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Abstract--This paper presents a theoretical review and 

comparison between Vector fitting, Matrix-Pencil-Method and 

Loewner Matrix techniques for the fitting of frequency-domain 

functions. Firstly, the theoretical basis of each technique is briefly 

reviewed. Subsequently, their computational performances are 

compared through different case studies. As for the Loewner 

Matrix method, a novel implementation is proposed for a fair 

comparison with the other two techniques. This novel 

implementation has some advantages over the traditional one. 

Global remarks and recommendations are given to take 

advantage of the capabilities that each technique exhibits. 
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I.  INTRODUCTION 

ATIONAL fitting represents a powerful modelling 

strategy that provides accurate frequency-dependent 

representation of network elements. Among the applications 

of rational fitting are the modelling of transmission lines [1], 

transformers [2] and Frequency-Dependent Network 

Equivalents (FDNE) [3].  

The Vector Fitting (VF) technique [3-5] has been widely 

used among the power systems community, although, 

alternative techniques such as Matrix-Pencil-Method (MPM) 

[6, 7] and Loewner Matrix (LM) [8-10] have also been 

proposed. These alternative techniques are said to have unique 

advantages, such as being non-iterative, allowing easy 

determination of model order, no specification of initial poles 

and reliable performance for handling noisy samples.  

The aim of this paper is to achieve a comprehensive 

comparison of the abovementioned techniques. The study of 

the passivity of rational models is beyond the scope of the 

paper since none of the studied techniques can guarantee this 

requirement. Then, the paper focuses on the fitting accuracy of 

the studied fitting techniques. 

The rest of the paper is constituted as follows. A brief 

theoretical review on VF, MPM and LM techniques is 

presented in Section II. Their performances are assessed 

through different case studies in Section III. A discussion and 

summary about the obtained results is presented in Section IV. 
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II.  REVIEW OF FITTING TECHNIQUES 

The general purpose of fitting techniques is to approximate 

a numerical frequency-domain function f (s = jω) as a sum of 

partial fractions as shown in (1).  
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In (1), f (s) may denote an impedance-, admittance-, 

scattering-parameters function or a transfer function, obtained 

either analytically or from measurements; ck and ak are the 

residues and poles, respectively, they can be real or complex 

conjugate pairs; and d and e are real coefficients.  

For multiport systems, f (s) is a matrix function, which 

requires every element of it to be approximated as in (1). 

Matrix functions are usually fitted using a common set of 

poles for computational efficiency purposes [11]. For 

symmetrical matrix functions, such as the cases addressed in 

this paper, only the lower triangular part of the matrix is fitted. 

The rest of the elements are repeated according to symmetry. 

The fitted model, as shown at the right hand side of (1) 

can be finally arranged as a state-space model for transient 

simulations [12]. A common characteristic of the studied 

techniques is that during the fitting process unstable poles may 

appear, which in turn, are corrected or removed to ensure 

stability of models. 

A.  Vector Fitting 

The VF technique first computes the poles of (1) in an 

iterative relocation process from an initial (guessed) set of 

poles. For this purpose, VF introduces the auxiliary function 
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to create the augmented problem 
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As it can be observed from (2), ( )s contains the same 

set of poles as f (s), but different residues. Evaluating (3) for 

a predefined frequency band, the overdetermined set of 

equations  

 =Ax b  (4) 

is obtained, where, the kth row of A  and x  are denoted by 
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and b  contains the samples of f(s). Note that this formulation 

only stands for real poles. To consider complex poles, (5) 

and (6) are modified accordingly [3].  

R 
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Solving the least-squares problem (4), the residues of 

( )s are obtained. At this point, ( )s  is completely 

identified, then, its zeros are computed. As it is demonstrated 

in [3], the zeros of ( )s  can be set equal to the poles of the 

system, such that an improved set of poles is obtained. This 

process can be repeated for a predefined number of iterations 

or until reaching convergence.  

The second stage of VF consists of the calculation of 

residues and coefficients d and e. To do so, a new least-

squares problem is formulated based on (1) using the 

obtained poles. In this case, the kth row of A  and x , are: 

 ( ) ( )11/ 1/ 1k k k N ks a s a s = − − A  (7) 
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A complementary analysis of VF can be found in [13]. 

B.  Matrix Pencil Method 

The original MPM technique consists of the identification 

of a system by approximating its transient response y(t) in 

discrete form as a sum of complex exponentials [14], i.e., 
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where cn and an are the time-domain counterpart of the 

residues and poles in (1), respectively, according to the 

Laplace transform. MPM identifies the poles of the system by 

solving the generalized eigenvalue problem: 

 1 2=Y v Y v  (10) 

where v is a generalized eigenvector and λ its corresponding 

eigenvalue; Y1 and Y2 are the pencil matrices, which contain 

the samples of the transient response y(t), see [7] for details. 

The nth exponential term na t
e


 in (9) is related to the nth 

eigenvalue as follows 

 na t
n e 
= . (11) 

Such that the poles (an) are readily obtained from the set of 

eigenvalues of the pencil function (10) by solving (11). 

To obtain the appropriate fitting order, the pencil matrices 

are subjected to Singular Value Decomposition (SVD), i.e., 

 1 1 1= Y U R  (12)   

 2 2 2= Y U R  (13)   

Considering only the N dominant singular values zi, 

contained in the diagonal matrix Σ in (12) or (13), the 

eigenvalue problem (10) can be equivalently solved as  

 1 2
ˆ ˆ=R v R v  (14) 

where 1R̂ and 2R̂  contain only the N dominant right 

eigenvectors of R1 in (12) and R2 in (13), respectively [14].  

To determine the function order N, the singular values are 

first normalized by the largest one (z1) i.e., 

 1/i iz z z=  (15) 

then, the normalized singular values with magnitudes above a 

predefined tolerance value ξ are considered as dominant. 

Alternatively, if the function order is known, the first N 

singular values can be selected directly. 

For noisy transient responses, the total-least-squares Matrix 

Pencil M can be used instead of Y1 and Y2. Like Y1 and Y2, M 

is computed using the samples of y(t) as shown in [14]. Using 

M, the corresponding SVD becomes: 

 = M U R , (16)   

and the pencil eigenvalues are calculated solving (14) with 

  1 1 2 1
ˆ

N−=R r r r , (17) 

  2 2 3
ˆ

N=R r r r , (18) 

where r1,2,…,N denote the dominant right eigenvectors (columns 

of R) obtained from (16). This approach is used in this paper. 

Once the poles an are known, the residues cn and 

coefficients d and e are calculated solving (7) and (8), 

similar to the VF technique.  

Since the MPM technique described uses a transient 

response as input, the frequency-domain application requires a 

transformation to the time-domain [6, 7]. This transformation 

delimits the frequency-domain fitting to only linearly-spaced 

sampled functions. In this paper, transformation to time-

domain is performed via the built-in Matlab function IFFT [6].  

For matrix functions, the described MPM technique can be 

applied to each element of it, however, to obtain a common set 

of poles, the trace of the matrix is used in this paper. 

C.  Loewner Matrix fitting technique 

The LM fitting technique uses tangential interpolation data 

to construct the state-space model: 

 ( ) ( ) ( )t t t= +Qx Ax Bu  (19) 

 ( ) ( ) ( ) ( )t t t t= + +y Cx Du Y u  (20) 

where Q , A ϵ m m , B ϵ m p , C ϵ p m , x ϵ 1m , y ϵ

1p , D , 
Y  ϵ p p , with p being the number of 

inputs/outputs and m the number of states. This state-space 

model is obtained by first applying SVD to the Loewner 

pencil function as follows: 

 ( )SVD 'x = −Λ Ψ L L  (21) 

where x can be any sample of s = jω that is not an eigenvalue 

of the pencil function, and L  and 'L  denote the Loewner 

and shifted-Loewner matrices, respectively. These matrices 

are computed as follows: 

 ( ) ( )ij j i j i j i = − −L Φ r l Ω  (22) 

 ( ) ( )'ij j j i i j i j i   = − −L Φ r l Ω  (23) 

where { j , jl  and jΦ } and { i , ir  and iΩ } denote the 

left and right tangential interpolation data, respectively.  

Tangential interpolation data is constructed as follows: 
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From (26) and (27), F denotes the matrix function being 

fitted; Ij and ri, are referred as left and right tangential 

directions, respectively, and they can be VFTI (vector-format 

tangential interpolation) or MFTI (matrix-format tangential 

interpolation) type [9], being the last one used in this paper. 

Finally, the state-space model (19)-(20) is computed as: 

 *
r r= −Q Λ LΨ  (30) 

 * '
r r= −A Λ LΨ  (31) 

 *
r r=B Λ P  (32) 

 r r=C W Ψ  (33) 

where the subscript r  means that only the columns related to 

the dominant singular values revealed in (21) are used for 

each matrix. The dominant singular values in (21) are selected 

as explained in the previous section. The number of dominant 

singular values equals the number of states in (19)-(20). 

At this stage, D and Y∞ in (20) are embedded into the 

model described by (30)-(33), however, since Y∞ contains 

unstable modes, it must be extracted. Different strategies have 

been proposed to do so [8, 9, 15], however, this paper 

proposes a novel approach for extraction of Y∞ as follows. 

The built-in Matlab function pole(sys) is used to extract the 

poles to the model given by (30)-(33), the resulted unstable 

poles are removed (equivalent to the extraction of Y∞). 

Finally, using the extracted (stable) poles, residues and d and e 

coefficients are calculated solving (7) and (8) via least 

squares, like the VF technique. This approach allows a fair 

comparison of LM with VF and MPM techniques. 

III.  NUMERICAL EXAMPLES 

In this section, VF, MPM and LM techniques are compared 

by fitting different frequency-domain functions. In all cases, 

VF is applied with six iterations and no weighting schemes are 

used. To evaluate the fittings, two metrics are used, i.e., the 

RMS error RMS  and the relative error relative , computed as 

follows: 
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where f  is a vector containing the elements of the lower 

triangular part of the matrix function fitted, these elements are 

stacked to form a single column, Ne denotes the number of 

elements of f ; Ns denotes the number of frequency samples; 

and 'f  denotes the frequency response of the fitted model. 

A.  Low-order synthetic function 

The fitting of the frequency-domain function (36) is 

performed using VF, MPM and LM techniques. The function 

is evaluated from 0 to 1 kHz with 200 linearly spaced samples.  
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As a first test, the correct order of the function N = 3 and 

non-zero d coefficient are set for the three techniques. The 

resultant fitting magnitude curves are shown in Fig. 1. The 

function coefficients obtained via VF technique are the same 

as those of (36), while the coefficients obtained via MPM and 

LM techniques, presented in (37) and (38), are considerably 

different. Thus, based on both, fitting curves and function 

coefficients, it can be said that VF performs the best fitting for 

this case. 
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Fig. 1. Magnitude of the synthetic function (36) fitted with N = 3.  

 

The singular values of the LM pencil show a clear drop at 

the fourth singular value, revealing the order of the system 

(including the d coefficient) as reported in [9]; on the other 

hand, the singular values of the MPM pencil function draw a 

smooth curve, which makes more difficult the order 

identification. Both cases are shown in Fig. 2.  

Setting for example ξ = 1×10-5 for model order 

identification (marked by the horizontal dashed-line in Fig. 2), 

MPM fitting is very accurate, but the model order is increased; 

on the other hand, LM fitting becomes less accurate. These 

results are summarized in Table I, where the RMS and relative 

error for each case are presented. 
 

 
Fig. 2. Pencil singular values of synthetic function (36). 

 
TABLE I.  

COMPARISON OF FITTING ACCURACY OF VF, MPM AND LM FOR FITTING THE 

SYNTHETIC FUNCTION (36). 

Technique Order   
RMS  relative  

VF 3 - 9.52×10−16 1.76×10−13 % 

MPM 
3 - 6.15×10−2 4.85 % 

21 1×10−5 8.69×10−7 8.65×10−5 % 

LM 
3 - 1.98×10−2 0.61 % 

4 1×10−5 0.13 12.48 % 

 



B.  Transformer 

The fitting of the zero-sequence admittance of the 

11kV/230V transformer adopted from [3] is achieved. Both 

MPM and LM pencil singular values, plotted in Fig. 3, show a 

large drop at the sixth eigenvalue, revealing the model order. 

Using N = 6, the fitting magnitude plot obtained is shown in 

Fig. 4. This figure shows that VF and LM achieve very 

accurate fittings while MPM fitting is poorer. The 

corresponding RMS and relative fitting errors, given in Table 

II, show that LM is the most accurate technique for this case. 
 

 
Fig. 3. MPM and LM pencil singular values of transformer case study. 

 

 
Fig. 4. Magnitude fitting plot of transformer case study. 

 

TABLE II.  
COMPARISON OF FITTING TECHNIQUES FOR TRANSFORMER ADMITTANCE 

CASE STUDY USING 6 POLES. 

Technique RMS  relative  

VF 1.17×10−3 6.32 % 

MPM 8.68×10−3 24.68 % 

LM 1.09×10−3 4.89 % 

C.  PI circuit  

The admittance matrix of the circuit of Fig. 5, seen from 

nodes 1 and 2, is fitted using the studied techniques. The 

admittances Ya, Yb and Yc, are given in (39), (40), and (41), 

respectively. Since these admittances contain a total of nine 

partial fractions, the optimal fitting order is N = 9. The LM 

pencil singular values, plotted in Fig. 6, show a large drop at 

the 11th singular value (close to the correct order), while the 

MPM singular values, shown in the same figure, draw a 

smooth curve. 
 

Ya

Yc

1 2

Yb

 
Fig. 5. PI circuit case study. 
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Fig. 6. Pencil singular values of 2×2 admittance matrix of circuit of Fig. 5. 

 

Setting N = 9 and non-zero D matrix for the fitting of the 

admittance matrix of the circuit of Fig. 5, the magnitude plots 

shown in Fig. 7 (a), (b) and (c) are obtained. From Fig. 7 (a), it 

can be observed that only MPM technique achieves a poor 

fitting for element Y(1,1) around 440 Hz. The rest of elements 

are accurately fitted for every technique. 

 

 
Fig. 7. Fitting magnitude plots of 2×2 admittance matrix with 9 poles. (a) 

Element Y(1,1), (b) Element Y(1,2), (c) Element Y(2,2). 

 

To further assess the performance of the studied fitting 

techniques, the fitting is repeated using N = 6 and N = 12. The 

resulting fitting magnitude plots of element Y(1,1) are shown 

in Fig. 8 (a) and (b). Fig. 8 (a) shows that when the system 

order is underestimated, fitting accuracy is similar (poor) for 

the three techniques; however, when fitting order is 

overestimated, Fig. 8 (b), only LM fitting loses accuracy (as 

occurred for the synthetic function example presented before).  



The RMS and relative errors for the different orders tested 

are listed in Table III. This table confirms that the VF 

technique achieves the most accurate fittings in all cases. 

 

 
(a) 

 
(b) 

Fig. 8. Magnitude plot of Y(1,1) of pi circuit case study, (a) N=6, (b) N=12.  

 
TABLE III.  

COMPARISON OF FITTING TECHNIQUES FOR PI CIRCUIT CASE STUDY. 

Technique Order RMS   relative  

VF 

6 

6.7×10−2 2.64 % 

MPM 8.5×10−2 4.92 % 

LM 7.5×10−2 3.73 % 

VF 

9 

5.10×10−15 2.69×10−13 % 

MPM 6.38×10−2 4.12 % 

LM 2.22×10−3 8.6×10−2 % 

VF 

12 

2×10−14 6.53×10−13 % 

MPM 3.1×10−2 2.22 % 

LM 0.21 13.93 % 

 

D.  Distribution Network FDNE 

A more challenging case study, such as fitting an FDNE for 

the distribution network of Fig. 9 (adopted from [16]) is 

studied in this section. The magnitudes of the elements of the 

admittance matrix of the system measured from nodes A and 

B are plotted in Fig. 10. Since the system order cannot be 

determined by simple inspection, MPM and LM techniques 

are used to determine the system order. From Fig. 11, it can be 

observed that neither the LM nor the MPM pencil singular 

values exhibit any large drops. Then, N should be determined 

by appropriate selection of ξ. 

 
Fig. 9. Distribution network case study. 

 

To analyze the impact of ξ, Fig. 12 shows the resulting 

RMS errors for different values of ξ. This figure shows that 

the RMS error by MPM fitting converges to a certain limit as ξ 

tends to zero, whereas the RMS error obtained with LM varies 

almost linearly with ξ. This fact suggests that LM technique 

has better control of fitting accuracy.  

 

 
Fig. 10. Magnitude of the elements of the admittance matrix of the distribution 

network of Fig. 9. 
 

 
Fig. 11. Singular values of the MPM and LM pencils of the distribution 

network case study. 

 

 
Fig. 12. Illustration of the impact of ξ over fitting accuracy for MPM and LM 

techniques for the distribution network case study. 

 

From this example, it is also observed that reducing the 

tolerance value ξ (to improve fitting accuracy) in MPM and 

LM techniques, can considerably increase the model order N, 

which is desired to be as low as possible for better 

computational performance in transient simulations. A plot of 

the order N versus the relative error for the studied fitting 

techniques is presented in Fig. 13. This figure reveals that for 

any given order, the VF technique is the most accurate. 

 

 
Fig. 13. Relative error relationship respect to fitting order for the distribution 

system FDNE case study. 



E.  Transmission cable system 

As final case study, the transmission cable system 

presented in [17], is used for the computation of an equivalent 

transient model. The admittance matrix elements measured 

from sending and receiving terminals are plotted in Fig. 14. 

The number of frequency points measured is 2500. The fitting 

results using an order of N = 50 are summarized in Table IV. 

As in most previous examples, VF obtains the lowest error. 

This table also reveals a disadvantage of MPM and LM 

techniques, i.e., the CPU time required can be considerably 

long when the number of frequency samples is substantial. 
 

 
Fig. 14. Elements of the admittance matrix of the transmission cable studied. 

 

TABLE IV.  
COMPARISON OF FITTING TECHNIQUES FOR CABLE SYSTEM CASE STUDY. 

Technique RMS  relative   CPU 

VF 1.40×10−5 6.6×10−2 % 6.5 s 

MPM 1.71×10−3 2.53 % 473 s 

LM 2.08 ×10−3 1.27 % 1847 s 

IV.  DISCUSSION 

The main observation of the examples presented is that for 

any given fitting order, VF achieves the most accurate fittings 

among the studied techniques. 

It has also been verified that the accuracy of MPM and LM 

techniques can be as good as VF but at the cost of increasing 

the model order, which is undesirable for model efficiency in 

time-domain simulations. From this observation, one more 

important fact can be established, i.e., the fitted models 

obtained using MPM and LM are not minimal representations, 

since there always exists another system representation with 

same accuracy level but lower order, as given by VF (this does 

not mean that VF gives minimal representations either).  

A unique advantage of MPM and LM is that they provide 

the order identification as dictated by the singular values of 

corresponding pencils; however, the drop in the singular 

values is not always evident. Then, fitting accuracy must be 

tuned by appropriate selection of the tolerance value ξ.  

For low-order models, such as the presented synthetic 

function and transformer examples, LM singular values show 

clear drops, which allows an easy order identification, while 

for highly resonant admittance functions such as the FDNEs 

and the transmission cable system presented, both MPM and 

LM singular values draw smooth curves. 

Finally, a poor performance in terms of CPU time has been 

observed for MPM and LM techniques when the function to 

fit has substantial number of points, such as the studied 

transmission cable system. 

V.  CONCLUSIONS 

This paper presents a comparison of VF, MPM, and LM 

fitting techniques through the fitting of different frequency-

domain functions. The studied test cases demonstrate that VF 

achieves the best tradeoff between fitting accuracy and model 

order. Nonetheless, MPM and LM techniques are useful for 

model order identification, especially for low-order models. 

Then, for those cases, the model order obtained via MPM or 

LM can be used as an input to the VF technique. 
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