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Abstract—This paper presents a methodology based on the
Discrete-Time Fourier Series (DTFS) to calculate transient over-
voltages in power systems. The proposed algorithm determines
the time window with sufficient width to allow the time constants
of the transients to decay to a small value. This method is simpler
than the traditional numerical Laplace transform (NLT) and
does not require parameter adjustment to obtain very accurate
results. The test case is based on a study to calculate Transient
Over-Voltage (TOV) for 138 kV transmission lines in British
Columbia, Canada. To assess the accuracy of the results, the
DTFS solution is compared with the traditional NLT solution with
optimized parameters and with the EMTP frequency dependent
time domain models fdLINE and ULM.

Keywords—Discrete-Time Fourier Series, Numerical Laplace
Transform, electromagnetic transient simulation.

I. INTRODUCTION

TRANSIENT Over-Voltages (TOV) can be a safety haz-
ard for live-line/bare-hand work in the right-of-way of

overhead transmission lines. BC Hydro initiated studies to
confirm that historically used limits of approach distances,
also known as the Minimum Approach Distance (MAD), are
still adequate for their system. In order to calculate MAD
for a given transmission line according to the IEEE Std.
516TM [1], the maximum switching surge overvoltage needs
to be calculated. The main purpose of this study is to calculate
the TOVs generated due to line energization and fault incidents
using frequency-domain solutions.

Frequency-domain methods solve electromagnetic transients
directly in the frequency domain and transfer the solution
from frequency to time using numerical Fourier or Laplace
transforms. These methods do not rely on curve-fitting ap-
proximations as opposed to frequency-dependent transmission
line models in the EMTP [2], such as the fdLINE model [3]
and the ULM [4]. As a result, frequency-domain solutions
constitute valuable tools to verify the solutions for time-
domain frequency-dependent transmission lines [5]–[11].

The Numerical Laplace Transform (NLT) has been tradi-
tionally used for frequency-domain solutions of power system
transients [12]–[15]. However, the NLT requires an experi-
enced user to specify the value of the damping factor to
make sure the transients of the signal are contained inside the
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time window of the study and filtering windows to eliminate
aliasing and Gibbs oscillations. When bringing the signal back
to time, the use of a boosting factor to compensate for the
damping factor often results in amplifying the Gibbs oscilla-
tions [15]. The use of the well-known windowing functions
to reduce these errors may not be totally effective since it
corrupts the few initial samples of the simulation [16].

A simple methodology based on the Discrete-Time Fourier
Series (DTFS) was introduced in [16]. Guidelines to use this
methodology were also presented in [16]. The main concept is
to allow all transients of interest to die out inside the chosen
time window width. The frequency window width is selected
according to the maximum frequency desired to be captured in
the transient (as done in the traditional EMTP). By allowing
the transient to naturally die out inside the time window,
there is no need for arbitrary compression and decompression
factors like in the NLT and accuracy and integrity of the
signals is preserved. The size of the time window in the DTFS
is calculated as the sum of the simulation time and largest time
constant of the system. The time constants can be obtained
using eigenvalues analysis.

In terms of solution speeds, the NLT uses odd sampling
[16], while the DTFS can use regular sampling. This results
in twice the number of operations for the NLT for the same
number of sampling points. In the simulations in this paper,
the results with the normally used time window for the NLT
were less accurate than those with the DTFS and we had to
increase this time window for comparable results, thus giving
a further solution time disadvantage for the NLT as compared
with the DTFS.

The DTFS gave very accurate results for the AC interference
test of asymmetrical transmission lines with nearby objects
[17], and for the switching transient of double-circuit lines
[18]. This paper presents simplified guidelines with respect
to [16] for practical engineering applications. We also present
a larger test case than those of [18]. This test case involves
different line configurations and conductor types, bundled con-
ductors, shield wires, various line lengths and soil resistivity
values, and asymmetrical short-circuit conditions.

II. POWER SYSTEM TRANSIENT SOLUTION USING THE
DISCRETE-TIME FOURIER SERIES (DTFS)

Frequency-domain solutions use nodal analysis to solve the
system one frequency at a time,

V(ω) = Y(ω)
−1

I(ω) (1)

where V is the calculated node voltages, Y is the matrix of
admittances, and I is the injected current sources.
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Fig. 1. Time window selection for the DTFS.

To solve (1) in the frequency domain, we use the DTFS to
convert the injected current sources from time to frequency,

I[k] =
1

Ns

Ns−1∑
n=0

i[n]e−jk
2π
Ns
n = DTFS{i[n]} (2)

The number of sample points is Ns = Tcfc, where Tc is the
width of the time window and fc is the width of the frequency
window. After solving (1), we use the Inverse Discrete-Time
Fourier Series (IDTFS) to convert the node voltages from
frequency to time to form the transient response,

v[n] =

dNs−1
2 e∑

k=b−Ns−1
2 c

V [k]ejk
2π
Ns
n = IDTFS{V [k]} (3)

where de and bc are the ceiling and floor functions, respec-
tively. For these conversions, the DTFS requires to define a
time window Tc and a frequency window fc.

A. Time-window Width (Tc)

Figure 1 shows the time window selection for an example
discrete-time current source applied to a system for a simula-
tion time tsim with N1 samples. The rest of sequence for the
source (up to Ns − 1) is completed by adding sample points
with zero value (“zero completion”). This portion of the time
window corresponds to settling time tset where the response
of the system to the last sample of the source decays to a
small value.

The width of Tc must be sufficient to include the observation
time of the simulation tsim plus the time required for the
transients to die out after the source is applied tset [16],

Tc = tsim + tset (4)

Since we stop the source at tsim, a snapshot of tsim will be
the final time-domain solution. The rest of the samples in the
time window are auxiliary points which should be discarded.
The simulation time tsim is specified by the user, while the
settling time tset can be chosen as a factor of the slowest mode
of the system τm,

tset = ksetτm (5)

In [16] kset was recommended as 7 so that all transient
components of the time response to decay to less than 0.1% of
their initial value (e−7 ≈ 10−3). However, for power systems’
applications kset = 3 has been found to be sufficient to achieve
accurate results.

The time constants of a circuit with lumped-elements can
be determined by extracting the poles of the corresponding
transfer function. In general, this can be achieved using many
available routines such as linmod in MATLAB/Simulink.

Assume that the poles for a stable system of order n are,

pi = αi ± jβi , i = 1, 2, . . . , n (6)

The largest time constant of the system τm is

τm =
1

min(−αi)
(7)

Figure 1 shows that for the first and last samples, the average
of the values before applying the source and after applying the
source can be used to improve the accuracy of the DTFS at
discontinuities [19].

B. Frequency-window Width (fc)

The width of the frequency window fc is determined
by the maximum frequency of the transient. The maximum
frequency that can be captured in the solution is fNy (Nyquist
frequency),

fc = 2fNy =
1

∆t
(8)

For a system described by its poles as in (6), the highest
harmonic in the transient is associated with the imaginary part
of the poles β,

fNy =
max (|βi|)

2π
(9)

For power systems applications, we have observed that the
resolution associated with the real part of the poles α is either
below the value given in (9) or corresponds to transients that
decay very fast. An exception to this is for systems of order
one (e.g., R-L circuit) where fNy = max(−αi) will provide
the required resolution for the decaying exponential. The res-
olution given by (9) is also adequate for the common sources
in power systems (e.g., sinusoidal, decaying exponential, and
step function). If higher resolutions are desired, fNy can be
augmented by a waveform resolution factor discussed in [16].

C. Other Simulation Parameters

Once Tc and fc have been chosen, the number of sample
points Ns is determined by

Ns = Tcfc (10)

For non-integer values, Ns in (10) is rounded up. The time
step size and the frequency step size are given by

∆t =
Tc
Ns

, ∆f =
fc
Ns

(11)

The DTFS can work equally well for regular sampling (ω =
2πn∆f ) and for odd sampling (ω = π (2n+ 1) ∆f ) for n =
0, 1, 2, . . . , Ns−1. The use of regular sampling is preferred to
increase the computational efficiency by a factor of two using
the complex conjugate property [16].

III. APPLICATION OF THE DTFS TO SIMULATE
FREQUENCY-DEPENDENT TRANSMISSION LINES

For an N -phase frequency-dependent transmission line with
a given geometry and ground return parameters, the admittance
matrix in (1) can be calculated using a coupled exact-π circuit.
To form the exact-π circuit, the per-unit-length line series
impedance matrix Zph and shunt admittance matrix Yph are
calculated from the Line Constants routine in EMTP packages
such as EMTP-RV and PSCAD.



To calculate the elements of π-circuits, Zph and Yph are
transferred from coupled phase quantities to decoupled modal
quantities using modal transformation matrices,

Zm = T−1V ZphTI , Ym = T−1I YphTV (12)

In (12), TV diagonalizes ZphYph and TI diagonalizes
YphZph. To compensate for the distributed nature of the line
parameters, the modal impedances and admittances in (12) are
corrected for the line length ` and the frequency by applying
the factors kz and ky of (14):

Z ′m = kzZm` , Y ′m = kyYm` (13)

kz =
sinh (γm`)

γm`
, ky =

tanh
(
γm`
2

)
γm`
2

(14)

where γm is the modal constant of propagation,

γm =
√
ZmYm (15)

The exact-π circuit in the phase domain can now be
calculated by transferring Z′m and Y′m from mode to phase,

Z′ph = TV Z
′
mT−1I , Y′ph = TIY

′
mT−1V (16)

The largest time constant τm and the maximum frequency
fNy for frequency-dependent transmission lines can be ap-
proximated as follows:

1) We calculate Zph and Yph at low frequencies (e.g.,
60 Hz) from the Line Constants routine in the EMTP.
The shunt conductance Gins can be neglected due to its
minor impact on τm and fNy .

2) We assume that the line is transposed, and we can
use the symmetrical components values to calculate the
zero/positive/negative sequence series impedances and
shunt admittances,

Zo = Zs + (N − 1)Zm , Z+ = Z− = Zs − Zm (17)

Y o = Ys + (N − 1)Ym , Y + = Y − = Ys − Ym
In (17), subscript s refers to the average of the diagonal
elements whereas subscript m is the average of the off-
diagonal elements of the Zph and Yph. The positive
and negative sequence networks have the same time
constants.

3) We use (13) to calculate the zero/positive sequence
parameters of the equivalent π-circuits. Since the cor-
rection factors kz and ky in (13) are close to one at low
frequencies, we can further simplify the procedures by
skipping (14) and (15).

4) We connect the zero/positive sequence π-circuits to the
rest of the system components and assume receiving-end
terminals are all shorted.

5) We use (7) and (9) to calculate τm and fNy for the
equivalent sequence networks.

The validity of approximations such as taking Zph and Yph

at low frequency, transposed lines, and shorted terminals was
verified in [16]. The validity of assuming kz and ky as one
and ignoring Gins will be discussed in IV.

The parameters calculated with the described procedure are
sufficient for the margins required in determining the largest
time constant and the maximum frequency.
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Fig. 2. Single-line diagram of the test case.
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Fig. 3. Geometries and configurations of conductors for the lines in Fig. 2.

IV. TEST CASE

The test case includes nine transmission lines of different
length as shown in Fig. 2. The configurations, geometries and
values of soil resistivity of the lines are indicated in Fig. 3.

The conductor arrangements are based on the common
configurations for 138 kV lines used in BC Hydro system.
The double-circuit vertical line L6 is split into 5 segments. The
lines L1, L2, and L7 include bundled conductors and shield
wires. In British Columbia, transmission lines are not shielded,
except for a short section outside the substations. The main



TABLE I
DIAMETER, DC RESISTANCE, AND THICKNESS RATIO FOR CONDUCTORS

IN FIG. 3.
Lines d (cm) RDC (Ω/km) Ratio

L1 , L2 , L7 (a-b-c) 2.8143 0.0702 0.32

L1 , L2 , L7 (v-w) 0.9144 4.1592 0.50

L3 1.8313 0.1660 0.32

L4 , L8 1.6307 0.2090 0.32

L5 2.0117 0.1336 0.50

L6 2.9591 0.0590 0.375

L9 2.1780 0.1170 0.32

TABLE II
THE LARGEST TIME CONSTANTS τm AND THE MAXIMUM FREQUENCIES

fNy OF THE TEST CASE IN FIG. 2 FOR DIFFERENT CONDITIONS.

kz , ky Gins (S/km) τ0m (s) τ+m (s) f0Ny (kHz) f+Ny (kHz)

6= 1 2× 10−9 0.05631 0.06619 27.4333 39.4742

= 1 2× 10−9 0.05642 0.06620 27.4322 39.4734

6= 1 0 0.05684 0.06659 27.4333 39.4742

= 1 0 0.05682 0.06658 27.4322 39.4734

reasons for this consideration are the low isokeraunic levels
and the natural shielding provided by the trees [20].

The line conductors are untransposed and sagging is ne-
glected. The diameter, DC resistance, and thickness ratio of
the conductors of Fig. 3 are given in Table I. The value of the
insulator losses Gins is taken as 2× 10−9 S/km [11].

The lines are connected to a balanced three-phase voltage
source and the peak value of phase-a is applied at t = 0. The
equivalent source impedance corresponds to the impedance of
the generator plus its step-up transformer. Circuit breakers B1,
B2 are normally open.

Terminal conditions are considered as a line-to-ground fault
in various buses (resistance of 10−6Ω for shorted and 106Ω for
open). A line-to-ground fault happens on phase-a of L6d. This
condition produced the maximum TOV for this simulation.

Due to space limitation, the outputs are given only for
the receiving-end phases that show the largest discrepancies.
Scope va shows the maximum TOV generated in phase-
a, where vc indicates higher harmonics in phase-c of the
associated buses.

The π-circuit parameters for the lines of Fig. 3 were calcu-
lated at 60 Hz. From this circuit, for the zero sequence and
positive sequence parameters, the network poles are extracted
using eigenvalue analysis. The poles are then used to calculate
τm and fNy , as given in Table II. This table also shows the
negligible impact of assuming kz , ky = 1 and Gins = 0 on
τm and fNy .

V. SIMULATION CONDITIONS

The DTFS and the NLT algorithms were programmed in
MATLAB, the fdLINE model was run using EMTP-RV v3.5,
and the ULM was run using PSCAD v4.5.2. The simulation
settings for the different solutions are presented next.

A. DTFS Simulation Setup

Table III shows the procedures to calculate the time-
frequency parameters for the DTFS based on the guidelines
of Sections II and III.

TABLE III
TIME-FREQUENCY PARAMETERS FOR THE DTFS.

User Base Derived

tsim (s) τm (s) fNy (Hz) Tc (s) fc (Hz) Ns ∆f (Hz) ∆t (µs)

0.1 0.067 39474 0.3 78948 23684 3.33 12.67

First, the user specifies the desired simulation time tsim.
Then the slowest time constant τm and the maximum fre-
quency fNy are calculated using (7) and (9), respectively
for the equivalent zero/positive sequence networks of Fig. 2.
Next, the base parameters Tc and fc are determined from the
knowledge of user parameters. As discussed in Section II, the
time window Tc is calculated as tsim + 3τm using (4) and the
frequency window fc is chosen as 2fNy using (8). As also
discussed, the simulation with the DTFS will be valid from 0
to tsim. Finally, other simulation parameters Ns, ∆f , ∆t are
derived from the base parameters using (10) and (11).

For the DTFS regular sampling was used and no windowing
function is needed. To avoid division by zero when taking the
inverse of Y in (1), the DC frequency was taken as 10−4 Hz.

B. NLT Simulation Setup

The NLT was implemented using the conventional instruc-
tions as given in [15]. The setup is as follows.

Damping factors: Wilcox criterion σ1 [12], Wedepohl cri-
terion σ2 [13], Error criterion σ3 (ε = 10−4) [14].

Sampling schemes: Regular sampling and odd sampling.
Windowing functions: Lanczos. Similar to [16], Hanning and

Tukey windows gave similar results as Lanczos.
Time window: Three settings were considered for Tc: a)

1.1tsim = 0.11 s, b) tsim + 3τm = 0.3 s, c) 0.9 s.
The width Tc = 0.11 s corresponds to the most recom-

mended setting for the NLT [8] [15]. For this setup, the Tc
is chosen based on the size of the simulation time tsim and
an extra 10% extension to eliminate the Gibbs at signal’s tail.
Tc = 0.3 s is the recommended setting for the DTFS in this
paper and is used for comparison. Tc = 0.9 s is the minimum
required size of the time window for the NLT which gave
correct results for the test case of this paper.

Frequency window: for comparison purposes the same fc
and ∆t was chosen for the NLT as for the DTFS and the
EMTP line models. The rest of the parameters Ns and ∆f
were calculated using (10) and (11).

C. fdLINE and ULM Simulation Setup

For comparison purposes, the same tsim and ∆t were used
for the EMTP line models as for the DTFS method.

For the curve-fitting processes of fdLINE and ULM, the
maximum number of poles was set to 35, and the frequency
range was set from 10−2 to 107 Hz with 10 points per decade.
For fdLINE, the transformation matrices were calculated using
the automatic option.

VI. SIMULATION RESULTS

In this section, the solution obtained with the proposed
DTFS is compared with NLT, fdLINE, and ULM.



A. Comparison of DTFS and NLT

Figures 4 to 6 show the simulation results for the open
voltage va for the test case of Fig. 2 comparing the DTFS
and the NLT. In Figs. 4 to 6, the top figure corresponds to the
NLT with regular sampling and the bottom figure corresponds
to the NLT with odd sampling. In all figures, the DTFS is
implemented using Tc = tsim+3τm = 0.3 s, regular sampling,
and as discussed previously, no windowing function is needed.

Figure 4 compares the results for the NLT with the recom-
mended setting Tc = 1.1tsim = 0.11s. As shown in this figure,
the results obtained with the NLT with the recommended Tc
did not converge to a correct solution. For both regular and
odd sampling, the NLT deviated from the DTFS starting at
about 0.02 s of simulation. In Fig. 4-top, the NLT gave NaN
error (indeterminate value) in MATLAB for regular sampling
with σ3. Gibbs errors were higher for regular sampling than
odd sampling.

Next, the simulation condition in Fig. 4 for the NLT was
repeated with the Tc recommended for the DTFS, i.e., Tc =
tsim+ 3τm = 0.3 s. Figure 5 compares the solutions obtained
with the DTFS and the NLT for Tc = 0.3 s.

Figure 5 illustrates that increasing the size of Tc from 0.11 s
to 0.3 s reduced the Gibbs oscillations for the NLT. However,
numerical errors still exist, more prominently at the tail of the
waveform. In this simulation σ1 and σ3 for odd sampling gave
better results but still there is not a very good match. Similarly
to the results of Fig. 4, the NLT with σ2 produced stronger
Gibbs oscillations, and the NLT with σ3 and regular sampling
gave NaN errors for which no output was produced.

To obtain correct results using the NLT, the simulation
condition of Fig. 5 was repeated with Tc varied from 0.4 s
for increments of 0.1 s. The minimum width of Tc for the
NLT which gave correct results was 0.9 s. For the width of
Tc from 0.4 s to 0.9 s, the NLT either gave erroneous outputs
as reported in [10] [16], or did not produce any outputs (NaN
errors). In contrast to the NLT, the proposed DTFS gave correct
results for all widths of Tc from 0.3 s on.

Figure 6 repeats the simulation of Fig. 5 using Tc = 0.9 s
for the NLT. As it can be observed, increasing the width of Tc
to 0.9 s can suppress the Gibbs errors using odd sampling with
σ1 and σ2. For this setup, the NLT matched the DTFS, but
at a higher computational cost (about six times, 32′:42′′ vs.
5′:40′′). The NLT with regular sampling and σ2 had a minor
vertical shift compared to the DTFS, and the NLT with σ3 and
σ1 with regular sampling gave NaN errors.

B. Comparison of DTFS and NLT with the EMTP Line Models

Figure 7 compares open voltages va and vc obtained with
the proposed DTFS, NLT, fdLINE, and ULM for a transient
period of 0.05 s for the test case of Fig. 2.

The simulation setup for the DTFS was Tc = 0.3 s, regular
sampling, and no windowing function, whereas for the NLT
was Tc = 0.9 s, odd sampling, σ1, and Lanczos window.

The results of Fig. 7 indicate that the DTFS and the NLT
(after increasing its time window) match very well fdLINE and
ULM. Some minor differences exist between the EMTP line
models and the frequency-domain solutions, more noticeably
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Fig. 8. Snapshot for the initial 10 ms of the simulation of Fig. 7.

in the jagged points of the waveforms. These small differences
can be better observed in the snapshots of Fig. 8 for the
initial 10 ms of the simulations. The reason for such dis-
crepancies may be related to the curve-fitting approximations
in the EMTP time-domain models. Maximum differences of
solutions for the peak of TOV in Fig. 8-left is 0.35% in 253
kV.

VII. CONCLUSION

This paper uses the Time-Window-Based Discrete-Time
Fourier Series (DTFS) to simulate transient over-voltages in
power systems. The basis of this method is to capture the
transient response of the system within the width of the chosen
time window.

Unlike the NLT, the DTFS does not require using damp-
ing/boosting factors or filtering windows, which simplifies and
increases its usability.

Despite the compression provided by the damping factor
for the NLT, following the common practice of taking the
simulation time as the width of the time window was not
sufficient to include all the transient response. In the tests in
this paper, the minimum time window width required by the
NLT was three times larger than the required time window
width the DTFS. This factor and the requirement of odd
sampling made the NLT computationally more expensive than
the DTFS.

The simulation results also showed that the time-domain
line models in the EMTP, fdLINE and ULM, are very accurate.

High accuracy, low computational cost, and simplicity in the
implementation make the proposed DTFS a general-purpose
reliable tool for frequency-domain electromagnetic transient
simulations.
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