damping ratios
is a defining question in operating a large power system. In
recent years, a number of novel real-time applications have
been developed for the task, mostly based on wide area mea-
surement systems; however, the different methods still come
with their limitations and are being improved [1]. This paper
analyses another approach based on wide area measurements:
to apply system identification on a power system. In this case,
a linear dynamic model is fitted to the observed changes
in quantities and the model is then analysed to determine
different properties of the dynamics of the system. In the
context of this paper, analysis of inter-area modes based on
such an identified model is studied.

System identification has been used before as an alternative
way of performing modal analysis on simulated models. It has
been suggested for use in cases when only certain modes are of
interest, e.g. for PSS tuning [2], [3], but also suggested to over-
come some limitations of conventional modal analysis tools
[4], [5]. The concept has also been applied when the transfer
functions themselves have been of particular interest [6], [7].
With the introduction of wide area measurements enabled by
PMUs, the possibility of applying system identification on
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measured data from the real system has already been studied
to some extent as well [8], [9], [10]. Identification of governor
models has been demonstrated on real PMU measurement
data [11]. Also, methods of model order selection in similar
solutions have been analysed [12].

Applying system identification entails a set of problems
that have to be considered: mainly providing a suitable set
of data, choosing the most appropriate identification method,
and specifying the structure of the model. While the fitting
algorithm may find a solution for any given dataset, the validity
of the model has to be verified as well. In off-line simulations,
all of these problems can be solved by hand if necessary, but
on-line monitoring would require more automated and robust
solutions. This paper compares different system identification
techniques to find out which ones would be the most suitable
and robust for on-line monitoring applications. The paper
concentrates mostly on the choice of identification method
and model order selection; less on data selection and model
structure in terms of defining inputs and outputs.

This paper applies system identification in terms of a multi-
input multi-output black box model, where each input–output
pair corresponds to changes in load and frequency of an area
of the power system. The paper only considers a very simple
power system, where it is trivial to select a set of input and
output data for the purpose of system identification. In a more
complex system, the selection of inputs and outputs for a
meaningful model is a problem by itself and is not treated
in this paper. The obtained dynamic model can be seen as a
simplified model of the dynamics of primary frequency control
and the state of the model as a simplified estimate of the
dynamic state of the power system. From the identified model,
the frequency and damping ratio of the inter-area mode are
extracted.

The implementation in this paper relies on pre-built tools
included in the Matlab System Identification toolbox. Thus, the
analysis is limited to the transfer function, state space model,
and polynomial model estimation functions implemented in
this toolbox. This covers a large variety of different possible
models, however, many other methods are available for the
identification of dynamic systems, e.g. time-domain vector
fitting, neural network based learning systems, etc. The pa-
per shows which ones of the classical system identification
methods could be applicable in a more automated on-line
monitoring application.

The study is based on the well known Kundur two area
power system simulated in Digsilent Powerfactory. Based on
simulated time series, models are fitted to the input–output
data with different system identification methods implemented
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in Matlab. Results of modal analysis reported by Powerfactory
are compared to results obtained from the identified mod-
els. The results demonstrate that certain system identification
methods are more consistent and robust than others, making
them more suitable for automated analyses. The comparison
of estimated modes indicates that inter-area modes can be
detected with the model structure assumed in this paper.

The theoretical basis of the studied method is given in
section II, with the specifics of applied system identification
methods outlined in section III. Test calculations on the mod-
elled power system are presented in section IV and discussed
in section V. Conclusions are given in section VI.

II. THEORETICAL BACKGROUND

Primary frequency control is carried out at the turbine–
generator unit level. The dynamics of frequency control can
be described by a set of differential equations, which in turn
can be modelled as a control system. The main components
of a unit—the governor, the turbine, and the generator—are
modelled by corresponding transfer functions. With a set of
simplifications, an area of a power system (or an entire system)
can be modelled similarly.

A simplified control system modeling the dynamics of a two
area system is depicted in Fig. 1. Here the transfer functions
HGTi(s) = HGi(s)HTi(s) for any area i model the governor–
turbine systems summed as parallel branches and lumped
together by evaluating an equivalent droop Ri. HSi(s) are the
inertia of all rotating machines (and the frequency dependence
of load) lumped into single area (or system) blocks. HL12(s)
is the tie-line element, ∆PRi are the changes in power set-
point values, ∆PLi changes in load of each area, and ∆fi
changes in frequencies [13].

This model can be simplified further when we analyse only
primary frequency control, i.e. model the dynamics before any
secondary control is issued. In this case the power set-point
values of generators remain unchanged and the corresponding
inputs in the control system can be disregarded. In this
simplified analysis of the dynamics of secondary frequency
control, the multi-area system becomes a multi-input multi-
output system with load changes as inputs and frequency
changes as outputs.
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Fig. 1: Dynamic model of the frequency control of a two-area power system.

The described model treats each area as a single node with
aggregated load, generation, and control loops and a unified
value of frequency. In such a model it is important to define
areas that on a system level can be aggregated. The described
treatment is also dependent on the possibility of analysing the
system in a period of time when the power set-points of all
of the generators remain unchanged or change very little (i.e.
∀i : ∆PRi ≈ 0).

III. SYSTEM IDENTIFICATION

A. Input–Output Data

For a power system that has been divided into a number of
appropriately defined areas, a simplified control system mod-
elling the dynamics of its primary frequency control can be
identified if sufficient measurement data is available. In other
words, a model describing the relationships between changes
in load in each of the areas and the corresponding frequency
deviations can be fitted to a suitable set of measurement
data. This paper analyses the application of various system
identification techniques in estimating such fitted models from
ambient measurements.

The outputs of the system, i.e. changes in frequency, are
simple to measure with PMUs in principle. However, since
the areas of the system are lumped into single nodes, some
considerations have to be made in order to find the most
representative value for the frequency of an area. The larger
the areas are, the larger the differences in frequencies of single
nodes can be. Information about the structure of the system
should be used to combine a set of frequency measurements
that best represent the frequency of the area.

The inputs of the system, i.e. the changes in load, are
significantly more difficult to measure with PMUs as load
is so widely dispersed. On a transmission system level, the
measurement of load feeders may become feasible in a not
too distant future, but is not something that can be expected at
present. This means that more common PMU measurements
have to be used to approximate the changes in load. For a
practical implementation of the method studied in this paper,
a sufficient number of PMUs are required on transmission lines
and generators participating in primary frequency control.

This paper suggests two possible approximations. The first
would be to estimate the changes in load from the changes in
power produced by the generators that perform the significant
part of primary frequency control and the power transmitted
between areas. This means assuming that when small changes
over time are considered, the changes in load and generation
are sufficiently close to each other. The approximate change
in load in area i would thus be

∆PLi
∼=

∑
j

∆PGji +
∑
k

∆PTki (1)

where ∆PGji is the change in output power of the jth
generator (or a group of generators) participating in primary
frequency control in area i and ∆PTki is the change in power
transmitted from the kth to the ith area.

The second option is to approximate the loads as power
balances of substations. If a substation in the transmission
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system has no generation capacity, the load in this node can
be estimated as the sum of power on all of the lines coming
into the substation, considering power flow directions. If power
is also generated at the node, the generation is added to the
power balance.

∆PLn
∼=

∑
j

∆PGjn +
∑
k

∆PFkn (2)

where ∆PFkn is the change in power flow from node k to
node n and ∆PGjn is the change in generation in node n.

The proposed method assumes the availability of certain
PMU measurements. Regardless of which approximation is
used for changes in load, it is necessary to have PMU mea-
surements from the generators that perform the significant part
of primary frequency control. The first approximation for load
changes requires that the power flows on tie-lines connecting
the areas can be measured. For the second approximation
of load changes, it is necessary that power flows on all
transmission lines in the area can be determined. This does
not necessarily require PMUs on all lines, but can also be
computed from voltage magnitude and angle differences.

B. System Identification Methods and Model Order

The system identification methods tested in this paper are
based on the built-in functions of the System Identification
Toolbox in Matlab. The different methods include transfer
function estimation by tfest, state space model estimation
by ssest and n4sid, and polynomial model estimation by
polyest, which in turn includes ARX (autoregressive with
exogenous inputs), ARMAX (autoregressive–moving-average
with exogenous inputs), Output-Error (OE), and Box–Jenkins
(BJ) models.

The transfer function estimation method finds common
transfer functions that have polynomials of orders np and
nz as the denominator and numerator, respectively, while
the state space model estimation finds common state space
models of order nx. The different polynomial models can all
be expressed as special cases of one general model. Given
a MIMO polynomial model with nu inputs and ny outputs,
the input–output relationships for the lth output of the general
model can be expressed as

ny∑
j=1

Alj(q)yj(t) =

nu∑
i=1

Bli(q)

Fli(q)
ui(t− nki) +

Cl(q)

Dl(q)
el(t), (3)

where Alj , Bli, Cl, Dl, and Fli are polynomials of orders
na, nb, nc, nd, and nf expressed in q−1. The ARX model
is obtained when the Cl, Dl, and Fli polynomials are equal
to one, OE when Alj = Cl = Dl = 1, ARMAX when Dl =
Fli = 1, and BJ when Alj = 1 [14].

Due to the nature of the system identification problem that
was set up, the models have an equal number of inputs and
outputs corresponding to the number of areas the system
is divided into. It is difficult to choose one fixed value of
model order, despite the work that has been done on model
order selection. This paper applies system identification that
attempts to fit a number of models in a range of orders
n = nmin, . . . , nmax for each dataset and system identification

method. With each iterated order, the various variables defin-
ing model order are equal, i.e. n = np = nx = na = nb =
nc = nd = nf . In transfer function estimation (tfest) the
number of zeros is smaller than the number of poles by one,
i.e. nz = np−1. All input–output relationships are symmetric
in the sense that in each identification attempt elements of the
order matrices are equal. Input–output delay nk is determined
with tools provided in Matlab.

While the tfest and ssest routines estimate continuous
time models, n4sid and polyest provide discrete time
models. In order to compare the results of modal analysis,
all discrete time models are converted into continuous time
models with the d2c function. All estimated models are first
checked for stability and only stable ones are analysed further.
For each data set a number of models of different orders are
obtained and analysed.

IV. TEST CALCULATIONS

A. Test System and Simulations

The simulations were carried out on the well known Kundur
two area power system [13], [15], implemented in Digsilent
Powerfactory and depicted in Fig. 2. In these simulations, the
system was replicated as closely as possible, except for exciter
controls, which were replaced by pre-built models available
in the software package, and governors, which were changed
in order to have increased variety in the control system.
Namely, the exciters were implemented as the SEXS models
and the governor models HYGOV (generators G1 and G3) and
TGOV1 (generators G2 and G4) were used. All parameters
of the controllers were kept at default values, except for
droop gains set at R1 = 0.05, R2 = 0.03, R3 = 0.04, and
R4 = 0.05. A poorly damped inter-area mode was present
in the system, however, it was stable under normal load
variations; no PSS was implemented.

The datasets used in system identification were generated
in time-domain dynamic simulations (RMS simulation in
Powerfactory) of the test system with time varying loads. Each
test case was run for a time period of 300 s, step changes in
loads were introduced every second and the resulting dynamics
of the system were simulated. Various datasets of real load data
were adapted to form realistic time series of load changes.
Simulated load data is presented in Fig. 3. All changes were
made in the two load elements specified in the Kundur two
area system (L7 and L9). Data was sampled with a time-step
of 0.01 s from all simulations. For system identification, load
changes approximated by (1) were recorded.

Fig. 2: Schematic of the two area power system used in simulations [13].
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Fig. 3: Cumulative changes in simulated load with respect to initial load. Data
from three different simulation cases are plotted.

In order to check the accuracy of the identified dynamic
models, a separate set of validation data was simulated. For
validation, frequency changes after a step change of load (an
increase of 50 MW) in each of the areas were simulated and
recorded separately. Based on the model used in all of the
simulations, small-signal stability analysis was also carried out
for the initial state of the system. The inter-area mode was
characterised by the poles −0.086± j4.1, which corresponds
to a frequency of 0.65 Hz and a damping ratio of 0.021.

In the identified MIMO system, two input–output pairs were
assumed, corresponding to the two areas. As explained earlier,
inputs correspond to load changes and outputs to frequency
changes in each of the areas. All identified models were black
box without any additional information about the real system
provided. Load was estimated as the difference between gen-
eration and power exchange between areas according to (1).
Area frequencies were taken as the frequencies of buses 5 and
11, which were assumed to be the most central nodes of the
two areas. Thus, in total seven measurements were assumed in
the studied system: frequencies of buses 5 and 11 and power
flows at bus 8 and all four generators.

B. Identification and Validation of Models

With the frequency changes and estimated load changes
from the three simulation cases, models were identified with
all of the methods mentioned in the previous section. All
methods were applied to identify models of 20 different
orders, ranging from 5 to 24. All iterative methods were
set to use 5 iterations. A delay of nk = 2 or 0.02 s was
identified and used. All identified models were checked for
stability, converted to continuous time if necessary, and step
responses of stable models compared to validation data. A
comparison based on a goodness-of-fit criterion was attempted
with NRMSE (normalised root mean squared error), but the
criterion failed to identify how well the models mimicked
the dynamics of the system. Thus, the models obtained with
different identification methods were validated in a visual
comparison of step responses in this study.

Fig. 4 presents the comparisons of the simulated step
changes and the step responses of the identified models
obtained from simulation case 3 with tfest and armax
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Fig. 4: Step responses of transfer function (TF) models identified with tfest
and ARMAX polynomial models identified with armax from simulation
case 3. Step responses of identified models are compared to a step change of
load simulated separately in Powerfactory (PF). Frequency changes in area 2
after a step change of load in the same area (normalised to 1 MW) are plotted.

routines. In case of tfest, the step responses of the five lower
order models are emphasised as these were the best fits. Even
though the identified models captured the overall dynamics of
frequency changes quite well, the inter-area oscillations were
not very well identifiable. In case of armax, very consistent
results were seen across all stable models.

The validation of models obtained with ssest, n4sid,
arx, oe, and bj was carried out similarly. The state space
models identified with ssest and n4sid were similar to
each other and average in quality when compared to ARMAX
models. Polynomial models identified with ARX were sim-
ilar to ARMAX models, but there were significantly larger
differences across models of different orders. Output-Error
and Box–Jenkins methods performed very poorly in this
application, with a small number of stable models and poor
validation results. Some results from state space and ARX
methods are also presented in the next subsection.

C. Comparison of System Identification Methods

Continuing with the examples of transfer function and
ARMAX models, Fig. 5 presents the poles of all models
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Fig. 5: Poles of transfer function (TF) models and ARMAX polynomial
models identified from simulation case 3. Transfer function models of orders
5–9 are plotted in blue, while higher order models are in grey. Poles of
estimated models are compared to poles of the inter-area mode identified
in Powerfactory (PF). Not all calculated poles fit in the plotted region.
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identified with the two methods from simulation case 3. In
this study, the poles corresponding to the inter-area mode
were identified by assuming an acceptance region for the
values. Any pole in the region was assumed to correspond
to the inter-area mode. In case of tfest, the five lower order
models are once again emphasised. Few poles were found
close to the expected point determined in modal analysis with
Powerfactory. Contrary to that, results obtained with armax
demonstrate very consistent and good performance. Identified
models had poles close to the poles characterising the inter-
area mode as found in conventional modal analysis.

The quality of models identified with other methods was
similar to the quality seen in validation data. The state space
model identification methods ssest and n4sid performed
similarly to each other and provided results of average qual-
ity when compared to ARMAX models. Polynomial models
identified with ARX had poles similar to the ones found from
ARMAX models, but significant differences across model
orders were present. Poles of models identified with Output-
Error and Box–Jenkins methods were very different from
expected correct results.

With all of the identified models, poles close to the correct
poles of the inter-area mode were searched for. In most cases,
the frequency of the identified mode was close to the expected
correct value or at least in the same order of magnitude.
In detecting the frequency of the inter-area mode, transfer
function estimation with tfest performed worst (seen in
Fig. 6), while models identified with armax gave the best
results (seen in Fig. 7). Most of the frequency values obtained
with the other methods were within ±10% of the correct value.
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Fig. 6: Relative error of the inter-area mode frequency estimated from transfer
function models identified from all three simulation cases.
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Fig. 7: Relative error of the inter-area mode frequency estimated from
ARMAX polynomial models identified from all three simulation cases.
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Fig. 8: Relative error of the inter-area mode damping ratio estimated from
transfer function models identified from all three simulation cases.

From the identified models, the damping ratio of the inter-
area mode was also estimated. In terms of estimating the
damping ratio, the identified models performed significantly
worse than in estimating the frequency of the mode. Like
before, Output-Error and Box–Jenkins models did not provide
good results. Both transfer function and state space model
estimation provided largely varying results, seen in Fig. 8
and Fig. 9. While a few select models gave a good estimate,
most models deviated greatly from expected values. Results of
ARX models indicated an increase in accuracy with increasing
model orders, seen in Fig. 10.

The accuracy of damping ratios estimated from ARMAX
models can be seen in Fig. 11. Many of the ARMAX models
provided estimates close to the correct value, while in gen-
eral they tended to slightly underestimate the damping ratio.
Overall the performance of ARMAX model identification was
evidently better than that of the other methods. Averaging over
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Fig. 9: Relative error of the inter-area mode damping ratio estimated from
n4sid state space models identified from all three simulation cases.
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6

5 7 9 11 13 15 17 19 21 23
−100

−50

0

50

Order of model

R
el

at
iv

e
er

ro
ro

fd
am

pi
ng

(%
)

Case 1 Case 2 Case 3

Fig. 11: Relative error of the inter-area mode damping ratio estimated from
ARMAX polynomial models identified from all three simulation cases.

the results of all stable ARMAX models of various orders of
each case gave damping ratios of 0.017, 0.012, and 0.018 in
the three cases (or –19%, –43%, and –14% relative error).

V. DISCUSSION

Out of all the models found with different identification
methods, different model orders, and based on different simu-
lation cases, several gave accurate estimates of the frequency
and damping ratio of the inter-area mode, while many also
failed. However, it was evident that ARMAX polynomial
models gave the best and most consistent approximations of
the dynamics of the system across various model orders and
simulation data. With any of the other studied methods, it
would be hard to decide which models were good without
validation. With ARMAX models, several similar and good
models were obtained, providing redundancy and the ability
to check the quality of models by comparing them to each
other if good validation data would not be available.

The goal of the presented study was to determine the most
suitable system identification method for the described ap-
proach to analysing inter-area modes. The paper also demon-
strates that the monitoring of inter-area modes based on system
identification is feasible, however, many questions remain
open. The analysis was based on noiseless data sampled
directly from the simulation, not real PMU measurements with
limited accuracy. With noisy data, the problems of fitting to
noise with higher model orders and additional filtering would
also have to be considered. The solution applied in this paper
assumed measurement periods where secondary frequency
control was not issued or could be considered negligible. To
make this assumption valid, additional data about generation
set-point changes in the system are needed.

VI. CONCLUSIONS

The paper demonstrated the analysis of inter-area modes
based on system identification. The aim of the study was to
compare the different available system identification methods
in order to find the most suitable one for the type of problem
analysed in the paper. The study was based on the Kundur
two area power system simulated in Digsilent Powerfactory.
Three simulation cases were run, where load changed in
time, attempting to mimic load variations in a realistic power
system. Seven different system identification methods from the

System Identification Toolbox in Matlab were applied to fit
models to the simulated data. Identified models were analysed
to determine the frequency and damping ratio of the inter-
area mode, which were also compared to the result found by
conventional modal analysis.

The paper identified ARMAX polynomial models as the
best suited system identification method for this problem. The
paper also demonstrated the feasibility of monitoring inter-
area modes based on system identification. With an increasing
number of installed PMUs, system identification could be
applied to estimate approximate dynamic models and dynamic
states of the power system, enabling the analysis of critical
modes and other parameters of the system. The approach
could be applied in on-line monitoring of modes, PSS tuning,
etc. Additional work is required to determine the practical
applicability of such monitoring methods. Future work could
also analyse alternative dynamic model identification methods
and using the identified models to extract other parameters of
the dynamics of the system.
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