
Principle of Duality with Normalized Core Concept
for Modeling Multi-Limb Transformers

Mohammad Shafieipour, Juan Carlos Garcia Alonso, Rohitha P. Jayasinghe, Aniruddha M. Gole

Abstract—The normalized core concept (NCC) was originally
introduced for modeling of multi-limb transformers using the
unified magnetic equivalent circuit. The NCC eliminates the need
for information about the core dimensions, number of turns in
the windings, and the core material. Therefore, incorporating
NCC into a transformer modeling approach can significantly
increase its usability in electromagnetic transient programs, as
such information is usually only available to the transformer
designer/manufacturer. In this paper, we show that the NCC
is applicable to transformer models derived from the principle
of duality, and as examples, three- and five-limb transformers
are discussed. The resulting transformer models preserve the
accuracy and numerical stability of duality-based models, while
requiring only the information available in the nameplate and
core aspect-ratios.

Keywords—Multi-limb transformer modeling, principle of
duality, normalized core concept (NCC), electromagnetic
transient (EMT)-type program.

I. INTRODUCTION

THE principle of duality is established as an efficient
and numerically robust modeling tool that can properly

represent the magnetic behavior of power transformers [1].
It has the advantage of being able to convert the physical
magnetic circuit of an electromagnetic device, into its
dual electric circuit counterpart, making it possible for
electromagnetic transient (EMT)-type programs to adopt the
resulting models, using standard circuit elements. Moreover,
duality models can describe the distribution of magnetic flux
in the core of virtually all transformer types, as they can be
configured to match the topology of an arbitrary transformer.
In other words, duality-based models are “topologically
correct”. The principle of duality was originally proposed for
transformers by Cherry [2] and further developed by Slemon
[3] to model non-linearities. In 2009 [4], a methodology based
on mutually coupled inductors was introduced for representing
terminal leakage measurements in the duality models for
three-winding transformers; and it was later generalized
for transformers with arbitrary number of windings [5].
Therefore, a systematic way of matching duality models with
the leakage inductance measurements is available. However,
determination of the magnetizing branch parameters for
duality models consistent with an arbitrary core structure is
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difficult to achieve from measurement data. This is because
standardized factory tests do not measure all the magnetizing
parameters needed to construct the model. In the case of
single-phase transformers, this difficulty may be overcome by
assuming certain core geometry aspect-ratios and distributing
the parameters accordingly for the given open-circuit test
results [4], [6]. For multi-phase, multi-limb transformers, this
difficulty is particularly highlighted, due to unavailability of
standardized tests, limited transformer terminals, mutually
coupled limbs, etc [4]. Therefore, when it comes to parameter
determination of the magnetizing branches in duality-based
models for multi-limb transformers, previous work [4], [7],
[8], [9] has relied on detailed information about the core
material (B-H curve or permeability µ), core dimension
(cross-sectional area and effective length), and the number of
turns in the windings. As a result, transformer manufacturers
are called upon providing detailed information about their
design, in the hope that accurate dual equivalent circuits
can be determined. However, manufacturers are reluctant
to provide such information. This has limited the use of
multi-limbed duality-based models, despite the fact that in
some EMT studies it is imperative to model the asymmetry
of phase currents in such transformers. For example, it was
shown in [10] (see Chapter 7) that a three-phase bank and
a three-limb converter transformer, with comparable size and
magnetizing current, can produce significantly different fault
currents at different phases of the transformers. Neglecting
such differences may lead to erroneous engineering decisions,
such as transformer protection design, choice of insulating
materials, power quality, etc.

In this paper we show that it is indeed possible to derive
duality-based equivalent circuit models, based on typically
available input parameters, by applying the normalized core
concept (NCC) into duality-based equivalent circuits. The
NCC was first introduced for unified magnetic equivalent
circuit (UMEC) models [11], [12] and adopted by EMT-type
software such as PSCAD/EMTDC [13]. The proposed
technique, preserves the advantages of the duality models (i.e.
accuracy, numerical stability, flexibility), while not requiring
detailed information about the transformer inner design and
material, nor the number of turns in the windings. Instead, it
relies solely on the information available on the nameplate
and on the factory acceptance test (FAT) report, plus the
core aspect-ratios, similar to the approach used by the
classical UMEC model. The proposed technique is applied
to the conventional three- and five-limb (legged) transformer
models. It is shown that the proposed technique accurately
computes the internal parameter values. Excellent agreement
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Fig. 1. Direct application of the principle of duality for the iron core of a
three-limb transformer.

with an established EMT simulation model (UMEC) further
validates the approach. In this paper for the sake of simplicity
and brevity, linear circuit parameters are considered and
non-linearity is left for future publications.

II. LIMITATION OF USING DUALITY-BASED
TRANSFORMER MODELS

Dual models can be derived using two approaches [1]:
1) the classical method that derives electric circuits from
magnetic circuits [2], and 2) direct application of the principle
of duality by placing electric components on the geometry
of the transformer [3]. If the same assumptions are made,
both techniques will produce the exact same results; however,
the second approach is simple to apply, especially in more
complex transformer windings-core configurations. In this
paper we use the second approach.

Fig. 1 is the direct application of the principle of duality to a
three-limb transformer core. From this figure, it is realized that
the magnetizing branches are purely inductive. Incorporation
of core losses is trivial and is achieved via parallel linear
resistances as done in [4], [14]. For the purpose of this paper,
the inductances are set to be linear. Non-linear inductive
branches (saturation, deep saturation and hysteresis) will be
covered in subsequent publications. The following expression
explains the linear behavior of the winding-limb and yoke
inductances Lw, Ly [3]

Lw =
N2 · µ · sw

lw
, Ly =

N2 · µ · sy
ly

(1)

where N is the number of turns of the energized winding and µ
is the permeability of the core. In (1), the cross-sectional areas
of the yoke sy and winding-limb sw, as well as the effective
lengths of the yoke ly and winding-limb lw are according
to Fig. 1. Despite simplicity of (1), in most cases, none of
the needed information to compute (1) is available to system
designers, as the transformer manufacturers do not release such
data. This poses a practical challenge when using duality-based
model of a three-limb transformer.

Similar difficulty arises when attempting to derive
duality-based model for a five-limb transformer as in Fig. 2.
For this case, in addition to (1), a similar expression can be
written for the outer-limb

Lo =
N2 · µ · so

lo
. (2)
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Fig. 2. Direct application of the principle of duality for the iron core of a
five-limb transformer.

Again, information for computing the magnetizing branches
(inductors in Fig. 2) using (1) and (2) is usually not available to
system designers, rendering the use of such model practically
limited.

III. THE PROPOSED METHODOLOGY: NORMALIZED CORE
CONCEPT APPLIED TO THE PRINCIPLE OF DUALITY

A. Preliminaries

In the proposed technique, the NCC is applied to the
principle of duality. Therefore, it requires the same input
parameters as the classical UMEC model [11], [12] for
determining parameters of the magnetizing branches. To
facilitate further discussion, these input parameters are
reviewed below.

1) Magnetizing Current: The magnetizing current Im can
be obtained from

Im =
√
I2
Φ − I2

c (3)

where IΦ is the excitation current and Ic is the core eddy
current loss. These parameters are typically available in the
FAT report. As mentioned earlier, the magnetizing branches
in this paper are assumed to be purely inductive (i.e. Ic = 0).
This reduces (3) to

Im = IΦ (4)

resulting in a simpler subsequent discussion. Generalization
with (3) is straightforward.

2) Core Aspect-Ratios: The core aspect-ratios defined for a
three-limb transformer (Fig. 1) are defined based on the yoke
and winding-limb dimensions [11], [12]

rs =
sy
sw
, rl =

ly
lw
. (5)

As shown in Fig. 2, a five-limb transformer has yokes
and winding-limbs, as well as outer-limbs. Therefore, for
the five-limb case, in addition to (5), the following core
aspect-ratios are also defined [12]

r′s =
sy
so
, r′l =

ly
lo
. (6)

While the ratios in (5) and (6) are not found in the nameplate,
commercial EMT-type software [13] has already used them for
transformer modeling and it is expected that good estimates
of these parameters can be provided by transformer or
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Fig. 3. Duality-derived equivalent circuit of a three-limb transformer during
the excitation current measurement. Typically in the FAT report only one value
of Im = (|Ia|+ |Ib|+ |Ic|)/3 is recorded.
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Fig. 4. Duality-derived equivalent circuit of a five-limb transformer during the
excitation current measurement. Typically in the FAT report only one value
of Im = (|Ia|+ |Ib|+ |Ic|)/3 is recorded.

system engineers. It is worth mentioning that the maximum
error caused by inaccurate core aspect-ratios in NCC can
analytically be derived, a subject that is left for future work.

B. Duality-Derived Equivalent Circuit Parameters
Based on the NCC

During the measurement of the excitation current, regardless
of the total number of windings in a transformer, one winding
is energized and the rest of the windings are left open.
Therefore, the circuit shown in Fig. 3 can properly represent
the three-limb transformer (Fig. 1) during such measurements.
This is despite the fact that it does not posses any electrical
component (inductor) to model the leakage reactances. This is
true as the leakage inductances are only defined or measured
when more than one winding is present in the circuit [4],
[1]; a condition that is not met at the time of excitation
current measurements. Similarly for the five-limb case, the
open-circuit test performed at the time of excitation current
measurement, is not affected by the leakage inductances and
thus the open-circuit test equivalent circuit for the model of
Fig. 2 is as shown in Fig. 4. Therefore, for both three- and
five-limb cases, the magnetizing current (4) can be represented
as follows:

Im =
|Ia|+ |Ib|+ |Ic|

3
(7)

where Ia, Ib, and Ic are the phase currents as shown in Figs.
3 and 4.

In order to define components of the above mentioned
duality-based equivalent circuits based on the NCC, we first
use (1) to write

Ly

Lw
= (

sy
sw

)(
ly
lw

)−1. (8)

Using (8) and (5) we can express ratio of the yoke inductance
Ly over the winding-limb inductance Lw as

Ly

Lw
=
rs
rl

(9)

which can be written as

Yy = Yw ·
rl
rs

(10)

where Yw and Yy are purely-susceptant admittances
corresponding to the winding-limb and yoke, respectively.
They can be obtained from the following expressions

Yw =
1

jωLw
, Yy =

1

jωLy
(11)

where ω = 2πf is the angular frequency.
The relationships shown in (7) to (11) are applicable to

both three- and five-limb cases. Similar expressions for the
outer-limb can also be defined applicable to only five-limb
models. To do that, we use (1) and (2) to write

Ly

Lw
· Lo

Ly
= (

sy
sw

)(
ly
lw

)−1 · (sy
so

)−1(
ly
lo

) (12)

Using (5) and (6), it can be written as
Lo

Lw
=
rs
rl
· r
′
l

r′s
(13)

which in terms of admittance values is

Yo = Yw · (
rl
rs
· r
′
s

r′l
) (14)

with the admittance Yo defined similar to (11) as

Yo =
1

jωLo
. (15)

In the proposed technique, the unknown parameters
are defined based on the impedance associated with the
winding-limb admittance Yw. Therefore it is given a concise
name

α =
1

Yw
= jωLw (16)

to facilitate shorter notations. If we multiply both sides of (7)
by α/Im we get

α =
α(|Ia|+ |Ib|+ |Ic|)

3Im
. (17)

Since α represents a physical impedance value (16) it must be
positive. Therefore, α can be distributed into the magnitude
signs on the right-hand side (RHS) and thus we have

α =
|αIa|+ |αIb|+ |αIc|

3Im
. (18)

In the sequel, procedures for determining the value of α and
subsequently computing all magnetizing branch parameters for
three- and five-limb transformer models are introduced using
the relationships presented above.



1) The Three-Limb Case: From Fig. 3, it is seen that

Iab = Ia − Ib, Ibc = Ib − Ic. (19)

Furthermore, it is well-understood that by having a balanced
voltage source with no zero-sequence component, the sum
of the fluxes and their corresponding magneto-motive forces
(MMFs) generated by the three phases must be equal to zero.
Therefore, by knowing that the principle of duality converts
MMF into current, the sum of phase currents has to be zero

Ia + Ib + Ic = 0. (20)

The relationship in (20) can also be proven using electric
circuit analysis as shown in the Appendix. Using (19) and (20)
the following system of linear algebraic equations is obtained Ia

Ib
Ic

 =

 1 −1 0
0 1 −1
1 1 1

−1

·

 Iab
Ibc
0

 . (21)

Using the nodal analysis in Fig. 3 where p0 is taken as the
reference point and the Kirchhoff’s current law (KCL) is
applied at nodes p1 and p2, the node-voltage equations have
the following matrix form[

Iab
Ibc

]
=

[
2Yw + Yy −Yw
−Yw 2Yw + Yy

]
·
[

Va
−Vc

]
. (22)

If we multiply both sides of (22) by α in (16) and use (10)
we can write[

αIab
αIbc

]
=

[
2 + rl

rs
−1

−1 2 + rl
rs

]
·
[

Va
−Vc

]
. (23)

Since all variables on the RHS of (23) are known, the values
of αIab and αIbc can be obtained. Further, we multiply (21)
by α and re-write it as αIa

αIb
αIc

 =

 1 −1 0
0 1 −1
1 1 1

−1

·

 αIab
αIbc

0

 (24)

which can be solved analytically using the already available
αIab and αIbc. Therefore, values of αIa, αIb, and αIc can
be determined. Now that all elements on the RHS of (18)
are available for the three-limb core, α can be computed.
Subsequently, (16) along with (10) and (11) are used to
evaluate the sought-after Lw and Ly .

The values of Lw and Ly computed as explained above,
will be identical to that of (1), eliminating the need for core
dimensions, permeability of the core material, and the number
of turns in the energized winding. Instead, only the core
aspect-ratios and the magnetizing current are required for the
proposed computations. It is important to note that for the
magnetizing current, only the average of the RMS currents on
the three phases (Im as in (7)) is used, without relying on the
values of the phase currents separately. This is consistent with
typical FAT reports where only the average is registered (see
Figs. 3 and 4).

Lw Lw Lw

Ly Ly

V1 V2V0

Lo Lo

V3

V4

I4=0

I1 I2 I3

Fig. 5. Circuit of Fig. 4 represented using independent current sources. No
voltage source is connected to p4 in Fig. 4, thus I4 = 0.

2) The Five-Limb Case: In order to derive values of Lw,
Ly , and Lo for a five-limb transformer based on the NCC, we
define an equivalent circuit for Fig. 4, in terms of independent
current sources as shown in Fig. 5 and apply KCL to form the
following system

I1
I2
I3
I4

 =


a −Yw 0 −Yy
−Yw a −Yw −Yy

0 −Yw b −Yo
−Yy −Yy −Yo c

 ·

V1

V2

V3

V4

 (25)

where

a = 2Yw + Yy, b = Yw + Yo, c = 2(Yy + Yo). (26)

In Fig. 5, Vi is the voltage appearing at node pi of Fig. 4 where
p0 is taken as the reference point (V0 = 0). By looking at the
independent voltage sources in Fig. 4 which are connected in
series, it is easy to see that

V1 = Va, V2 = Va + Vb = −Vc, V3 = Va + Vb + Vc = 0
(27)

and by comparing Figs. 4 and 5 one can realize that

I1 = Iab, I2 = Ibc, I3 = Ic. (28)

However, the current source injecting I4 into the circuit of
Fig. 5 does not have a physical representation as no source is
directly connected to p4 in Fig. 4. Thus as shown in Fig. 5
we have

I4 = 0. (29)

Knowing that for the five-limb case both (10) and (14) are
applicable, we multiply (25) by α defined in (16) and use
(27), (28) and (29) to get
αIab
αIbc
αIc
0

 =


d −1 0 − rl

rs
−1 d −1 − rl

rs

0 −1 e − rl
rs
· r

′
s

r′l

− rl
rs
− rl

rs
− rl

rs
· r

′
s

r′l
f

·


Va
−Vc

0
V4


(30)

where

d = 2 +
rl
rs
, e = 1 +

rl
rs
· r
′
s

r′l
, f = 2(

rl
rs

)(1 +
r′s
r′l

). (31)

Values of all parameters on the RHS of (30) are available
except for V4. Since the 4th element of the left-hand side is
zero, Kron reduction [15] is applicable by solving for V4 to
obtain a (3 × 3) system. As a result, it becomes possible to



Model rs rl r′s r′l Lentered
w (H) Lentered

y (H) Lentered
o (H) I recorded

m (mA) L
computed
w (H) L

computed
y (H) L

computed
o (H)

Three-Limb 1 2.4 - - 1.2 0.5 - 7.7399746 1.2000012 0.5000005 -
Five-limb 1 1.9 1.1 2.1 2.66 1.4 2.6727272 2.1863597 2.6600015 1.4000007 2.6727287

TABLE I
THE ENTERED (KNOWN) PARAMETERS WITH THEIR COMPUTED COUNTERPARTS USING THE PROPOSED TECHNIQUE FOR THREE-LIMB (FIG. 3) AND

FIVE-LIMB (FIG. 4) DUALITY-BASED MODELS. PINK AND BLUE COLUMNS REPRESENT KNOWN AND COMPUTED VALUES, RESPECTIVELY.

compute αIab, αIbc, and αIc. Subsequently, αIa and αIb are
available as

αIb = αIbc + αIc, αIa = αIab + αIb. (32)

Therefore, the value of α can be determined for the five-limb
core using (18). Subsequently, inductances Lw, Ly, and Lo of
Fig. 4 (and Fig. 2) are computed via (16), (14), (10), (11),
and (15). This completes the numerical determination of the
magnetizing branch parameters for a five-limb duality-based
model using the magnetizing current and core aspect-ratios
without the need to have detailed information about the
transformer’s inner design.

IV. NUMERICAL RESULTS

A. Method Validation
In order to numerically validate the analytical expressions

presented in Section III, the circuits of Figs. 3 and 4 are created
in EMT software [13] with assumed (known) magnetizing
branch parameters as shown in Table I (pink columns).
The AC sources have a voltage magnitude of V = 1.32V
where the frequency is 60Hz. The corresponding excitation
currents are recorded when the systems reach the steady-state
condition. The resulting magnetizing currents are then used in
the proposed technique to compute the magnetizing branch
parameters (blue-shaded columns in Table I). In all cases,
highly accurate results are observed. Note that in the table,
the difference between the entered and the computed values
are dictated by the voltage source internal resistance that is
set to R0 = 10−6Ω for all sources (see Fig. 9).

B. Comparison with the UMEC Model
The UMEC model has been shown to produce accurate

results when compared with measurement results [11], [12],
[10]. Therefore, in this paper we use UMEC as a reference
solution in the EMT studies. For that purpose, the circuit of
Fig. 6 is created in EMT-type program (PSCAD) [13] for
both three- and five-limb cases. In order to be consistent with
the linear assumption made in this paper, the UMEC-model’s
saturation is disabled. As shown in Fig. 6, the open circuit test
is achieved by energizing one side and separating the other
side from the ground with 1MΩ resistors1. For the three-limb
case, the transformer detailed in Table 7.1 of [10] is examined.
The size of the transformer is 187.5MVA with f = 50Hz and
the voltage at the energized winding is 16kV (line-to-line).
The core aspect-ratios are rs = 1 and rl = 0.7409. The
excitation current2 is IΦ = 0.6059% of the rated current. It

1To ensure numerical stability in EMT simulations, it is generally advised
to avoid “hanging nodes” by placing a large resistance between the open nodes
and the reference node (ground).

2The UMEC model implemented in PSCAD asks for the magnetizing
current. In the simulations, this parameter is adjusted to read the expected
average excitation current.

Fig. 6. The UMEC model under open-circuit test in EMT software [13].

Fig. 7. Comparing the excitation phase currents produced by the UMEC and
proposed models for a three-limb 187.5MVA transformer studied in [10].

is computed from the RMS magnitudes of |Ia| = 0.043kA,
|Ib| = 0.037kA, and |Ic| = 0.043kA reported in Section
7.1.1 of [10]. For the five-limb case, the transformer of [12]
is considered (see Table 1 therein). It is a 61MVA transformer
operating at 50Hz with the energized winding rated at 11kV.
The reported core aspect-ratios are rs = 0.683, rl = 1.08,
r′s = 1.74, and r′l = 0.836. From the magnetizing current
peaks (0.083kA, 0.08kA, 0.083kA), the excitation current is
evaluated as IΦ = 1.811%. Figs. 7 and 8 compare time-domain
simulation results of the phase currents recorded at the source
terminals (Ia, Ib, Ic) of the UMEC (Fig. 6) and the proposed
duality models (Figs. 3 and 4) for the three- and five-limb
cases, respectively. Essentially identical results are observed
for all three phase currents, both in three- and five-limb cases.
This demonstrates the numerical validity of the proposed
technique when used in EMT simulations.

V. CONCLUSIONS

This paper introduces a technique for incorporating the
NCC into multi-limb duality-based transformer models. The
introduced model, is a duality transformer model which only
requires nameplate data and core aspect-ratios. For the linear



Fig. 8. Comparing the excitation phase currents produced by the UMEC and
proposed models for a five-limb 61MVA transformer studied in [12].
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Fig. 9. The circuit of Fig. 3 with the source internal series resistances present.

models discussed in this paper, results agree to machine
precision with the well-established UMEC model. In future
work, non-linear magnetizing branches will be introduced
to the proposed technique. Such duality-based transformer
modeling approach would be a suitable candidate for use in
EMT-type programs as it requires typically available input
parameters, while being able to model hysteresis and saturation
phenomena with the numerical robustness and accuracy of
duality-based transformer models.

APPENDIX

In order to prove (20), we generalize the circuit of Fig. 3
to the circuit shown in Fig. 9 where AC sources constitute
small internal series resistance of R0 → 0 Ω. By letting
Z1 = jωLw, Z2 = jωLy , and Z3 = Z1||Z2, we can form the
mesh loops depicted in Fig. 10. Note that Ia, Ib, and Ic are
the same in Figs. 9 and 10. The loop equations are

R0Ia + Z3(Ia − Id) = Va

R0Ib + Z1(Ib − Id) = Vb

R0Ic + Z3(Ic − Id) = Vc

Z3(Id − Ia) + Z1(Id − Ib) + Z3(Id − Ic) = 0.

(33)

Adding all equations in (33) and knowing that Va +Vb +Vc =
0, we get

R0(Ia + Ib + Ic) = 0. (34)

Z1

Z3 Z3

Vb R0

~

~

~

Ia

Ib

Id Ic

Vc

R0Va

R0

Fig. 10. The circuit of Fig. 9 re-arranged with equivalent impedances forming
the desired mesh loops.

The internal series resistance of the AC sources R0 is small but
can not practically be exactly zero due to non-zero physical
copper losses. Numerical EMT simulation [13] of Fig. 9 with
R0 = 0 would also render numerical instability. Therefore the
only viable solution to (34) is (20). This completes the proof.
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