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Abstract--Real-time EMT simulation relies on multi-cores
computers to accelerate the simulation through
parallelization. It also increases simulation accuracy
allowing the use of a lower time step. First, the network
has to be split into several tasks using a separation
technique. Then, each task has to be allocated/mapped to a
processor. This paper focuses on this problem which can
be formulated as a TAP (Task Allocation Problem). To
find an optimal task allocation operational research
techniques can be used. Heuristics such as graph
partitioning allow to get fast solutions. Their performances
are asserted with very large networks and real-time
simulator architectures, both from TSO grids. Exact
resolution methods are used to verify solution quality. The
validation of each task mapping strategy is done through a
real EMT case study which involves real-time Hardware-
in-the-Loop simulation.

Keywords:  Real-time simulation, Parallel simulation
Optimization, Task Allocation Problem, graph partitioning,
Hardware-in-the-Loop.

I. INTRODUCTION

he need of real-time EMT simulation has increased with

the development of electronics devices in the transmission

network related to the high penetration of wind power
farms and HVDC links. Since 2011, the French TSO, RTE,
has created his own real-time laboratory SMARTE to study
interaction between this new power equipment. Hard-in-the-
Loop simulation, which connects a real-time simulator to a
replica of the on-site control system, allows to perform
accurate EMT studies close to on-field phenomena. Otherwise,
the utility of replica is various from maintenance activities to
real-time event studies which have occurred on the network
[1]. In order to improve accuracy, detailed network are used
for EMT simulation [2] although interesting network reduction
methods based on frequency equivalent [3] [4] help in certain
cases to accelerate the simulation.

To cope with large networks, real-time EMT tools take
advantage of the parallelization offered by the multi-cores
supercomputers used as real-time simulators [2]. Indeed, it
accelerates the simulation and respects the time constraint to
be able to interact with hardware device. The parallelization is
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automatically performed in two steps. First, the network is
separated into several tasks. Then, each network task is
mapped to the simulator’s processors before starting the
parallel simulation. The stability of a real-time simulation
depends strongly on the result of this task mapping.

Previous works [2] [5] have demonstrated the efficiency of
graph partitioning algorithms [6] on some Software-in-the-
Loop (SIL) examples. However, no full study has been done
to assert the performance on industrial cases and the
optimality of found solutions. This paper proposes to fill this
gap. After reminding the problem formulation as a Task
Allocation Problem (TAP) [7] and presenting heuristic
techniques, very large realistic network instances are tested
with real architectures to verify algorithms performance. Then,
a deep analysis of the whole graph partitioning algorithm
allows to understand its advantages and limits. Additionally,
exact solutions from a linear programming formulation are
first used in this paper to assert the quality of solutions of the
graph partitioning algorithms. Lastly, in complement to
previous SIL examples, a Hardware-in-the-Loop (HIL) set-up
of three-terminal HVDC grid with DC Circuit Breakers
validates the efficiency of the task allocation algorithm and
discusses the mapping strategy.

All algorithm implementations and testing have been done
on the real-time EMT tools HYPERSIM [8] which proposes a
fully —automatic network parallelization.

Il. TASK ALLOCATION PROBLEM

A. Task Separation

The first step of parallelization is to split the network into
several tasks which will be run in parallel on several cores.
Two main separation techniques are used for the split.

The first one relies on decoupling element as power lines.
If the propagation delay is greater than the simulation time
step, tasks can be separated through the lines as the delay
allows to transmit computed value for the next time step.
Based on this principle, for real-time, a topology analysis is
automatically performed to split the network into sub-
networks according to power lines. Otherwise, off line tools
perform parallelization directly on the nodal resolution [9]
[10].

When the decoupling is not possible through power lines,
others techniques have to be used. Hybrid method resolutions
based on Nodal formulation and State-Space allow to separate
the network into State-space equivalents that can be solved in
parallel [11]. Also the Multi-Area Thévenin Equivalents
(MATE) method [12] or Compensation Method (nonlinear
networks) [13] can split the network without using the natural
delay of power lines and can be fully automated [14].
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The second step of parallelization consists in assigning
tasks to processors (Task Mapping Problem).

B. Task Mapping Problem formulation

The Task Allocation Problem, TAP, is a well-known
problem in the literature of combinatorial optimization [7]
[15]. It consists of mapping a network of elements called
“tasks” to a set of connected containers called here of
“processors”. A task is said to be allocated to a processor
when it is mapped uniquely to it.

Each task has a cost of allocation/an estimated execution
time and each processor has a budget to it, the time-step
constraint for real-time simulation. A TAP solution is said to
be valid if every task is allocated and there is no budget
overflow, i.e., the time-step constraint is respected. An optimal
solution is a valid one that minimizes the communications cost
— the sum of the weighted connections between tasks allocated
on different processors.

Given the NP-complete complexity [16] of the problem, the
use of heuristic-base approaches becomes necessary to find
good solutions to the problem using a small amount of time.
Two heuristics [5] have been implemented.

C. Heuristic algorithms

1) A*

Based on the A* algorithm, the first method [5] follows a
tree-shaped scheme. Each separation is composed by ordered
pairs (T;, P;) indicating that the task T; is allocated to the
processor P;. This tree has as many levels as tasks and as many
leaves as combinations of tasks and processors. At each level a
new task is allocated to a processor and it halts when all the
tasks are allocated. By choosing the next pair, the algorithm
tries to minimize the communication cost and to balance
processor loads.

2) Graph Partitioning

The second method is based on graph partitioning
techniques [6]. These heuristics are commonly used to
automatically parallelize EMT simulations [5] [14] [16]. The
goal of the algorithm is to map a “Source Graph”, SG, to a
“Target Graph”, TG. It consists of partitioning the former and
then mapping the resulting subsets of source vertices to a
target vertex. Source edges, in the other hand, are mapped to a
subset of edges in the TG. This subset is the smaller path
between two target vertices previously adjacent in the SG.
Minimizing the communication cost, the algorithm
agglomerates adjacent source vertices with heavy connecting
edges in target vertices close to each other, if not in the same.
Furthermore, it keeps the balance of weights of the target
vertices according to a constraint & [17], the Load Imbalance
Ratio, LIR, that will be discussed later.

One can see the network of tasks as the SG and the
“architecture”, the ensemble of processors and its connections,
as the TG. The TAP is naturally formulated to this case.

For the rest of this paper, the second method will be further
developed. The SCOTCH library [6] [17] is used to process
the graph partitioning. Its results will be compared with those
of the first method.

D. Performance Tests on large instances

To figure out the performance of both algorithms, setting
an upper bound, they have to be tested on very large and
realistic networks. Large instances come mainly from national
transmission networks. For instance in Figure 1, the whole
French transmission network (400kV + 225kV)
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Figure 1 French 400 kV (on the left) and 225 kV grid

For architecture instances, as the real-time simulation runs
on a single supercomputer (no cluster of pcs), the TG is often
complete (all inter-processor communication links exist).
However, the TG is not necessary homogenous (same
communication cost between each processor). The SGI
UV100 architecture [18] (96 processors in total) used as a
real-time simulator on RTE real-time laboratory contains 4
chassis alternatively with 1 or 2 blades each. A blade contains
2 sockets/CPUs with 8 cores/processors each. The inter-
chassis communication cost is different from the inter-blade
one which is different from the inter-socket communication
and from the inter-core one as well. This architecture is clearly
heterogeneous.

Table | below presents the performance results for two very
large networks for both heuristics (A* and Scotch with
balance strategy and 6=0.01) on the UV100 simulator with a
40us time step. To set up the performance the following
criteria are used: NbTask, The number of tasks; NbProc, The
number of processors used; Comm, The total number of
communication, i.e., the number of signal multiplying by the
communication link cost (respectively 10, 16, 43, and 65
respectively for inter-cores, sockets, blades, and chassis
communication links); Var, The processor load variance to
measure the load balancing; Time, The execution time of the
task mapping in seconds (run on host with Intel i7-4910MQ
CPU @ 2.90GHz).

TABLE |
PERFORMANCE RESULTS FOR LARGE NETWORK INSTANCES
Mapping -
Instance | NbTask Strategy NbProc | Comm Var Time
French A* 16 15096 4,93 0.98
400kV 460
grid Scotch 16 6960 0.14 0.06
French A* 79 148974 | 14.35 81.1
400kV
1510
+225 Scotch 79 123216 | 0.34 | 0.17
kV grid

Graph partitioning technique is faster than A* algorithm
and gives better solutions (lower communication cost and
better balancing). In absolute, the execution time is quite fast
(no more than few seconds). Only graph partitioning
techniques and homogeneous architecture are considered later.



I11. GRAPH PARTITIONING FOR AN EFFICIENT TASK MAPPING

A. A fast graph partitioning algorithm

1) Overview of the algorithm

The graph partitioning algorithm is composed of several
routines [6] [17], being the Recursive Bipartitioning, RB, the
main one. This algorithm recursively bipartitions subsets of
both SG and TG. The bipartitioning is executed by a Greedy
Graph Partitioning algorithm, GPA. At each recursive step, a
subset of the SG will be partially mapped to a subset of the
TG. In the next recursive step, the resulting sub-subsets in
both graphs will be mapped accordingly to theirs parents’
mapping.

Others than the RB, more algorithms and post-processing
methods are available, notably the Multi-level method, ML,
which has three distinct phases. It is important for the
performance. It consists of a coarsening phase, in which the
graph is reduced to a smaller equivalent one, a partition phase,
where algorithms like RB and GPA are used, and an
uncoarsening phase, in which the graph grows back to its
original size. Another important method is the Exactifier, EX.
It is a post-processing method that balances the partition trying
to increase the least the communication cost. A combination
of these methods is called a “strategy”.

Two strategies are proposed, “Quality” and “Balance”. The
former prioritizes the minimization of the cost function
described above, resulting most of times in a slower and more
unbalanced partition. The latter prioritizes a balanced partition
at the expense of the quality criteria. Both strategies have the
same core structure: an external ML to reduce huge graphs to
big graphs with 5000 nodes during the first coarsening phase
(step 1) followed by a RB (step 2) that, at each sub domain,
uses an internal ML coarsening phase to reduce the partitions
to tiny graphs with 120 nodes (step 3) to finally do the
bipartition using the GPA (step 4). During the uncoarsening
phases, internal and external (steps 5 and 6, respectively),
some post-processing methods are used. At the end of this
process (step 7), in the case of "Balance"”, the EX method is
used to control the LIR.
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Illustrative scheme of the graph partitioning algorithm and its

2) Algorithm limits

As it was explained, the mapping is executed with no
restrictions on the total allocation cost in each processor. A
verification is made after: if there is at least one processor in
which the time-step is exceeded, an available processor will be
added to the architecture and the partitioning algorithm will be
run again. This process will repeat until either a mapping is
valid or there is no more available processors to be added. An
observable consequence of the validation method is a possible
excessive use of processors. Since a strategy is a particular
heuristic combination, it is possible that it will miss a valid
solution and have to increase the number of processors.

B. Hyper parameter tuning

To overcome previous issues, some modifications were
implemented. A benchmarked network with 802 vertices and
2052 edges (332 buses, 513 lines and 42 transformers) has
been chosen for testing the tuning of hyper parameters. The
time step is set to 40ps.

Figure 3 Benchmarked example of 802 tasks

1) Load Imbalance Ratio (LIR)

A relevant metric to characterize a partition is its LIR, 0 <3
< 1, which measures the total imbalance of charges between
processors after the partition. It is a constraint in the
communication minimization problem. Table Il presents
different results obtained when & varies for both quality and
balance strategies (*-* means no solution has been found).

TABLE Il
VALUES FOR 8 COMPARISON
) Strategy NbProc Comm Var Time
Quality 19 390 8.874 0.036
0.25
Balance - - - -
0.10 Quality 18 390 4.644 0.036
) Balance 18 402 4,004 0.033
0.01 Quality 17 450 0.463 0.023
’ Balance 17 480 0.032 0.018

As & decreases, the number of processors used in both
strategies also decreases, particularly, using smaller & than
0.25 allowed “Balance” to find a solution with 19 processors
or less. The communication, however, increased. This happens
because more communicating tasks are forcedly separated to
different processors. Since there were fewer attempts, the
execution times were reduced and so was the variance since
there were fewer processors and so the tasks were better
concentrated.

2) Specific Strategy

As it was highlighted previously, the creation of a specific
strategy for transmission networks could offer better results
than generic ones. Table Ill shows the results of this new
strategy:




TABLE Il
RESULTS FOR THE SPECIFIC STRATEGY

S NbProc Comm Var Time
0.25 18 396 4.979 0.029
0.10 18 384 3.647 0.036
0.01 17 444 0.040 0.026

Similarly to “Quality”, the new strategy made a partition in
all three cases, but it managed to find solutions with fewer or
the same number of processors and with the communication
cost in the same magnitude. Its variance is comparable with
the one obtained in the previous section.

3) Random Seed

Another possible source of optimization is the random seed
used in the algorithm. Randomness is used mainly during the
GPA, when the first node is chosen to start the bipartition. A
lucky choice may result in a better bipartition. Currently, there
are iterations over the GPA keeping the best partition among
them. lterating over the seed, the algorithm was able to
improve some of the partitions made in the standard case.
Table IV shows the results for 6 = 0.25:

TABLE IV
RANDOM SEED RESULTS
Strategy | NbProc Nblter Comm Var Time
Quality 18 26 372 6.435 0.257
Balance 19 32 396 12.13 0.202
Specific 18 21 396 5.417 0.167

The column Nblter indicates the number of iterations
before finding the first valid partition. In this example, the
random seed was iterated 10 times before restart all over
adding a new processor. Since the starting point is 16
processors, Nblter = 26 as in the first line means that using the
“Quality” strategy, the solution was found after the sixth
random seed iteration with 18 processors. It is better than the
previous except time for the additional work done. Similarly
for “Balance”, a solution was found with 19 processors, which
is a huge improvement from the previous case where no valid
partition was found. Finally for the new strategy, the partition
found is exactly the same than before.

Vary the random seed showed to be a relevant

optimization, but its natural random character prevents this
method to guarantee a valid solution.

C. Validation toward exact solutions

1) Modeling

To model the problem, two new Boolean variables must be
introduced. The first, the allocation variable x;;is 1 if the task
i is allocated to processor j and O otherwise. The second is
the dilatation variable p/{ which values 1 if, for a pair of
communicating tasks, task i is allocated to processor j and
task k is allocated to processor [, and 0 otherwise. The linear
formulation of the problem is:
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Where T is the total tasks evaluation time and T is the
average time per processor. The constant p is the time
constraint, t; is the evaluation time of task i and wy;, is the
weight of the communication between tasks i and k.The main
expression has two distinct parts. The first, the sum over the
processors, is the LIR. The second one, the triple sum, is the
Communication Cost, CC. The subsequent equations are,
respectively, the allocation’s uniqueness, the time-Step
constraint and the relation of both Boolean variables.

A benchmarked model of 35 buses is used to compare the
obtained solutions with those of LP. It has 103 tasks to be
partitioned among 3 processors, resulting in about 104
possible combinations.

Figure 4 35 buses model

2) Pareto Front

For the problem studied, the two criteria analyzed are the
LIR and the CC. The Pareto front allows a comparison of both
criteria magnitudes and serves as a lower bound for the
solutions of the problem, allowing to formalize what a “good-
enough” solution is. To find it, the method used is to vary the
proportional weight either magnitude has.

To resolve the linear problem, the chosen parallel solver
was FICO™ Xpress solver [19] and it has been run on a 190
cores cluster. Figure 5 below shows the comparison between
the Pareto front and heuristic results. The blue dots forming
the line are the exact solutions of the LP. The values in
parenthesis are the respective weights of each side of the
expression. The marker’s sizes represent the chosen & values
(0.01, 0.05, 0.1 and 0.25).
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Figure 5 Pareto front for the 35 buses model

When compared with the Pareto optimal solutions, one can
notice that heuristic solutions tend to prioritize the CC, that is,
it deteriorates, even if not much, the LIR to be able have the
same CC of an exact solution. Besides, the weights in
parenthesis mean a strong preference for the LIR in the exact
solutions (more reasonable proportions than those at the
bottom-right blue dots result in that same solution). Solutions



are scattered through the left side figure.

Finally, to measure the distance between the Pareto front
and the obtained solutions, the metric used was the smallest
Euclidean distance between a heuristic solution v and an

exact solution p € PF, the Pareto front, that is:

;rgpr}(llp =vlly)

®)

Table V shows the measured distance. All distances are in
order of 10, which one can assume to be close enough.

TABLE V
DISTANCE TO THE PARETO FRONT FOR THE 35 BUSES MODEL
) Balance Specific Quality
0.25 3.30 6.37 3.30
0.10 0.95 0.95 2.01
0.05 6.37 6.37 6.37
0.01 120000 120000 3.30

- The rest is dedicated to the 10s for control replicas
(DC breaker and VSC control) and FPFGA MMC valve
models.

Three scotch strategies, among them the specific one from
I. B. 2) , have been tested with an imbalance ratio
8=0.01. The time step has been set to 30us. The last column
indicates the steady state execution time of the most loaded
processor. The simulations were performed on an OP5031
target with 32 cores (2 CPU Intel Xeon E5-2697A v4 @
2.60GHz - 16 cores). Only specific and balance strategies
succeed to respect the real-time constraint. It has been
observed that favoring CPU load balancing instead of task
communication deals better with erroneous task time
estimates. For the simulation, the task mapping from the
balance strategy is kept for the DCCB validation.

IVV. HARDWARE-IN-THE-LOOP TEST CASE

A. Test case overview

To illustrate the impact of different mapping strategies, an
HIL simulation test case is presented in this paper. This
system was developed for the Best Path DEMO#2 [20] and it
is detailed in [21]. It consists in a three-terminal HVDC grid
including DC circuit breakers (DCCBs), as shown in Figure 6.
Two MMCs (Station 2 and 3) are controlled by a generic
controller in HYPERSIM. The last converter (Station 1) is
controlled through simulator 10s, by industrial controllers
provided by ABB. Similarly, the DCCB models are also
controlled by ABB control hardware.

Station 1, ABB Statio

1 2, Hypersim CEP
1 ‘
st = = ET)
= = g abio 23
w1
u 2

Station 3, Hypersim CAP

40km
Figure 6 Overview of the three terminals DC grid

The objective of this HIL set-up (Figure 7) is to assess the
efficiency of DC grid protection algorithm as well as the
action DCCB control into a DC grid, for different DC faults.
Detailed results of the DCCB control can also be found in
[21].

Station Control and Monitoring

E_ 7

Simulator Interface

L R - - —
Pole Control and Protection ~ Multiterminal Control and Protection
Figure 7 Overview of the HIL set-up, replica provided by ABB

B. Task Mapping results
The DC grid can be divided into 85 tasks. The main tasks
can be listed by load importance as follow:
- 3 converters stations with DC breaker,
- Control system of 2 converters,
- 6 DC lines (2 sections for each DC line),

TABLE VI
TASK MAPPING RESULT FOR EACH SCOTCH STRATEGY
. Max RT
Strategy NbProc Comm Var Time ExecTime
Quality 6 375 18.47 0.0028 315
Balance 6 524 0.09 0.0029 24.0
Specific 6 522 0.27 0.0113 24.0

C. Simulation Results

The scenario consists of a permanent negative pole-to-
ground fault on the shorter DC cable. The fault event occurs at
t=200ms in the following figures. Figure 8 shows that, during
the transients, the 30us time step constraint is respected in the
three most loaded processors (each task corresponds one
converter station, identified by one color). As results, the
balance strategy has better performances than quality as

observed in steady state.
30
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‘ L |/
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0 0.2 0.4 0.6 0.8 1
Time (s)

Figure 8  Execution time for converters stations during transients,

(top: balance strategy — bottom: quality strategy)

The last graph shows that the inter-task communications is
negligible. This confirms that, for this case, balancing the
processor loads is more important than minimizing the inter-
processor communication, which justifies the choice of
balanced strategy. This conclusion may not be applicable to
heterogeneous architectures.
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Figure 9 Inter-processor communication time for each converter station

Thanks to the DC grid protection implemented in the
control cubicles, the faulty cable is isolated from the rest of
the DC grid with DCCBs. After some transients due to the
fault and DCCB operation, the DC voltage of each station
returns to its operational point +/- 320kV as shown in Figure

10.
-100 T
== Station 1
==Station 2
’5‘_200 N~ Station 3
=< § A\
5 N
+=-300 ~ o _
o s S
>
-400 \J
0.195 0.2 0.205 0.21 0.215 0.22 0.225 0.23
Time (s)

Figure 10 Negative pole voltage at each converter station terminal subjected
to clearance of permanent DC cable fault

V. CONCLUSIONS

This paper has highlighted deeply that graph partitioning
algorithm is one of the most efficient heuristic to proceed an
optimal solution of the task mapping problem for real-time
EMT simulations. First, tests within an industrial tool over
realistic networks have shown a good tradeoff in terms of
execution time and quality of the solution. Then, the tuning of
hyper parameters allows the engineer to increase the quality of
solutions while respecting the time step constraint.
Additionally, comparisons with exact methods have
strengthened the confidence of finding almost-optimal
solutions. Lastly, an industrial real-time Hardware-in-the-
Loop simulation has validated the use of this technique where
balance strategy should be preferred over the quality one to
best deal with erroneous task time estimates.
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