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Abstract-- Sub-synchronous torsional interaction (SSTI) can be 

an unstable condition that results in damage to the wind turbine 

(WT), permanent magnet synchronous generator (PMSG) or the 

drivetrain system. This condition is caused by an energy exchange 

between the electrical system and the mechanical drivetrain 

system. Sub-synchronous torsional interaction occurs when the 

wind turbine resonant frequency is near the complement of a 

torsional resonant frequency of the permanent magnet 

synchronous generator (PMSG). Under normal operating 

conditions, the WT and PMSG are controlled by adjusting their 

controller gain parameters to achieve steady-state conditions at 

their operating frequencies. When SSTI occurs in the drivetrain 

systems, the torque between the WT rotor and drivetrain may 

then get amplified, and potentially lead to the shaft failure and 

possible system outages. This paper looks at what is known as a 

type 4 (permanent magnet synchronous generators) wind energy 

conversion (WEC) system with a direct-drive drivetrain system.  
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I.  INTRODUCTION 

ub-synchronous torsional interaction (SSTI) in wind farms 

with Type 3 topology [1] associated with both series 

compensated transmission lines and STATCOM [2]-[4] and/or 

FACTS devices [5], [6] has been addressed in recent years [7], 

[8]. SSTI can be an unstable condition caused by an energy 

exchange between the electrical system and the mechanical 

drivetrain system [10]. SSTI can occur in any rotating system, 

but it is mainly critical for large rotating machines with low 

inherent damping properties. The mechanical damping 

coefficient and stiffness at the natural frequency of the 

drivetrain system are the critical parameters. This work is 

directly relevant to Type 4 (PMSG with full-scale converters) 

wind turbines with direct drive systems. 

There are two frequencies in the vibration modes where the 

excitation occurs: resonant frequency and anti-resonant 

frequency. At the resonant frequency, the PMSG and the WT 

are in phase, resulting in the energy being built-up within the 

system instead of dissipating energy. For example, the WT 

rotor may not experience the oscillation while the PMSG 
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oscillates. The oscillation response of a torsional system such 

as the drivetrain system is influenced by i) the moment of 

inertia of the rotating masses, ii) the torsional stiffness of the 

flexible shafts and connected components and iii) the damping 

constant.  

The objective of this paper is to investigate the SSTI and its 

effect on a large PMSG-based WEC system which is 

connected to the grid. 

The paper is structured as follows: Section II outlines the 

drivetrain and PMSG of the WT modelling which includes 

drivetrain simulations. Section III demonstrates the time 

domain simulation of a WEC system to investigate the TI on 

the shaft which caused the system failure. Section VI 

qualitatively analyses the negative damping of the shaft system 

and Section V concludes the paper. Simulation parameters are 

presented in Appendix 

II.  SYSTEM MODELLING 

For TI analysis of a multi-mass drivetrain system, the rotors 

of WT and the PMSG are treated as the contribution of 

rotating masses connected together by a spring represented by 

their damping and stiffness coefficient as shown in Fig. 1. 

Further details of SSTI and other relevant terms and 

definitions can be found in IEEE [10]. 

A.  Two-Mass Model of Drivetrain System 

The main focus is on investigating the effect of TI of large 

WEC systems. The shaft delivers the power from the wind 

turbine rotor to the PMSG rotor. An encoder monitors the 

actual position and speed of the WT rotor and the PMSG 

rotor. Typically, closed-loop feedback controllers are used to 

deliver optimal performance of the overall system. These 

controllers receive encoder information to send commands to 

amplifiers to control the pitch angle of the WT blades. In order 

to understand how the shaft system is affected by this process, 

the two-mass model shown in Fig. 1 is considered. 

For this two-mass system shown in Fig. 1, a dynamic 

equation can be written in a second order differential equation 

derived from the torque equation, T=I·α. T is the torque, I is 

the rotational moment of inertia, and α is the angular 

acceleration of the shaft which is the second derivative of the 

angle. All the torques are calculated on one side of each mass. 
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Fig. 1.  Two-mass model of direct-drive drivetrain system. 

 

The equation for the angular acceleration of the WT rotor 

is: 
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Also, the equation of instantaneous torque of wind turbine 

is given in [5]. Similarly, the equation for the PMSG the 

angular acceleration is given by: 
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However, there is no external torque applied to the PMSG. 

The only torque applied to the PMSG is the torque from the 

shaft and the counter electromagnetic torque from the PMSG 

itself. Therefore, Tpm=0.  
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The torque equation for the shaft and the friction are: 
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where Iwt, Ipm, Twt, Twt,fr, Tshaft, Tpm, Tpm,fr, Cshaft, Dwt, Dpm, Dshaft, 

θwt, θpm are the wind turbine rotor inertia [kg·m
2
], the generator 

inertia [kg·m
2
], the wind turbine torque [N·m], the force of 

friction of wind turbine rotor [N·m], the shaft torque [N·m], 

the electromagnetic torque of PMSG in air gap [N·m], the 

force of friction of PMSG [N·m], the coefficient of shaft 

stiffness [N·m/rad], the coefficient of wind turbine damping 

[N·m/rad/s], the coefficient of PMSG damping [N·m/rad/s], 

the coefficient of shaft damping [N·m/rad/s], the position 

(angle) of wind turbine rotor [rad], the position (angle) of 

PMSG rotor [rad], respectively. 

By substituting (4)-(6) to (1) & (3) the torque dynamic 

equations are obtained, yielding: 
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where θ =θwt – θpm which is the displacement angle between 

the WT rotor and PMSG rotor. Therefore   
pmwt

 and 

  
pmwt

. 

For the flexible shaft, the torsion which is related to the 

stiffness of the shaft material occurs when the shaft is 

subjected to a torque. Even though the torsion may be very 

small, it still makes the shaft twist, and one end rotates relative 

to the other end inducing shear stress on the shaft. 

By rearranging (7) & (8), this system can be expressed as 

equations of motion, i.e.: 
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This two degrees of freedom system still contains a fourth-

order characteristic equation which will give a second-order 

polynomial. This polynomial will have complex solutions 

because the contribution of the damping on the shaft to the 

entire system. 

By taking the Laplace transform of (9) & (10), the 

following transfer functions of the equations of motions in 

terms of the frequency are obtained. 
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  The term Dwt and Dpm are coupled with Dshaft contributing 

the damping oscillation in the system. These terms are called 

cross-coupled damping [12]. When there is a positive cross-

coupled damping, a deflection will cause a reaction force as 

displacing the shaft horizontally on applying a vertical force. If 

these damping coefficients are large enough to make the 

mechanical system unstable, the both the WT and the PMSG 

need to be shut down immediately. The damping effect of the 

WT and PMSG on the resonant frequencies is negligible [16] 

as (12) & (13) shows.  
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Then, (11) becomes: 
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The frequencies, 

RAR  and are the oscillation modes where 

the interaction between WT and PMSG occurs. 
RAR  and are 

the anti-resonant frequency and the resonant frequency 

respectively. 

The peaks of 
RAR  and of the system shown in Fig. 2(b) 

are the frequencies that the WT system exhibits resonant 

behaviours. At
AR , the PMSG rotates with an equal and 

opposite torque from the WT rotor resulting the PMSG rotor 

starts oscillating. It means that the exciting force of oscillations 

from the WT is “absorbed” [17] by physically coupled 

components such as the shaft and the PMSG rotor. The 

coupled components behave as an additional restraint to the 

system at the anti-resonant frequency. 

At
R , the WT and PMSG rotors are at the peak of the 

resonant frequency, thus the energy from the WT and PMSG 

become amplified in the drivetrain system resulting both WT 

and PMSG rotors oscillate. The problems of both 

RAR  and are 1) the PMSG or the shaft oscillation may be 

undetected, and 2) the rotating system with feedback controls 

will likely get damaged. For example, the overall system may 

operate well in the steady-state condition, but the WT and 

PMSG may fail to operate due to a sudden change (i.e. 

rotational speed) if the oscillation is not detected in a timely 

manner. 

B.  Drivetrain Response Simulation 

The system was simulated with MATLAB
®
 with actual data 

given in Appendix A. Two different cases were simulated: a 

flexible shaft (Fig. 2) and an infinitely rigid shaft (Fig. 3). 

As the simulation result in Fig. 2 depicts, the peaks of anti-

resonance and resonance can potentially interfere with the 

feedback control tuning. Practically the PMSG feedback 

controller is tuned by adjusting the controller gain parameters 

to achieve steady-state conditions around the operating 

frequency. Typically, placing a low-pass filter would remove 

these peaks. However, Fig. 2 shows that both anti-resonance 

and resonance occur at very low frequencies. Placing a low-

pass filter to cut off these would require a low cut-off 

frequency which would reduce the usable frequency 

bandwidth. As the inertia ratio increases, both anti-resonant 

and resonant peaks are attenuated. More importantly, they are 

shifted to higher frequencies. Also, the stiffness of the shaft 

can tie the peaks of anti-resonant and the resonant closer 

together. 

The equations for RAR  and  show that the resonant 

frequency is strongly influenced by the stiffness of the shaft, 

the inertia of PMSG and WT. Fig. 3 shows that stiffer shaft 

alone can significantly improve the damping response in the 

drivetrain system. Also, the problematic anti-resonant and 

resonant peaks are adequately attenuated. However, this 

simulation does not show how the drivetrain will interact with 

other components such as the WT and the PMSG. 
 

 

Fig. 2.  Drivetrain simulation result with a flexible shaft: (a) Step response of 

shaft damping, (b) bode magnitude plot of θwt/Twt and θpm/Tpm, (c) bode 

magnitude plot of θwt/Twt with different inertia ratios and (d) phase plot of WT 

and PMSG. 

 

 

Fig. 3.  Drivetrain simulation result with a rigid shaft: (a) Step response of 

shaft damping, (b) bode magnitude plot of θwt/Twt and θpm/Tpm, (c) bode 

magnitude plot of θwt/Twt with different inertia ratios and (d) phase plot of WT 

and PMSG. 

C.  Permanent Magnet Synchronous Generator Model 

The following equivalent circuit of PMSG, shown in Fig. 3, 

is based on the transient model of permanent magnet 

synchronous machine (PMSM). Any change in the magnetic 

flux of the rotor magnet will cause an induced electromotive 

force (EMF) which results in a circulating current in the 

magnet. 
 

a) d-axis

ipmRpm
+_

id Ld

Lmud

+

_

dΨpm

dt

+

_

Rs
ωsΨq 

diq
dt

+

_

Rpmif

 



b) q-axis

iq Rs Lq

Lm 
diq
dt

+

_

ωsΨd

uq

+

_

ωsΨpm
+_

 

Fig. 4.  PMSG circuit representation: (a) d-axis and (b) q-axis circuits. 

 

Sebastian et. al. [4] stated that “assuming that the 

penetration depth δ at the maximum frequency of concern is 

large in comparison with the magnet’s radial thickness, each 

magnet can be considered approximately as a conducting loop 

of length lr, angular span 2α, having a resistance R’m.” When 

transferred across the air gap to the equivalent number of 

direct-axis stator turns, this can be represented as a resistance 

Rm, connected across the direct-axis magnetizing inductance 

Lm. 
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where n is the number of poles and Ns is the number of turns in 

the stator winding. 

Since the magnet-to-core interface is mainly a non-

conducting adhesive, this path can be ignored [4]. Based on 

the circuit model with no zero-sequence components present, 

the equation of voltage in d-q axis can be expressed as: 
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Substitute 
d

  and 
q

  to (15) and (16) respectively to 

obtain the current dynamics in state form as the following. 
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where ωs, Rs, ψpm, ψd, ψq, Ld, Lq, Lm and Rm are the 

synchronous rotor speed of PMSG [rad/s], the stator resistance 

[ohm], the flux linkage by permanent magnet [Wb], the flux 

linkage of d-axis [Wb], the flux linkage of q-axis [Wb], the 

inductance of d-axis [H], the inductance of q-axis [H], the 

stator mutual inductance [H] and stator mutual resistance [H] 

respectively. 

The electromagnetic torque, Tpm [Nm] of the PMSG is 

calculated as the following. 

  21])([5.1 qdqdqpm iiLLinT
pm

   

Ideally, Tpm should be equal and opposite of the Twt in (1) 

i.e. Twt - Tpm = 0 if the losses in the drivetrain system is 

negligible. 

D.  Blade Pitch, Torque and Generator-Side Converter 

Controls 

There are numerous generator torque controllers in use, 

however, many of these are proprietary. This work uses the 

genetic wind turbine pitch control and torque control 

algorithms given in [7], with slow resonant controller tuning 

techniques used in [8], which are directly implemented for the 

low speed WT. 

The torque control of the generator is achieved by setting 

the torque, Tpm, i.e. 
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where Cp_max, R, ρ and λ* are the maximum achievable power 

coefficient by WT, the rotor radius or the blade length [m], the 

air density [kg/m
3
], and the tip-speed-ratio at Cp_max, 

respectively. 

The generator control design was based on the assumption 

that the d-axis is perfectly aligned with ψpm. The q-axis current 

is used to control the electromagnetic torque of the PMSG. 

Thus, reference d-axis current id
*
 is set to zero, whereas the 

reference q-axis current iq
*
 was computed as:  
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Due to space limitations the details of the grid-side 

converter control is not given. 

E.  WEC System Simulation Results 

MATLAB/Simulink
®
 is used to simulate the model in time 

domain.  
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Fig. 5.  Control block diagram based on (15) to (22) 

  

Case 1:  flexible shaft 

The WT system was simulated with the flexible shaft 



parameters given Appendix to obtain the steady state 

condition. The stiffness coefficient of the flexible shaft is 

obtained from a real system. The results of Case 1 are given in 

Fig 6 & 7. 

 

 

 

Fig. 6.  Torque, speed and derivative of speed of the shaft in time (s) 

 

 

 
Fig. 7.  Speed, angle and EM torque of the PMSG in time (s) 

 

Case 2:  rigid shaft 

The stiffness coefficient of the rigid shaft is given in 

Appendix that perfectly attenuates both anti-resonant and 

resonant peaks shown in Fig 3. The stiffness coefficient of the 

flexible shaft is then replaced with the stiffness coefficient of 

the rigid shaft after Case 1. The results of Case 2 are given in 

Fig. 8 & 9. 

 

 

 

Fig. 8.  Speed, angle and EM torque of the PMSG in time (s) 

 

 

 

 

 
 

Fig. 9.  Speed, rate of change in speed, torque (Tsh=Twt -Tpm) and derivative 

of the torque of the shaft in time (s) 

III.  ANALYSIS OF NEGATIVE DAMPING 

The simulation results shown in Fig. 6-9 depict the torsional 

interaction between the shaft and the PMSG which led the 

system unstable. As shown in Fig. 1, the coupling torque on 

the shaft, Tshaft is given in (4). From Fig. 3(a) the damping 

response with the rigid shaft is negligible. Thus, Tshaft is 

determined by the angular displacement between the WT and 

PMSG rotors; 
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Assuming that the friction of the WT and PMSG is 

negligible, (1) & (3) become, 
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Defining θ = θwt - θpm, subtracting (27) divided by Ipm from 

(26) divided by Iwt gives, 
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By substituting (25) to (28) the following equation is 

obtained. 
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For steady state operation, the WT rotor torque can be 

expressed as a function of the WT rotor speed, 
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During torsional interaction between the WT and PMSG 

rotors, the oscillating component of the larger inertia will less 

likely experience the instability by the torsional torque. 

Therefore, the PMSG is referred as the system average of the 

mechanical synchronous speed of the system, 
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For analysing the limit of the system, Taylor series 

expansion was used. Considering only the first term, the 

function  wtwtTf  at the point pm is expressed as:   
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Where η is the rate of change of torque-speed curve of the 

PMSG which is not the same as the torque-speed curve of the 

WT. Then the eigenvalues of the shaft is the following. 
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If η is positive, the first term is positive. This indicates that 

the eigenvalues will be on the right-half of the complex plane. 

Thus, the shaft will undergo negative damping and the increase 

the response of the torsion shown in Fig. 8 & 9. From (33), the 

unstable torsional oscillation can be identified in frequency 

domain.  
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Since η is the rate of change of torque-speed, the first term 

under the square root of (34) is much smaller than the second 

term. Therefore, Iwt and Cshaft will dictate the oscillation 

frequency. If Ipm > Iwt, Ipm and Cshaft will dictate the oscillation 

frequency of the system. In either case, the stiffness of the 

shaft is always the dictating parameter. In addition, η is useful 

in torque control design of the PMSG. From (23), assuming 

the rotor flux linkage is constant, the mechanical torque of the 

PMSG rotor only depends on the speed of the PMSG. As 

shown in Fig. 8, the indication of the growth of oscillation can 

be seen by monitoring the rate of change in variable η shown 

in Fig. 10. 

 

 

 

 
Fig. 10.  Torque-speed curve (flexible shaft), torque-speed curve (rigid shaft) 

and torque-speed curve of flexible shaft vs. rigid shaft (around steady state 

operating point). 

IV.  CONCLUSIONS 

This paper investigated the TI behaviour of a direct-drive 

PMSG based WEC system using time domain simulation 

conducted in MATLAB & SIMULINK
®

. The torsional 

oscillation simulation has been conducted for a particular 

Type-4 WEC system to analyse the negative damping response 

of the drivetrain system with a nearly infinite stiffness of the 

shaft. It is observed that the torsional mode not only exists 

with the drivetrain system with a flexible shaft, but also it does 

with the shaft with nearly infinite stiffness. 

It is shown that when η is positive and large, the system will 

result in negative damping and the increase the response of the 

torsion on the shaft. As shown in Fig. 10, the speed of the shaft 

is nearly insensitive to the change in torque. However, the 

oscillation of the shaft quickly builds up and exhibit negative 

damping which leads to system instability. However, if η is 

positive but very small (close to zero), the growth rate of the 

oscillation of the shaft system may be slower, but it will 

eventually lead to an unstable system condition after some 

period of time. 

It is shown in this paper that the negative damping 

behaviour on the drivetrain system can be occurred due to the 

shaft stiffness resulting a strong coupling between the rotating 

masses and the stiffness of the shaft system. The resulting 



oscillation in the shaft is large enough to make the system 

unstable in this particular WEC system. The simulation 

showed that sustained torsional oscillations may result in 

catastrophic failure of the entire system. 

In short, this paper emphasises the importance of the 

complete system, not only its individual component. The 

interaction (i.e. the SSTI in the shaft shown in the 

paper) between the electrical and mechanical components 

often neglected from the system design level. 

V.  APPENDIX 

DAMPING PARAMETER CALCULATIONS: 
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TABLE I 

PMSG PARAMETERS (ROUND ROTOR TYPE) 

Parameters Value Unit 

MVA Rating 2.25 MVA 

Rated Power 2 MW 

Terminal Voltage 690 V 

Rated Stator Current 1870 A 

Efficiency 92 % 

Rated Speed 23.5 rpm 

Pole Pairs 18 (20 slots)  

Inertia 3.47 x 106 kg·m2 

Viscous Damping 0.1 N·m·s 

Static Friction 0 N·m 

Flux Linkage 1.742 V·s 

Stator Resistance 1.85 mΩ 

Armature Inductance (Ld=Lq [9]) 0.285 mH 
 

TABLE II 

WT PARAMETERS 

Parameters Value Unit 

Blade Length 37.5 m 

Inertia 6.34 x 106 kg·m2 

Viscous Friction 0.1 N·m·s 

Wind Speed 12.5 m/s 
 

TABLE III 

DRIVETRAIN PARAMETERS 

Parameters Value Unit 

Stiffness 
5.87x106  (flexible) 

6.20x1010  (rigid) 
N·m 

Damping 3.1 x 103 N·m·s 
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