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Abstract--The Phase-Domain Line Model, or Universal Line 

Model (ULM), is considered one of the most advanced for time-

domain analysis of EMTs in power lines and cables. This model 

involves two convolution processes that usually are performed 

through recursions. The recursive processes follow from the 

rational representations of both matrices, the one of 

characteristic admittances Yc and the one of propagation H. To 

attain a rational representation for matrix H, with high accuracy, 

it is needed to previously identify and extract from it of its modal 

travel-time factors. The accuracy at determining the modal 

travel-times to be extracted has a considerable impact on the 

accuracy of the synthesized rational representation of matrix H, 

as well as on the accuracy of the transmission-line model. This 

paper presents a method to determine travel-times that are 

optimum in the strict sense of Systems Theory. This method is 

based on determining the main features of systems satisfying the 

Paley-Wiener criterion. 

 

Keywords: Electromagnetic transients, time delays, Paley-

Wiener, ULM, minimum phase, NLT.  

I.  INTRODUCTION 

raveling-wave-based transmission-line models, such as 

the Universal Line Model (ULM), can include all the 

frequency-dependent effects of line and cable parameters 

[1]. These models involve two convolution processes that 

usually are performed through recursions. These recursive 

processes follow from rational representations of the 

characteristic admittance matrix 𝐘𝒄 and of the propagation 

matrix 𝐇 [1]. 

To attain a rational representation for matrix 𝐇 with high 

accuracy, it is needed to previously identify and extract from it 

its modal travel-time factors [1,2]. The accuracy at 

determining those modal travel-times has a considerable 

impact on the accuracy of the synthesized rational 

representation of matrix 𝐇, as well as on the accuracy of the 

transmission-line model [2,5]. The standard method for 

determining the modal travel-times makes use of an integral 

formula by Bode [6].  

Once the travel times are obtained and extracted from the 

propagation matrix one proceeds to the rational fitting, usually 

by applying Vector Fitting (VF) [1,2]. The numerical 

implementation of Bode’s formula does not always offer good 

accuracy. For this reason, it has been proposed elsewhere the 
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use of optimization methods for finding the travel times that 

lead to the rational fit of 𝐇 with the lowest RMS error. The 

optimization technique proposed in [3] makes use of Brent’s 

search [17]. Disadvantages of this technique are that each 

iteration requires applying a full VF process and that the 

resulting model is not always minimum-phase. 

Rather than searching for the travel times that produce the 

least RMS error, it is proposed in this paper to search for 

either the one with the minimum phase or the one with the 

minimum phase deviation. These two alternatives guarantee 

minimum phase fitted models. In addition, the search for 

minimum phase does not require the iterative use of VF; thus, 

its computational efficiency is much higher than that of the 

one based on minimum RMS error. 

It also is proposed in this paper to test, not only for the 

fitting error of fitted 𝐇, but also for its error to step response. 

The use of the step as a test signal is considered appropriate 

because of its rich spectral contents. Accuracy tests are 

conducted here using a frequency-domain line model and the 

Numerical Laplace Technique (NLT) [9]. The NLT is tuned 

for a numerical relative-error of 10-9. Finally, comparisons are 

provided between the two proposed criteria and the ones based 

on Bode’s technique and of Brent’s optimization with VF. The 

comparisons involve a single-phase aerial line and a single-

phase underground cable. 

II.  CAUSAL SYSTEMS 

Physical (realizable) systems must be causal; that is, an effect 

cannot precede its cause. In the sense of system theory, the 

physical realizability of transfer-functions is defined by 

causality. Step responses of causal systems can only exist for 

𝑡 ≥ 0. The necessary and sufficient condition for a system to 

be causal is that its transfer function 𝐻(𝜔) complies with the 

following relation [8]: 

 

∫
ln|𝐻(𝜔)|

1 + 𝜔2

+∞

−∞

𝑑𝜔 < ∞ (1) 

 

If, in addition to (1), |𝐻(𝜔)| is quadratically integrable, 

magnitude |𝐻(𝜔)| can be associate with a phase response so 

the resulting 𝐻(𝜔) is causal. Expression (1) corresponds to the 

Paley-Wiener criterion. Transfer functions satisfying this 

criterion have the general form: 

H(jω) = Hmin(jω)Hap(jω) (2) 

 

where Hmin(𝜔) is a minimum phase transfer function and Hap 

represents an all-pass system. The minimum phase function: 

 

Hmin(𝑗𝜔) = |H(jω)|𝑒𝜑𝑚𝑖𝑛 (3) 

T 



 

 

has minimum lag 𝜑𝑚𝑖𝑛 and has all its zeros and poles lying on 

the left half s-plane. 

The all-pass transfer-function Hap(jω) in (2) has unit 

magnitude; it thus only affects the phase relations of an input 

signal [10, 11].  

III.  TRAVELLING-WAVE LINE MODEL 

Travelling-wave line models require rational approximations 

for the characteristic admittance matrix 𝐘c and for the 

propagation matrix 𝐇 [1,4]: 

 

𝐘c = √𝐘𝐙𝐙−1 = 𝚪𝐙−1 (4) 

𝐇 = 𝑒−√𝐘𝐙𝑙 (5) 

where 𝐙 and 𝐘 are the respective matrices of series 

impedances and of shunt admittances.  

Matrix 𝐘c is approximated rationally as follows: 

𝐘c ≅ 𝐆0 + ∑
𝐆k

s − 𝑝𝑘

𝑁𝑦

𝑘=1

 (6) 

where 𝑁𝑦 is the order of the rational approximation, 𝑝𝑘 is the 

𝑘– 𝑡ℎ pole, 𝐆𝑘is the 𝑘– 𝑡ℎ matrix of residues associated to 𝑝𝑘 

and 𝐆0 is a constant matrix obtained as the limit 𝑠 ⟶ ∞ of 𝐘c. 

The poles of 𝐘c are determined from its matrix trace. 

The rational fitting of 𝐇 is substantially more involving 

than that of 𝐘c. The reason for this is that every element of 𝐇 

involves all the line modal-delays. Delay separation is thus 

needed to attain accurate and low order fits. Separation can be 

obtained through the following factorization [18], 

𝐇 = ∑ 𝐃i𝑒
−�̃�𝑖𝑙

𝑁

𝑖=1

𝑒−𝑠𝜏𝑖 = ∑ �̃�i

𝑁

𝑖=1

𝑒−𝑠𝜏𝑖  (7) 

where 𝑁 is the number of the line propagation-modes (or of 

the line independent conductors), matrix 𝐃i is the idempotent 

matrix associated to the i-th line mode [18], 𝜏𝑖 is the i-th 

delay, �̃�𝑖 is the corresponding propagation modal-constant 

with the i-th delay being extracted, �̃�i is the propagation 

function for the i-th mode without the i-th delay-factor. The 

rational approximation of 𝐇 can be expressed as follows: 

𝐇 ≅ ∑ [∑
𝑹𝑖,𝑘

𝑠 − 𝑞𝑖,𝑘

𝑁ℎ,𝑖

𝑘=1

]

𝑁

𝑖=1

𝑒−𝑠𝜏𝑖  (8) 

where 𝑁 indicates the number of line propagation-modes (or 

of line independent-conductors) and 𝑁ℎ,𝑖 is the order of the 

rational-approximation for the i-th propagation-matrix. 

Rational approximations usually are obtained with the Vector 

Fitting (VF) technique [2]. 

IV.  FREQUENCY DOMAIN LINE MODEL 

A transmission line can be represented in the frequency 

domain as a two-port nodal network [13,14]: 

 

[
𝐈𝟎

𝐈𝐋
] = [

𝐀 𝐁
𝐁 𝐀

] [
𝐕𝟎

𝐕𝐋
] (9) 

with: 

𝐀 = (𝐔 − 𝐇2)−1(𝐇2 + 𝐔)𝐘c, (10) 

𝐁 = (𝐔 − 𝐇2)−1(−2𝐇)𝐘c. (11) 

 

Transient responses of transmission lines can be obtained 

in the Laplace domain through from (9). The corresponding 

time-domain waveforms are obtained through the subsequent 

application of the Numerical Laplace transform (NLT). A 

numerical accuracy of 10-9 is attained here by employing 𝑁 =
219 (524 288) samples [9]. NLT results are taken here as 

reference to evaluate the accuracy of each methodology 

considered in this paper. 

V.  TIME DELAY IDENTIFICATION 

Travel times associated to matrix H can be determined by a 

technique based on minimum phase identification. The 

standard technique being used with the ULM to identify travel 

times is based on Bode's theorem [6]. This theorem establishes 

the following relationship between the magnitude of an 

analytic function and its minimum phase function [6]: 

 

𝜑𝑖(𝜔) =
1

𝜋
∫

𝑑(ln|H𝑖|)

𝑑𝑢𝑖

+∞

−∞

ln (coth
|𝑢𝑖|

2
) 𝑑𝑢𝑖 (12) 

 

where 𝑢 = 𝛺𝑖 𝜔⁄  and 𝛺𝑖 corresponds to a cut-off frequency, 

typically at |H𝑖| = 0.1|H𝑖(𝜔)|. After solving (12), the travel 

time can be calculated as follows:  

 

𝜏𝑖 =
𝑙

𝑣𝑖(𝛺𝑖)
+

𝜑𝑖

𝛺𝑖

 (13) 

 

Here 𝑣𝑖 is the velocity of the i-th mode and 𝑙 is the 

transmission line-length. 

The actual application of (12) must be done numerically 

and this causes the introduction of errors in the estimated 

travel-times. Because of these errors, the delay factors cannot 

be extracted completely from H and the rational synthesis 

becomes inaccurate. It thus proposed in [3] to overcome this 

problem by applying Brent’s search to determine the travel 

times that result in the fitted H with the minimum RMS-error.  

As it has been previously mentioned, the problems with the 

search method based on Brent’s optimization are that each 

iteration involves the application of VF and that the fitted 

form of H often is of non-minimum phase. An alternative is 

proposed here consisting in the search for the travel time that 

minimizes the following expression for phase deviation:  

𝑑𝑒𝑣𝜙𝜏𝑘
= ∑ |𝜑𝜏𝑘

(𝑚)|
2

𝑁𝜔

𝑚=1

 (17) 

where 𝑁𝜔 is the number of frequency samples of H, 𝜑𝜏𝑘
(𝑚) 

represents the m-th sample of the phase characteristic for the 

k-th time delay 𝜏𝑘. The criterion to choose the next 𝜏𝑘 is as in 

[17]. This process guarantees the minimum-phase 

characteristic for the fitted part of H and it only requires one 

application of VF. Even though this method is simple, it can 

fail if the bracketing interval is not appropriate.  

Another alternative for determining minimum phase 

condition is based on the following ratio: 

 

𝜌𝜏 = |∑ 𝑅𝑒{𝑍𝑘}

𝑁𝑧

𝑘=1

| ∑|𝑅𝑒{𝑍𝑘}|

𝑁𝑧

𝑘=1

⁄  ;  {
𝜌 = 1;         minimum phase
𝜌 ≠ 1; non minimum phase

 (18) 



 

 

where 𝑁𝑧 is the number of zeros (𝑍𝑘) of the fitted part of H. 

Expression (18) is combined with a bisection method to 

determine the time-delays that result in minimum phase 

rational approximations (𝜌 = 1). The number of time delays 

satisfying the minimum phase condition is large; it is proposed 

here that the smallest one is to be selected. 

VI.  TEST CASES 

A.  Single-phase aerial line  

Consider the single-phase overhead transmission line shown 

in Fig. 1 along with its additional data provided in Table I. 

The line is connected at 𝑥 = 0 to an ideal voltage source that 

injects a voltage unit step. At the far end the line is open-

ended. The waveform has been obtained with the Numerical 

Laplace Transform using 219 samples to guarantee an 

accuracy of 10−9. 

 
Fig. 1. Single phase overhead line. 

TABLE I 
LINE DATA 

Line length 30 km 

Conductors resistivity 3.21e-8 𝛺 ∙ 𝑚 

Ground resistivity 100 𝛺 ∙ 𝑚 

Ground relative permittivity 1 

 

Figure. 2 provides the plot of 𝜌𝜏 given by (18) versus 

travel-time for the line of Fig.1. Recalling that 𝜌𝜏 = 1 implies 

minimum phase condition, the plot shows that this condition is 

not unique. Figure 2 shows also the travel-times determined 

through the methods being considered here: Bode’s integral, 

Brent’s iterations with VF, minimum phase deviation (17) and 

minimum-phase ratio (18). 

 

 
Fig. 2. Plot of 𝜌𝜏  versus travel-time. 

 

Each one of the travel-times being obtained with the four 

techniques being considered here is now used first to extract 

the delay-factor from H and then to apply VF with 10 poles. 

Table II provides the RMS-errors obtained for each case.  

 

TABLE II 
ACCURACY OF DELAY IDENTIFICATION METHODS 

Method Time Delay Fit error 

Minimum 
RMS-fiterror 

1.012422032538708E-04 1.214327540033741E-05 

Minimum phase 

deviation 
1.016000134612205E-04 2.728885014864769E-05 

Bode’s Integral 1.001426314054519E-04 2.443542200601405E-05 

Minimum Phase 1.015010000000000E-04 1.591003303296070E-05 

 

Fig. 3 shows the transient waveform of voltage at 𝑥 = 𝑙 as 

obtained with the NLT (reference) and with the ULM 

employing the four travel-times at Table II and their 

corresponding fitted H-functions. The differences among the 

plots in Fig. 3 cannot be seen by eye. Figure 4 provides their 

relative-error plots taking as reference the NLT waveform. 

Note that the lowest error at the transient response is obtained 

when the travel-time is estimated with the minimum phase-

deviation criterion. Note also from Table II that not 

necessarily the minimum RMS-error in the fitting of H 

implies minimum error at the transient response. 

 
Fig. 3. Transient response 

 
Fig. 4. Relative error plots. 

B.  Underground cable, core response 

Consider a 5 km single-core underground cable with its 

transversal geometry shown in Fig. 5. The table III provides 

the cable data required for its ULM representation. In this 

case, H is a 2×2 matrix with two propagation modes: a coaxial 

mode with travel time 𝜏𝑐 and a ground-return mode with travel 

time 𝜏𝑠. Table IV provides the estimates for these travel-times 

as obtained with the four methods being considered here. The 

table also provides the corresponding RMS fitting-errors.  
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Fig. 5 Underground cable 

 

TABLE III 
CABLE DATA 

Item Property 

Core 𝑟1 = 39 𝑚𝑚, 𝜌𝑐 = 3.365E-08 𝛺 ∙ 𝑚 

Insulation 𝑟2 = 57.25 𝑚𝑚, 𝜀𝑟 = 2.85 

Sheath 𝑟3 = 57.47 𝑚𝑚, 𝜌𝑠 = 1.718E-08 𝛺 ∙ 𝑚 

Jacket 𝑟4 = 62 𝑚𝑚, 𝜀𝑟 = 2.51 

 

TABLE IV 
ACCURACY OF DELAY IDENTIFICATION METHODS 

Method Time Delay Fit Error 

Minimum 

RMS-fit 

error 

𝜏𝑐=2.777400505173475E-05 2.388896814564825E-04 

𝜏𝑠=2.218543471451478E-04 3.315760607061955E-04 

Minimum 
phase 

deviation 

𝜏𝑐=2.823403392873278E-05 2.645481088729894E-02 

𝜏𝑠=2.147232833833232E-04 5.177308878427851E-04 

Bode’s 
Integral 

𝜏𝑐=2.797759291385173E-05 2.778796375087252E-04 

𝜏𝑠=2.224495660472671E-04 3.433906986012019E-04 

Minimum 

Phase 
𝜏𝑐=2.811158333333333E-05 1.161222758578107E-03 

𝜏𝑠=2.246533333333333E-04 7.368437356373795E-04 

 

Consider that the cable of Fig. 5 is connected as in Fig. 6, 

with its sheath solidly grounded at both ends. At 𝑥 = 0, a unit 

step of voltage is injected into the core through an ideal source 

and at 𝑥 = 𝑙 the core is open-ended. Figure 7 provides the 

voltage responses at 𝑥 = 𝑙 being obtained with the NLT 

technique (reference) and with the ULM employing the four 

travel-time sets at Table IV along with their corresponding 

fitted H matrix-functions.  

 

 
 

Fig. 6 Step core voltage with sheath grounded. 

 

The differences among the plots in Fig. 7 can now be seen by 

eye. Nevertheless, their differences are provided in the form of 

relative error plots at Fig. 8. The plot obtained with the NLT 

has been taken as the reference. Note that this time the lowest 

error at the transient response is obtained when travel-times 

are estimated with Brent´s search and VF. 

 

 
Fig. 7 Core voltage. 

 

 
Fig. 8 Relative-error plots. 

C.  Underground cable, sheath responses 

The cable of Fig. 5 is connected now as in Fig. 9. This time 

both, the core and the sheath are open-ended at the remote end 

(𝑥 = 𝑙). As an ideal voltage soured injects a unit step at the 

core near end (𝑥 = 0), the voltage waveform responses at the 

core far end are as in Fig. 10, while the sheath induced voltage 

waveforms are as is Fig. 12. All these waveforms have been 

obtained with the NLT (reference) and with the ULM 

employing the four travel-time sets at Table IV. Figure 11 

provides the relative error plots corresponding to the results in 

Fig.10, while Fig. 13 provides the error plots for Fig. 12 

results.  

 

 
Fig. 9. Step voltage excitation on core. 

 
Fig. 10. Core voltage 
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Fig. 11. Relative-error plots. 

 
Fig. 12. Induced sheath voltages. 

 

 
Fig. 13. Relative-error plots. 

D.  Underground cable, core induced voltages 

Consider now that Fig, 5 cable is connected as in Fig. 14. This 

time the voltage ideal source injecting a unit step is connected 

to the cable sheath at the near end (𝑥 = 0). At this same end, 

the cable core is grounded. At the far end (𝑥 = 𝑙) both, the 

core and the sheath are open-ended. Figure 15 provides the 

induced voltage-waveforms at the core far-end. Figure 16 

provides, as before, the relative-error waveforms 

corresponding to the plots of Fig. 15 and taking the one 

obtained with the NLT as reference. Finally, Fig. 17 provides 

the plots of the sheath transient responses and Fig. 18 the 

associated relative-error plots.  

 

 

 
 

Fig. 14. Step voltage excitation of cable sheath. 

VII.  DISCUSSION 

The previous test-cases corroborate that the process of travel-

time identification has an impact on the accuracy of traveling-

wave line models. The RMS error at the rational fit of 𝐇 can 

be used as a search criterion. Nevertheless, the minimum error 

of the fit does not guarantee the minimum error at the transient 

response. Another search criteria are the travel-times that, 

when extracted from 𝐇, result in a minimum phase or in a 

 
Fig. 15. Induced core voltage 

 
Fig. 16. Relative-error plots. 

 
Fig. 17. Sheath voltage. 

 

 
Fig. 18. Relative-error plots. 

 

minimum phase deviation model. In a strict sense, a physical 

lumped-element system, such as 𝐘𝒄, must be a minimum phase 

one; a physical distributed-element system, like 𝐇, should 

consist of a minimum phase part cascaded with a maximum 

phase (or all-pass) one. Transient-response comparisons 

among the four criteria do not show a clear winner. These can 

be seen at Tables 2 and 4, as well as at Fig. 3. Nevertheless, in 

favor of the two criteria being proposed here, one can say that 

these two guarantee the model synthesis with minimum phase; 
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in addition, the minimum phase deviation method requires 

much less computations than the one that uses Brent’s search 

and VF. 

VIII.  CONCLUSIONS 

The research being reported in this paper focuses on the 

effective estimation of travel-times for multi-conductor power 

lines and cables, as well as on the impact of these estimates on 

the accuracy of the traveling-wave models for the lines in 

question. An adequate travel-time estimation may require the 

use of iterative optimizations. It has been contended here that 

the optimization method proposed in [3] results 

computationally costly, since each iteration requires a 

complete rational fit using VF. It has also been pointed out 

that this method does not guarantee a minimum phase 

synthesis. The two methods being introduced in this paper 

have a much lower computational cost and the fitted models 

are minimum phase. The results in this paper show that fitting-

error minimization does not imply minimum errors at the 

transient response of the synthesized line models. Simulation 

tests have shown that in some cases the method proposed in 

[3] results in slightly lower errors than those of the methods 

being proposed here and, in some others, this is the other way 

around. In conclusion, there is not a clear winner regarding the 

accuracy at transient responses.  
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