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Abstract—For actual overhead circuits it is likely that distinct
tower profiles are needed depending on the terrain involved. In
this work, we consider a very hilly terrain where an overhead
line is expected to be built. This demands the usage of several
different types of structures leading to a rather complex network.
A compact formulation of the equivalent nodal admittance is
proposed based on the concept of the chain matrix. Three
alternative approximations based on the average impedance
and admittance of line segments and an uniform configuration,
i.e., a single type of tower for the whole circuit, are also
investigated. Frequency domain analysis is carried out to evaluate
the accuracy of the simplified approaches. Results indicate that
three possibilities lead to similar behavior of the nodal admittance
matrix with the simplified approaches presenting some small
deviations around the minima. To investigate further the impact
of those small deviations simple test cases based on the time
response obtained via the Numerical Laplace Transform (NLT)
are considered. These results indicate that the small deviation
have noticeable impact in the time-responses.

Keywords—Frequency dependent parameters, Overhead Lines,
Tower Profiles.

I. INTRODUCTION

THE accurate representation of overhead lines has been a
subject of intense interest. Since the pioneering work in

the frequency domain in 1960s, a topic of special importance
is the inclusion of the frequency dependence of the per
unit length parameters in the line modeling [1,2]. In the
time domain simulations, the first approaches of frequency
dependent line models used modal domain with real and
constant transformation matrix [3,4]. It was only in the mid
to late 1990s that models using full phase coordinates were
proposed, i.e., including all the aspects that contribute to the
frequency dependence of a line model [5]–[13]. Independently
of the domain considered, a key issue for the realization of
the frequency dependence is an accurate representation of the
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de Amparo à Pesquisa do Estado do Rio de Janeiro).

A. C. S. Lima is with Electrical Engineering Department, Federal University
of Rio de Janeiro, COPPE/UFRJ, Rio de Janeiro, Brazil; J. P. L. Salvador
is with the Federal Center of Technological Education “Celso Suckow
da Fonseca”, CEFET/RJ, Angra dos Reis, Brazil; A. P. C. Magalhães
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conductors spatial arrangement. In all these references, a single
tower profile is used in the test cases. However, for actual
overhead circuits it is likely that distinct tower profiles are
needed depending on the considered terrain.

In this work, we consider an actual very hilly terrain where
an overhead line is expected to be built. This demands the
usage of several different types of structures leading to a
nonuniform overhead line. There are a number of procedures
to do so. One may consider a cascade of conventional full
phase line models, where each section with the same type
of tower is represented by its own model, or alternatively,
one may treat the whole circuit as a frequency dependent
network equivalent (FDNE) obtained via the chain matrix [14]
which can then be implemented in time-domain simulations as
rational approximation [15,16] or as polynomials in frequency
domain [17].

In this paper, we propose to compare a more complete
formulation, based on FDNE obtained via the chain matrix,
with approximated approaches. First one considers the
calculation of impedances and admittances as an average
weighted by the line segment length which each tower is
applied. Other approximation is obtained where a single tower
that are dominant in the circuit, i.e., appears in a greater part of
the circuit, is considered. We show the results for two different
towers that have closest participation in the circuit.

The paper is organized as follows. A description of the
circuit involved in the analysis is presented in Section II.
Section III presents the procedure for obtaining the transfer
admittance between the sending and receiving ends of the line
and the behavior and fitting of the equivalent nodal admittance
matrix. The evaluation of the time responses of the equivalent
system as well as the detailed one are shown in Section IV.
The presentation of the main conclusions of the paper is shown
in Section V.

II. NETWORK DESCRIPTION

The circuit considered for this analysis consists of 500 kV
overhead line, with a bundle of four sub-conductors and a total
length of 215 km. An optimized configuration was obtained
using a procedure to maximize the natural power of the circuit,
regarding the voltage and bundle sets, similar to the ones
described in [18], for an Ultra High Voltage with 2500 km
in length, and in [19] for the design of a 420 kV, 865 km,
900 MW circuit. The conductors arrangement is depicted in
Fig. 1 considering average heights and a plane terrain. Phase
conductors have a 26.53 mm diameter, ground wires are 3/8”
EHS. However, this arrangement is only feasible in a plane



terrain, once a cross-rope configuration is expected to be used.
Nevertheless, when hilly terrain is considered, self-supporting
structures are needed.
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Fig. 1. Conductors arrangment for the “basic configuration”.

Six types of tower types were considered in order to
attend terrain conditions. Fig. 2 depicts how the structures
are positioned throughout the whole line. In this figure,
Ci stands for “Configuration i” of the arrangement of the
sub-conductors. In appendix, we detail the characteristics
of these bundle configurations. The “basic configuration”
is represented by C5 in Fig. 2. Structures C1 to C4 are
self-supporting while C5 and C6 are cross-rope, due to the
profile of the terrain, and that is the main reason for the several
distinct types of towers.
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(a) 1st part of the circuit: from the sending end (SE) to the first
transposition tower (TT1)
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(b) 2nd part of the circuit: from the first
transposition tower (TT1) to the second one
(TT2)
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(c) 3rd part of the circuit: from the second transposition tower
(TT2) to the third one (TT3)
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(d) 4th part of the circuit: from the third
one (TT3) to the receiving end (RE)

Fig. 2. Tower structures along the overhead circuit.

III. FREQUENCY DOMAIN ANALYSIS

A. Complete Model
A rather compact formulation is possible if the chain matrix

is considered [14]. This procedure consists in obtaining the
transfer admittance between the sending and receiving ends
of the line and is rather straightforward:

I. To obtain Yni
the nodal admittance for each

configuration Ci given by

Yni =

[
Ysi Ymi

Ymi Ysi

]
(1)

where the block matrices in (1) are defined as

Ysi = Yc

(
I + H2

) (
I−H2

)−1
(2)

Ymi
= −2Yc

(
I−H2

)−1
(3)

where I is a n × n identity matrix, with n being the
number of conductors involved, Yci = Z−1

√
ZY is

the characteristic admittance matrix, H = exp(−`
√
ZY)

is the propagation matrix also known as voltage
deformation matrix and ` is the line length of
configuration Ci. The characteristic admittance and
the propagation matrices can be obtained using modal
decomposition or Schur decomposition. This allows for
a phase-domain approach without resorting to modal
decomposition [20].

II. To convert each Yni
to a transfer function Qi. This can

be achieved considering that

Qi =

[
A B
C D

]
=

[
−Y−1

mi
Ysi −Y−1

mi

Ymi
−YsiY

−1
mi

Ysi YsiY
−1
mi

]
.

(4)

III. To cascade each Qi, but we should consider the
transposition scheme. This can be achieved by a rotation
matrix R defined as

R =

[
R1 0
0 R1

]
(5)

with R1 given by

R1 =

0 1 0
0 0 1
1 0 0

 (6)

IV. To assemble the transfer matrix for the whole line

Qeq = QI ·R ·QII ·R ·QIII ·R ·QIV (7)

where

QI = Q1 ·Q2 ·Q3 ·Q4 QII = Q3 ·Q4 (8)

QIII = Q4 ·Q5 ·Q6 ·Q4 QIV = Q5 ·Q4 .
(9)

and

Qeq =

[
Aeq Beq

Ceq Aeq

]
. (10)

V. To obtain the equivalent nodal admittance matrix
from (10)

Yneq
=

[
DeqB

−1
eq Ceq −DeqB

−1
eq Aeq

−B−1
eq −B−1

eq Aeq

]
(11)



B. Considering Average Impedances and Admittances

A simpler approach that is often used for practical
consulting projects is to build the nodal admittance matrix
from average values of the per unit length impedance Zi

and admittance Yi obtained from each tower profile and
weighted with corresponding length portions of the whole line.
From Fig. 2, we get the percentage value each configuration
corresponds to and we summarize it in Table I, with ` the
same as before.

TABLE I
PER-UNIT LENGTHS OF LINE SEGMENTS AND RESPECTIVE

CONFIGURATIONS.

`1 `2 `3 `4 `5 `6
0.0160 ` 0.0950 ` 0.3690 ` 0.0850 ` 0.3023 ` 0.1327 `

Then, we obtain the per-unit-length impedance and
admittance matrices as

Z =

6∑
1

Zi`i/`

Y =

6∑
1

Yi`i/`

(12)

and the procedure is similar as before. We obtain the
approximated chain matrix by using (7), where QI , QII ,
QIII and QIV correspond to the chain matrix calculated by
using (12) for each line segment. After that we can obtain the
approximated equivalent nodal matrix using (11).

C. Considering A Single Structure

Other possible approximation alternative consists in
considering a single tower profile, i.e., the one with the
largest length, as if it is the only configuration along the
circuit. The natural “candidates” for this approach are those
configurations that are dominant in the whole line, which in
this case is configuration C3 as it appear in almost 37% of the
circuit length, and C5 with roughly 30%. For each case, we
obtain the approximated chain matrix by using (7), where QI

corresponds to the chain matrix of 1/6 of the line total length
obtained using either C3 or C5 as a single tower for the whole
segment. Then QII = QIII = Q2

I and QIV = QI and, same
as before, we use (11).

D. Comparison Between Approaches

In this section, Ynavg stands for the average approach
described in Section III-B, and YnC3

and YnC5
stand

for the approximated equivalent nodal admittance matrices
calculated using only C3 and only C5, respectively, following
Section III-C. All possibilities for the admittance matrices are
calculated from 0.01 Hz up to 50 kHz. For higher frequencies
numerical issues are observed, due to the evaluation of the
inverse matrices that are calculated when transforming the
chain matrix into a nodal admittance matrix.

The magnitude of the elements in Yneq together with
the results obtained considering average impedances and
admittances, only C3 and only C5 throughout the whole circuit
are presented in Fig. 3. To highlight the differences, results
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Fig. 3. Comparison of the behavior of the equivalent nodal admittance matrix
and approximations.

are shown for a limited bandwidth. There are some small
differences regarding the maxima in all three approaches,
although the most noticeable differences are in the lowest
values. These deviations can significantly impact the transient
results. In Fig. 4 the behavior of the eigenvalues of the
three approaches to the nodal admittance matrix is depicted.
The main differences are for the eigenvalue with the highest
damping (ground mode).
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Fig. 4. Comparison of the eigenvalues of the equivalent nodal admittance
matrix and approximations.

Figure 5 presents the deviation found between the
approximate formulation and Yneq

, they were calculated as

∆1 =
∣∣Yneq

−Ynavg

∣∣
∆2 =

∣∣Yneq −YnC3

∣∣
∆3 =

∣∣Yneq
−YnC5

∣∣ .

(13)

Besides the mismatches at the minima, some noticeable
deviations can be found close to resonance peaks. It is worth
mentioning that the uniform line based approaches present
very similar performances throughout the frequency range of
interest.

IV. TIME RESPONSES

For the assessment of time responses, we consider only a
simple simultaneous three-phase energization test, as shown in
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Fig. 5. Mismatches between Yneq and the approximated formulations.

Fig. 6, where SW1 is an ideal three-phase breaker that closes
at t = 0 s, SW2 is a single-phase ideal breaker that also
closes at t = 0 s. The short-circuit level at the sending end of
the circuit is approximately 7.5 GW. The X/R ratio for the
short-circuit equivalent is 50.
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Fig. 6. Circuit for the time response test

To obtain the time response, we consider the Numerical
Laplace Transform (NLT) [2,21]–[24]. We have considered
4096 frequency samples, and a total observation time of
100 ms. The total computation time was around 98 s. The
network was implemented using the Wolfram Language and
used the framework developed in [25].

Figure 7 depicts the voltage at node #4. All approaches
provided similar results during the first time instants. However,
while the approximation that considers average impedances
and admittances remains close to the complete model, there
is a rather noticeable difference when a single structure
is considered for the whole circuit as the time progresses.
Regardless of these deviations, YC3

and YC5
are rather close

to each other.
If a direct energization is considered, i.e., SW2 is assumed

open during the simulation, the results presents a rather
interesting situation as shown in Fig. 8. The peaks are more
pronounced and occur in the first instants when YC3

and YC5

are considered.
Although not shown here, all the time responses were

compared to a detailed representation of each Ci using the
so-called Universal Line Model [13]. No significant mismatch
was found when compared with the results obtained using
Yneq . A disadvantage of this approach where each section of
the circuit is represented lies in the fact that a short line length
implies in the usage of an even shorter time-step limiting
the largest time-step to be used in the simulation. The usage
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Fig. 7. Voltage response at node #4 considering all the possibilities to
represent the nodal admittance matrix for the energization considering one
phase at the receiving end in short-circuit.
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Fig. 8. Voltage response at node #4 considering all the possibilities to
represent the nodal admittance matrix due to a simple energization.

of a rational approximation of Yneq tends to overcome this
limitation. One could carry out the rational fitting of the
equivalent nodal admittance matrix, which in most cases tends
to have a poor resolution for weakly observable modes at lower
frequencies, together with a rather large order equivalent.
Some of these limitations can be overcome by resorting to
a mode revealing transformation matrix (MRT) [26]. This
procedure was applied recently to the rational approximation
of the nodal admittance matrix of nonuniform lines [27].

V. CONCLUSIONS

This work investigated the impact of the usage of several
distinct types of tower along a given circuit. The main reason
for the investigation was due to the characteristics of the
area where the circuit is expected to be built, which is a
mountainous area, thus a large number of self-supporting
towers is needed. This change in the geometric profiles causes
a rather distinct characterization of the circuit when compared
with the optimized configuration.

To improve the numerical performance of the overall
system, a rather compact approach was used. It is based on
the idea of defining a FDNE for the whole circuit. The FDNE
was obtained using the chain matrix for the complete circuit.
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(f) C6

Fig. 9. Conductors arrangement considering the distinct structures (medium heights).
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(a) Impedance matrix per unit length
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(b) Admittance matrix per unit length

Fig. 10. Behavior of per-unit length parameters for the distinct Ci.

One issue with the FDNE is the limited bandwidth for the
representation of the system. Due to the matrices inversion
in the conversion of the chain matrix to the nodal admittance
matrix, numerical error tend to arise at higher frequencies,
typically near 100 kHz. Naturally, if the interest lies in high
frequency phenomena, such as lightning performance, short
line sections are to be of interest.

Simple formulations based on calculating average
per-unit-length impedance and admittance for each segment,
or using only one tower profile for the whole circuit are also
investigated. It was found that these approximations tend to
provide rather similar frequency domain profiles with the
main differences in the lowest values and at the frequency
where the highest values occur. While the average impedance
and admittance approximation gives very close results to the
complete model in both frequency and time domains, when a
single tower profile is considered for the whole line, the small
discrepancies in frequency cause some noticeable differences
when time responses are considered.

APPENDIX

The several bundle arrangement used in the circuit are
depicted in Fig. 9. There are configurations with only one
type of bundle arrangement, i.e, C1 to C4, while C5 and
C6 show a central phase with a smaller bundle. The main
difference between C5 and C6 lies in the average heights
of the conductors. Figure 10 presents the behavior of the
impedance and admittance matrices, both per unit length for
the several configurations considered. It can be observed that
for the impedance there are only small deviations in the mutual
elements. Similar behavior is found for the admittance matrix,
but in this case the deviations for the mutual elements are
more pronounced.
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