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Abstract-- Sub-synchronous torsional interaction (SSTI) can be
an unstable condition that results in damage to the wind turbine
(WT), permanent magnet synchronous generator (PMSG) or the
drivetrain system. This condition is caused by an energy exchange
between the electrical system and the mechanical drivetrain
system. Sub-synchronous torsional interaction occurs when the
wind turbine resonant frequency is near the complement of a
torsional resonant frequency of the permanent magnet
synchronous generator (PMSG). Under normal operating
conditions, the WT and PMSG are controlled by adjusting their
controller gain parameters to achieve steady-state conditions at
their operating frequencies. When SSTI occurs in the drivetrain
systems, the torque between the WT rotor and drivetrain may
then get amplified, and potentially lead to the shaft failure and
possible system outages. This paper looks at what is known as a
type 4 (permanent magnet synchronous generators) wind energy
conversion (WEC) system with a direct-drive drivetrain system.
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Turbine, Torsional Interaction, Torque Amplification, Torsional
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I. INTRODUCTION

ub-synchronous torsional interaction (SSTI) in wind farms

with Type 3 topology [1] associated with both series
compensated transmission lines and STATCOM [2]-[4] and/or
FACTS devices [5], [6] has been addressed in recent years [7],
[8]. SSTI can be an unstable condition caused by an energy
exchange between the electrical system and the mechanical
drivetrain system [10]. SSTI can occur in any rotating system,
but it is mainly critical for large rotating machines with low
inherent damping properties. The mechanical damping
coefficient and stiffness at the natural frequency of the
drivetrain system are the critical parameters. This work is
directly relevant to Type 4 (PMSG with full-scale converters)
wind turbines with direct drive systems.

There are two frequencies in the vibration modes where the
excitation occurs: resonant frequency and anti-resonant
frequency. At the resonant frequency, the PMSG and the WT
are in phase, resulting in the energy being built-up within the
system instead of dissipating energy. For example, the WT
rotor may not experience the oscillation while the PMSG
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oscillates. The oscillation response of a torsional system such
as the drivetrain system is influenced by i) the moment of
inertia of the rotating masses, ii) the torsional stiffness of the
flexible shafts and connected components and iii) the damping
constant.

The objective of this paper is to investigate the SSTI and its
effect on a large PMSG-based WEC system which is
connected to the grid.

The paper is structured as follows: Section Il outlines the
drivetrain and PMSG of the WT modelling which includes
drivetrain simulations. Section Il demonstrates the time
domain simulation of a WEC system to investigate the Tl on
the shaft which caused the system failure. Section VI
qualitatively analyses the negative damping of the shaft system
and Section V concludes the paper. Simulation parameters are
presented in Appendix

Il. SYSTEM MODELLING

For TI analysis of a multi-mass drivetrain system, the rotors
of WT and the PMSG are treated as the contribution of
rotating masses connected together by a spring represented by
their damping and stiffness coefficient as shown in Fig. 1.
Further details of SSTI and other relevant terms and
definitions can be found in IEEE [10].

A. Two-Mass Model of Drivetrain System

The main focus is on investigating the effect of TI of large
WEC systems. The shaft delivers the power from the wind
turbine rotor to the PMSG rotor. An encoder monitors the
actual position and speed of the WT rotor and the PMSG
rotor. Typically, closed-loop feedback controllers are used to
deliver optimal performance of the overall system. These
controllers receive encoder information to send commands to
amplifiers to control the pitch angle of the WT blades. In order
to understand how the shaft system is affected by this process,
the two-mass model shown in Fig. 1 is considered.

For this two-mass system shown in Fig. 1, a dynamic
equation can be written in a second order differential equation
derived from the torque equation, T=I-a. T is the torque, I is
the rotational moment of inertia, and o is the angular
acceleration of the shaft which is the second derivative of the
angle. All the torques are calculated on one side of each mass.
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Fig. 1. Two-mass model of direct-drive drivetrain system.

The equation for the angular acceleration of the WT rotor
is:
d26
dtZWt =Twt —Tshatt—Twt, r (1)
Also, the equation of instantaneous torque of wind turbine
is given in [5]. Similarly, the equation for the PMSG the
angular acceleration is given by:
d2e
'T;m:Tshaft_Tpm _Tpm,fr (2)
However, there is no external torque applied to the PMSG.
The only torque applied to the PMSG is the torque from the
shaft and the counter electromagnetic torque from the PMSG
itself. Therefore, Tym=0.
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The torque equation for the shaft and the friction are:
Tshatt=Cshatt(@ut —Fpm) + Dshaft(ddgzv‘_ dzzm j (4)
T =D % ©
Tom,fr = me(diimj (6)

where lw, lpm, Twt, Tutfr, Tshatts Tpm, Tpmir, Cshaft, Dwts Dpm, Dshatt,
G, Oom are the wind turbine rotor inertia [kg-m?], the generator
inertia [kg-m?], the wind turbine torque [N-m], the force of
friction of wind turbine rotor [N-m], the shaft torque [N-m],
the electromagnetic torque of PMSG in air gap [N-m], the
force of friction of PMSG [N-m], the coefficient of shaft
stiffness [N-m/rad], the coefficient of wind turbine damping
[N-m/rad/s], the coefficient of PMSG damping [N-m/rad/s],
the coefficient of shaft damping [N-m/rad/s], the position
(angle) of wind turbine rotor [rad], the position (angle) of
PMSG rotor [rad], respectively.

By substituting (4)-(6) to (1) & (3) the torque dynamic
equations are obtained, yielding:
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where 6 =6u — Gpm Which is the displacement angle between

the WT rotor and PMSG rotor. Therefore é\m_épm:é and

O =0
For the flexible shaft, the torsion which is related to the
stiffness of the shaft material occurs when the shaft is
subjected to a torque. Even though the torsion may be very
small, it still makes the shaft twist, and one end rotates relative
to the other end inducing shear stress on the shaft.
By rearranging (7) & (8), this system can be expressed as

equations of motion, i.e.:

Tt =1t Owt +(Dwt +Dshaft)'0wt _Dshaftgpm +CshaftPt _Cshaft@pm (9)
0=I pm‘9pm+(me+ Dshaft)'gpm_Dshaftewt _Cshaft(ewl _epm) (10)
This two degrees of freedom system still contains a fourth-

order characteristic equation which will give a second-order

polynomial. This polynomial will have complex solutions
because the contribution of the damping on the shaft to the
entire system.

By taking the Laplace transform of (9) & (10), the
following transfer functions of the equations of motions in
terms of the frequency are obtained.
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The term Dw and Dpm are coupled with Dghat contributing
the damping oscillation in the system. These terms are called
cross-coupled damping [12]. When there is a positive cross-
coupled damping, a deflection will cause a reaction force as
displacing the shaft horizontally on applying a vertical force. If
these damping coefficients are large enough to make the
mechanical system unstable, the both the WT and the PMSG
need to be shut down immediately. The damping effect of the
WT and PMSG on the resonant frequencies is negligible [16]
as (12) & (13) shows.
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The frequencies, o,z and wg are the oscillation modes where
the interaction between WT and PMSG occurs. g and wy are

the anti-resonant frequency and the resonant frequency
respectively.

The peaks of g,zandwy Of the system shown in Fig. 2(b)

are the frequencies that the WT system exhibits resonant
behaviours. At »,;, the PMSG rotates with an equal and

opposite torque from the WT rotor resulting the PMSG rotor
starts oscillating. It means that the exciting force of oscillations
from the WT is “absorbed” [17] by physically coupled
components such as the shaft and the PMSG rotor. The
coupled components behave as an additional restraint to the
system at the anti-resonant frequency.

At oy, the WT and PMSG rotors are at the peak of the

resonant frequency, thus the energy from the WT and PMSG
become amplified in the drivetrain system resulting both WT
and PMSG rotors oscillate. The problems of both
wppand wg are 1) the PMSG or the shaft oscillation may be

undetected, and 2) the rotating system with feedback controls
will likely get damaged. For example, the overall system may
operate well in the steady-state condition, but the WT and
PMSG may fail to operate due to a sudden change (i.e.
rotational speed) if the oscillation is not detected in a timely
manner.

B. Drivetrain Response Simulation

The system was simulated with MATLAB® with actual data
given in Appendix A. Two different cases were simulated: a
flexible shaft (Fig. 2) and an infinitely rigid shaft (Fig. 3).

As the simulation result in Fig. 2 depicts, the peaks of anti-
resonance and resonance can potentially interfere with the
feedback control tuning. Practically the PMSG feedback
controller is tuned by adjusting the controller gain parameters
to achieve steady-state conditions around the operating
frequency. Typically, placing a low-pass filter would remove
these peaks. However, Fig. 2 shows that both anti-resonance
and resonance occur at very low frequencies. Placing a low-
pass filter to cut off these would require a low cut-off
frequency which would reduce the usable frequency
bandwidth. As the inertia ratio increases, both anti-resonant
and resonant peaks are attenuated. More importantly, they are
shifted to higher frequencies. Also, the stiffness of the shaft
can tie the peaks of anti-resonant and the resonant closer
together.

The equations for myzandwg Show that the resonant

frequency is strongly influenced by the stiffness of the shaft,
the inertia of PMSG and WT. Fig. 3 shows that stiffer shaft
alone can significantly improve the damping response in the
drivetrain system. Also, the problematic anti-resonant and
resonant peaks are adequately attenuated. However, this
simulation does not show how the drivetrain will interact with
other components such as the WT and the PMSG.
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Fig. 2. Drivetrain simulation result with a flexible shaft: (a) Step response of
shaft damping, (b) bode magnitude plot of Owt/Twt and Gpm/Tpm, (C) bode
magnitude plot of 6w/Twt with different inertia ratios and (d) phase plot of WT
and PMSG.
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Fig. 3. Drivetrain simulation result with a rigid shaft: (a) Step response of
shaft damping, (b) bode magnitude plot of Gw/Twt and Gpm/Tpm, (C) bode
magnitude plot of 6wi/Twt with different inertia ratios and (d) phase plot of WT
and PMSG.

C. Permanent Magnet Synchronous Generator Model

The following equivalent circuit of PMSG, shown in Fig. 3,
is based on the transient model of permanent magnet
synchronous machine (PMSM). Any change in the magnetic
flux of the rotor magnet will cause an induced electromotive
force (EMF) which results in a circulating current in the
magnet.

a) d-axis
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Fig. 4. PMSG circuit representation: (a) d-axis and (b) g-axis circuits.

Sebastian et. al. [4] stated that ‘“assuming that the
penetration depth J at the maximum frequency of concern is
large in comparison with the magnet’s radial thickness, each
magnet can be considered approximately as a conducting loop
of length Iy, angular span 20, having a resistance R’n.” When
transferred across the air gap to the equivalent number of
direct-axis stator turns, this can be represented as a resistance
Rm, connected across the direct-axis magnetizing inductance

L.
,
R _[ 4_NS )Rm (16)
m | zsin(ax) n

where n is the number of poles and Ns is the number of turns in
the stator winding.

Since the magnet-to-core interface is mainly a non-
conducting adhesive, this path can be ignored [4]. Based on
the circuit model with no zero-sequence components present,
the equation of voltage in d-q axis can be expressed as:
dig
dt

17)
(18)

uy =Ry —a)sz//q+(Ld +L)

. dig
uq:RS|q+a)Swd+(Lq+Lm)E+a)swpm

where vy =(Ly +L,) g and ‘/’q=('—q+'—m)'iq
Substitute g and v, to (15) and (16) respectively to

obtain the current dynamics in state form as the following.
did Ud _Rsid +a)S(Lq +Lm)-iq

= (19)
dt (Ly+L,)
%:uq—Rsiq —a)S(Ld+Lm)~id ~OY om (20)
dt (Ly+L,)

where ws, Rs, Wpm, w4, Wq Ld, Lg, Lm and Rn are the
synchronous rotor speed of PMSG [rad/s], the stator resistance
[ohm], the flux linkage by permanent magnet [Wb], the flux
linkage of d-axis [Wh], the flux linkage of g-axis [Wb], the
inductance of d-axis [H], the inductance of g-axis [H], the
stator mutual inductance [H] and stator mutual resistance [H]
respectively.

The electromagnetic torque, Tpm [Nm] of the PMSG is
calculated as the following.

T o =L-5N[ pmiq +(La —Lq)-1diq] (21)

Ideally, Tpm should be equal and opposite of the Tu: in (1)
i.e. Tw - Tpom =0 if the losses in the drivetrain system is
negligible.

D. Blade Pitch, Torque and Generator-Side Converter
Controls

There are numerous generator torque controllers in use,
however, many of these are proprietary. This work uses the
genetic wind turbine pitch control and torque control
algorithms given in [7], with slow resonant controller tuning
techniques used in [8], which are directly implemented for the
low speed WT.

The torque control of the generator is achieved by setting
the torque, Tpm, i.€.

T =K (22)
where K is given by [8]
k=1 pRS LPE”‘“ (23)
2 [

where Cp max, R, p and A« are the maximum achievable power
coefficient by WT, the rotor radius or the blade length [m], the
air density [kg/m®], and the tip-speed-ratio at Cp max,
respectively.

The generator control design was based on the assumption
that the d-axis is perfectly aligned with wpm. The g-axis current
is used to control the electromagnetic torque of the PMSG.
Thus, reference d-axis current ig is set to zero, whereas the
reference g-axis current i;” was computed as:

=2 Tpm
3m//pm

(24)
Due to space limitations the details of the grid-side
converter control is not given.

E. WEC System Simulation Results

MATLAB/Simulink® is used to simulate the model in time
domain.
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Fig. 5. Control block diagram based on (15) to (22)

Case 1: flexible shaft

The WT system was simulated with the flexible shaft



parameters given Appendix to obtain the steady state
condition. The stiffness coefficient of the flexible shaft is
obtained from a real system. The results of Case 1 are given in
Fig6 & 7.
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Case 2: rigid shaft

The stiffness coefficient of the rigid shaft is given in
Appendix that perfectly attenuates both anti-resonant and
resonant peaks shown in Fig 3. The stiffness coefficient of the
flexible shaft is then replaced with the stiffness coefficient of
the rigid shaft after Case 1. The results of Case 2 are given in
Fig. 8 & 9.
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I11. ANALYSIS OF NEGATIVE DAMPING

The simulation results shown in Fig. 6-9 depict the torsional
interaction between the shaft and the PMSG which led the
system unstable. As shown in Fig. 1, the coupling torque on
the shaft, Tsnare is given in (4). From Fig. 3(a) the damping
response with the rigid shaft is negligible. Thus, Tsnas is
determined by the angular displacement between the WT and

PMSG rotors;
Tshaft:Cshaft(gwt _gpm) (25)

Assuming that the friction of the WT and PMSG is
negligible, (1) & (3) become,



d26,,

Fe - dt2 =Tt —Tshatt (26)
d2e
I pm 'szm:-rshaft (27)

Defining 8 = Ou:- Gpm, subtracting (27) divided by lpm from
(26) divided by I gives,

d?0 1 1 1
— =T —— Tehatt———— 28
di? Lt Lot shaft |pm shaft ( )
By substituting (25) to (28) the following equation is
obtained.
d2e 1 Ly +1
om = Tut —— " Copar (29)
dt2 1y Lt ! pm

For steady state operation, the WT rotor torque can be
expressed as a function of the WT rotor speed,

dé
Tue = frye [TM (30)

During torsional interaction between the WT and PMSG
rotors, the oscillating component of the larger inertia will less
likely experience the instability by the torsional torque.
Therefore, the PMSG s referred as the system average of the
mechanical synchronous speed of the system,

40w d0pm dO
dt  dt dt
de

31

wpm+dt ( )

For analysing the limit of the system, Taylor series
expansion was used. Considering only the first term, the
function fr,, (@ )at the point @,y is expressed as:

d?e n doe Lot +1pm

dt2 th dt shaftg Wt fth( dt j (32)

Where # is the rate of change of torque-speed curve of the
PMSG which is not the same as the torque-speed curve of the
WT. Then the eigenvalues of the shaft is the following.

2
ﬁi J\/—(IZJ +4- I‘IMMJrI Ip:n “Cshaft
. (3)
If 5 is positive, the first term is positive. This indicates that
the eigenvalues will be on the right-half of the complex plane.
Thus, the shaft will undergo negative damping and the increase
the response of the torsion shown in Fig. 8 & 9. From (33), the
unstable torsional oscillation can be identified in frequency
domain.

1 2
fshaftﬁosc: ij _[ U J +4-
v 4 Lt

Since 7 is the rate of change of torque-speed, the first term
under the square root of (34) is much smaller than the second
term. Therefore, lw and Csare Will dictate the oscillation
frequency. If lpm > lw, lom and Cshare Will dictate the oscillation
frequency of the system. In either case, the stiffness of the
shaft is always the dictating parameter. In addition, # is useful
in torque control design of the PMSG. From (23), assuming
the rotor flux linkage is constant, the mechanical torque of the

Twi ! pm

Ashaft=

Lyt +1
pm
'Cshaft

(34)

Tt pm

PMSG rotor only depends on the speed of the PMSG. As
shown in Fig. 8, the indication of the growth of oscillation can
be seen by monitoring the rate of change in variable # shown
in Fig. 10.
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IV. CONCLUSIONS

This paper investigated the TI behaviour of a direct-drive
PMSG bhased WEC system using time domain simulation
conducted in MATLAB & SIMULINK®. The torsional
oscillation simulation has been conducted for a particular
Type-4 WEC system to analyse the negative damping response
of the drivetrain system with a nearly infinite stiffness of the
shaft. It is observed that the torsional mode not only exists
with the drivetrain system with a flexible shaft, but also it does
with the shaft with nearly infinite stiffness.

It is shown that when # is positive and large, the system will
result in negative damping and the increase the response of the
torsion on the shaft. As shown in Fig. 10, the speed of the shaft
is nearly insensitive to the change in torque. However, the
oscillation of the shaft quickly builds up and exhibit negative
damping which leads to system instability. However, if # is
positive but very small (close to zero), the growth rate of the
oscillation of the shaft system may be slower, but it will
eventually lead to an unstable system condition after some
period of time.

It is shown in this paper that the negative damping
behaviour on the drivetrain system can be occurred due to the
shaft stiffness resulting a strong coupling between the rotating
masses and the stiffness of the shaft system. The resulting



oscillation in the shaft is large enough to make the system
unstable in this particular WEC system. The simulation
showed that sustained torsional oscillations may result in
catastrophic failure of the entire system.

In short, this paper emphasises the importance of the

complete system, not only its individual component. The

interaction (i.e. the SSTI

in the shaft shown in the

paper) between the electrical and mechanical components
often neglected from the system design level.

{r=4.295x107*

V. APPENDIX

DAMPING PARAMETER CALCULATIONS:

1

W T=5.28><10_4
LX

¢ ar=3.435x10"*

wpr=1.302 rad/s  wr=1.6267 rad/s

@y = wr+/1-¢r =1.6264 rad/s

TABLE I
PMSG PARAMETERS (ROUND ROTOR TYPE)
Parameters Value Unit
MVA Rating 2.25 MVA
Rated Power 2 MW
Terminal Voltage 690 \Y
Rated Stator Current 1870 A
Efficiency 92 %
Rated Speed 23.5 rpm
Pole Pairs 18 (20 slots)
Inertia 3.47 x 10° kg-m?
Viscous Damping 0.1 N-m-s
Static Friction 0 N-m
Flux Linkage 1.742 Vs
Stator Resistance 1.85 mQ
Armature Inductance (Ld=Lq [9]) 0.285 mH
TABLE II
WT PARAMETERS
Parameters Value Unit
Blade Length 375 m
Inertia 6.34 x 10° kg-m?
Viscous Friction 0.1 N-m-s
Wind Speed 12.5 m/s
TABLE Il
DRIVETRAIN PARAMETERS
Parameters Value Unit
. 5.87x10°  (flexible)
Stiffness 6.20x10%° (rigid) N-m
Damping 3.1x10° N-m-s
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