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Abstract.- The Frequency-Domain (FD) Electromagnetic 

Transient (EMT) analysis of power systems (PS) is often performed 

using the Windowed Numerical Laplace Transform (W-NLT) 

method. For practical analysis, this method provides adequate 

accuracy at moderate computational costs. Nevertheless, research 

applications often require much higher accuracy levels, and the W-

NLT method has proven computationally expensive and unreliable. 

This paper, therefore, presents the Quotient-Difference (QD) NLT 

method as a complement and as an alternative to the W-NLT 

method, particularly for research tasks in PS-EMT analysis. The 

QD-NLT method is analyzed thoroughly here and is applied to test 

cases to demonstrate its effectiveness. 
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I. INTRODUCTION. 

Frequency-domain (FD) methods are often used for 

analyzing power-system (PS) electromagnetic-transients 

(EMTs) to complement and validate their time-domain (TD) 

counterparts, such as EMTP methods. The most widely used FD 

method for this application is perhaps the Numerical Laplace 

Transform (NLT) technique [1,2,3,5,11]. As this is based on 

truncation of the Laplace inversion-integral by means of a data 

window, referred to here as the Windowed Numerical Laplace 

Transform (W-NLT).  

The accuracy attained with the W-NLT typically is in the 

range of relative errors— between 1.0e-3 and 1.0e-5, which is 

appropriate for most engineering applications in EMT analysis; 

nevertheless, there are situations that require much greater 

accuracies. This is the case in research and development (R&D) 

activities in EMT analysis. The authors of this paper have been 

able to attain accuracy levels up to 1.0e-9 with the W-NLT, but 

only in certain cases and only by increasing 1024 times the 

number of regular computations [6]. The authors of this paper 

have thus been engaged in the search for other NLT methods 

capable of delivering higher levels of accuracy at moderate 

computational costs. The purpose of this paper is to introduce a 

Numerical Laplace Transform inversion method based on the 

Quotient-Difference (QD) algorithm [7], primarily as an R&D 

tool in EMT analysis. This method is referred to here as QD-

NLT. 
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 In 1954, Heinz Rutishauser proposed the QD algorithm as a 

major breakthrough for accelerating the convergence of infinite-

series [8]. In 1982, F. R. De Hoog et al., proposed a method for 

numerically solving the Laplace inversion-integral through QD 

acceleration [7].In 2001, L. Brancik combined the Fast Fourier 

Transform (FFT) and the QD algorithms to numerically solve the 

Laplace inversion-integral, attaining both high accuracy and 

high computational efficiency. Brancik further applied this 

method to the solution of transients in constant-parameter (CP) 

transmission-line models [14]. 

This paper is organized as follows: First, the direct and 

inverse Laplace integrals are introduced. Then, the basics for 

numerical treatment of the Laplace inversion-integral are 

provided. Next, the standard W-NLT method is briefly 

explained. After that, the QD-NLT method is presented, with the 

aim of providing a clear and straightforward explanation. Next, 

the QD-NLT method is applied to a Laplace-domain function of 

a known time-domain solution in order to show its performance 

in terms of accuracy and computational efficiency; comparisons 

are made here with the W-NLT. Next, the QD-NLT is applied to 

two PS-EMT cases, one involving a multi-conductor 

transmission-line and the other, an underground transmission 

cable. Frequency-dependent parameters are considered in these 

two latter cases and comparisons are further made with both the 

W-NLT and the EMTP-rv® program. It can be concluded that 

the QD-NLT method is appropriate for R&D tasks in PS-EMT 

analysis. 

II. LAPLACE INTEGRALS. 

Let 𝑓(𝑡) be a causal function of the time variable “t”; (i.e., 

𝑓(𝑡) = 0 for t<0). Its Laplace transform F(s) is 

𝐹(𝑠) = ∫ 𝑓(𝑡)
∞

0

𝑒−𝑠𝑡𝑑𝑡, (1) 

where “s =c + jω” is the Laplace complex variable whose 

imaginary part is identified with the angular frequency, while its 

real part “c” is usually considered constant and regarded as a 

damping coefficient [9]. 

According to Systems theory [9], both systems and their 

associated signals can be represented as functions of time whose 

relations are given in terms of convolution operations. In the 

Laplace-domain, time-domain convolutions are equivalent to 

multiplications, and transient responses can be obtained by 

means of algebraic methods. These responses, however, must 

still be transformed into time-domain through the Laplace-

inversion integral: 
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𝑓(𝑡) =
𝑒𝑐𝑡

2𝜋
∫ 𝐹(𝑐 + 𝑗𝜔)

∞

−∞

𝑒𝑗𝜔𝑡𝑑𝜔 (2) 

Time-domain functions related to physical systems are real 

and causal. The inversion integral (2) can thus take the following 

form as well: 

𝑓(𝑡) =
𝑒𝑐𝑡

𝜋
𝑅𝑒 {∫ 𝐹(𝑐 + 𝑗𝜔)

∞

0

𝑒𝑗𝜔𝑡𝑑𝜔} (3) 

Either expression, (2) or (3) can serve as basis for the 

numerical inversion of Laplace transforms. 

 

III. NUMERICAL TREATMENT OF THE 

LAPLACE INVERSION-INTEGRAL. 

3a) Frequency-domain discretization and time-domain aliasing. 

Expression (3) is adopted here for a numerical method for 

inverting Laplace transforms. Let the continuous variable “ω” be 

replaced by the discrete one “kΔω”, with “k” as an integer and 

“Δω” as a fixed frequency-step. Integral (3) is thus approximated 

as follows: 

𝑓(𝑡) =
∆𝜔 × 𝑒𝑐𝑡

𝜋
𝑅𝑒 {∑ 𝐹𝑘𝑒𝑗𝑘∆𝜔𝑡

∞

𝑘=0

} (4a) 

where 

𝐹𝑘 = {
𝐹(𝑐) 2,⁄ 𝑘 = 0

𝐹(𝑐 + 𝑗𝑘∆𝜔), 𝑘 = 1, 2, …
 (4b) 

𝑓(𝑡) in (4b) aims to be the closest possible approximation to 

𝑓(𝑡). Nevertheless, it can be shown that “exp(−𝑐𝑡) × 𝑓(𝑡)” is a 

periodic function with the fundamental period 

𝑇 = 2𝜋 𝛥𝜔⁄  (5) 

The periodicity of “exp(−𝑐𝑡) × 𝑓(𝑡)” implies that 𝑓(𝑡) can 

provide an adequate approximation to 𝑓(𝑡) only within the t-

interval [0,T], at most. Moreover, it can be further shown that 

inside this interval [7] 

𝑓(𝑡) = 𝑓(𝑡) + 𝜖𝑎𝑙 (6) 

with 

𝜖𝑎𝑙 = ∑ 𝑒−𝑖𝑐𝑇𝑓(𝑡 + 𝑖𝑇)

∞

𝑖=1

 (7) 

Clearly, 𝜖𝑎𝑙 is an aliasing error in time-domain and is caused 

by discretization (or sampling) of 𝐹(𝑐 + 𝑗𝜔) in (4b). It follows 

from (7) that, in principle, 𝜖𝑎𝑙 can be made as small as desired 

by the proper choice of damping coefficient c. 

3b) Time-domain discretization. 

Now, let the continuous variable “t” be replaced by the 

discrete one “𝑡𝑛 = 𝑛∆𝑡”, with 𝑛 = 0, 1, 2, … 𝑁  and ∆𝑡 as a fixed 

discretization time-step of size 

∆𝑡 = 𝑇 𝑁⁄  (8) 

It must be emphasized here that ∆𝑡 should comply with the 

Nyquist sampling principle [10]. When considering (5), (6), and 

(8), expression (4a) is written in the following form: 

𝑓𝑛 = 𝑓𝑛 + 𝜖𝑎𝑙 =
2𝑒𝑐𝑡

∆𝑡
𝑅𝑒 {

1

𝑁
∑ 𝐹𝑘𝑒𝑗2𝜋𝑘𝑛 𝑁⁄

𝑁−1

𝑘=0

} + 𝜖𝑡𝑟𝑛𝑐 (9) 

where 𝑓𝑛 = 𝑓(𝑛∆𝑡), 𝑓𝑛 = 𝑓(𝑛∆𝑡) and 𝜖𝑡𝑟𝑛𝑐 is the truncation-

error caused when the infinite sum in (8) is replaced by the finite 

one of its first N samples; i.e.: 

𝜖𝑡𝑟𝑛𝑐 =
2𝑒𝑐𝑡

∆𝑡
𝑅𝑒 {

1

𝑁
∑ 𝐹𝑘𝑒2𝜋𝑗𝑘𝑛/𝑁

∞

𝑘=𝑁

} (10) 

 

IV. WINDOWED NLT. 

As note above, aliasing error 𝜖𝑎𝑙 can be damped by the proper 

choice of a damping coefficient “c”. If the time function of 

interest 𝑓(𝑡) is bounded, which is always the case in power-

systems, a suitable value for c is given by [3] 

𝑐 = −
𝑙𝑛(𝜖)

𝑇
 (11) 

where 𝜖 is a target-bound for the relative aliasing-error [3]. 

Truncation error 𝜖𝑡𝑟𝑛𝑐 appears in the form of Gibbs’ 

oscillations superimposed over the retrieved function 𝑓𝑛 in (9) 

[11]. Gibbs’ oscillations can be attenuated substantially by the 

application of a data window; thus, 

𝑓𝑛 ≅
2

∆𝑡
𝑅𝑒 {

1

𝑁
∑ 𝐹𝑘𝜎𝑘𝑒

2𝜋𝑗𝑘𝑛
𝑁

𝑁−1

𝑘=0

}, (12) 

where 𝜎𝑘 represents the selected data-window. The Von Hann 

(or Hanning) window has proven highly convenient in practical 

analyses [11]: 

𝜎𝑘 =
1

2
[𝑐𝑜𝑠 (

𝜋𝑘

𝑁
) + 1]  

Expression (12) corresponds to the Windowed Numerical 

Laplace Transform (W-NLT) being applied elsewhere for 

frequency-domain PS-EMT analysis [11]. Note that the term in 

brackets at (12) is an Inverse Discrete Fourier Transform (IDFT), 

which is evaluated with high numerical efficiency using the 

Inverse-Fast-Fourier-Transform algorithm (IFFT) [15]. 

 

V. QUOTIENT DIFFERENCE NLT 

The summation in brackets at (9), without truncation, is 

written as follows: 

𝑔(𝑧) = ∑ 𝑐𝑘𝑧𝑘

∞

𝑘=0

 (13) 

where 𝑐𝑘 = 𝐹𝑘 and 𝑧 = 𝑒2𝜋𝑗𝑛/𝑁. Function 𝑔(𝑧) can be 

approximated either by a partial sum of its first M terms 



𝑔(𝑧) ≅ ∑ 𝑐𝑘𝑧𝑘

𝑀

𝑘=0

 (14) 

or by a rational function of the following form: 

𝑔(𝑧) ≅
𝐴𝑀(𝑧)

𝐵𝑀(𝑧)
=

∑ 𝑎𝑘𝑧𝑘𝑀
𝑘=0

∑ 𝑏𝑘𝑧𝑘𝑀
𝑘=0

 (15) 

Mention is made here that (15) corresponds to the M-th 

diagonal term in a Padè table [14]. Rational approximations, 

such as (15), converge much faster to 𝑔(𝑧) than partial sum (14) 

[14]. It can thus be considered that (15) provides a technique for 

accelerating the convergence of infinite series (13) [15]. The 

key-issue is to devise a fast method to evaluate (15).  

An alternate form for (14) is its continued-fraction expansion: 

𝑔(𝑧) =
𝑑0

1 +
𝑑1𝑧

1 +
𝑑2𝑧

1 +
𝑑3𝑧

1+⋱ 𝑑𝑀−1
1 + 𝑑𝑀𝑧

 

(16) 

The following notation is commonly used to represent 

continued fractions in compact form [12]: 

𝑔(𝑧) =
𝑑0

1 +

𝑑1𝑧

1 +

𝑑2𝑧

1 + ⋯ +

𝑑𝑀−1𝑧

1 + 𝑑𝑀𝑧
 (17) 

Coefficients 𝑑𝑘, with 𝑘 = 1, 2, … 𝑀, can be derived from the 

𝑐𝑘𝑠 in (14) using the QD-algorithm [13]. This is described below 

and illustrated in Fig. 1 for the M=6 case.  
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Figure 1. Depiction of the QD method for the M=6 case. 

First, assume that M is an even number (i.e., M=2J); then, 

build a first column with elements 𝑒0
𝑖 = 0, for 𝑖 = 1, 2, … , 𝑀 −

1, as in Fig. 1; next, build a second column with elements 𝑞0
𝑖 =

𝑐𝑖+1 𝑐𝑖⁄ , for 𝑖 = 0, 1, 2, … , 𝑀 − 1, as in Fig. 1 ; then, build the 

alternating following columns for elements 𝑒𝑟
(𝑖)

 and 𝑞𝑟
(𝑖)

 using 

the following recursive expressions: 

𝑒𝑟
(𝑖)

= 𝑞𝑟
(𝑖+1)

− 𝑞𝑟
(𝑖)

+ 𝑒𝑟−1
(𝑖+1)

;   

𝑟 = 1, … , 𝐽;   𝑖 = 0, … , 𝑀 − 2𝑟 
(18) 

 

𝑞𝑟
(𝑖)

= 𝑞𝑟−1
(𝑖+1)

𝑒𝑟−1
(𝑖+1)

/𝑒𝑟−1
(𝑖)

; 

𝑟 = 2, … , 𝐽;   𝑖 = 0, … , 𝑀 − 2𝑟 − 1 
(19) 

Once the M columns of alternating terms 𝑒𝑟
(𝑖)

 and 𝑞𝑟
(𝑖)

 have 

been obtained, the 𝑑𝑘 terms for the continued-fraction expansion 

are retrieved from these columns through the following relations: 

𝑑0 = 𝑐0, 𝑑2𝑟 = −𝑒𝑟
0, 𝑟 = 1, … , 𝐽 (20) 

𝑑2𝑟−1 = −𝑞𝑟
0, 𝑟 = 1, … , 𝐽 (21) 

The polynomials 𝐴𝑀(𝑧) and 𝐵𝑀(𝑧) from the rational form 

(15) comply with the following recursive relations involving the 

previously obtained 𝑑𝑘 terms [7]: 

𝐴𝑚(𝑧) = 𝐴𝑚−1(𝑧) + 𝑑𝑚𝑧𝐴𝑚−2, 𝑚 = 1, … , 𝑀 (22) 

𝐵𝑚(𝑧) = 𝐵𝑚−1(𝑧) + 𝑑𝑚𝑧𝐵𝑚−2(𝑧),   𝑚 = 1, … , 𝑀 (23) 

Relations (22) and (23) can be used to evaluate 𝐴𝑀(𝑧) and 

𝐵𝑀(𝑧) recursively and with high numerical efficiency. The 

initial values are: 

𝐴−1(𝑧) = 0, 𝐵−1(𝑧) = 1, 𝐴0(𝑧) = 𝑑0, and 𝐵0(𝑧) = 1. 

Finally, from (9): 

𝑓𝑛 =
2𝑒𝑐𝑡

𝑇
𝑅𝑒 {

𝐴𝑀(𝑧)

𝐵𝑀(𝑧)
} (24) 

Recall that 𝑧 = 𝑒2𝜋𝑗𝑛/𝑁.  

Expression (24) constitutes a basic form for the QD-

algorithm being applied to numerically evaluate the inverse 

Laplace-integral. A further refinement to this algorithm, here in 

after QD-NLT, is to perform a portion of the summation (14) 

using an N-sample IFFT with N<M. The remaining terms are 

incorporated into the partial sum using the QD-algorithm [14]. 

Considering that M=N+2J, and that N is of the form 𝑁 = 2ℓ, 

with ℓ being a positive integer, the QD-acceleration is applied to 

the last 2J terms. Thus, initial values for (22) and (23) should 

now be: 

𝐴𝑁−1(𝑧) = 0, 𝐵𝑁−1(𝑧) = 1, 𝐴𝑁(𝑧) = 𝑑𝑁, and 𝐵𝑁(𝑧) = 1. 

 

VI. APPLICATION CASES. 

6.1 Laplace inversion of an analytic expression. 

A common practice among NLT methods developers is to 

test inversion algorithms using a set of Laplace-domain 

functions whose time-domain counterparts are available in 

analytic form. Cohen provides a set of 35 of such test functions 

in [9]. Both the QD-NLT and the W-NLT methods have been 

tested with all these functions, as well as with the following: 

𝐹(𝑠) =
𝑠𝑒−2𝑠

𝑠2 + 1
. (25) 

The results from all these test functions are basically identical 

and only those from expression (25) are presented below. In 

these authors’ experience, the worst case in PS-EMT analysis is 

with a Laplace function tending asymptotically to 1 |𝑠|⁄ . This is 

the case for the Laplace transform of a step-function 𝑢(𝑡) as well 

as for F(s) in (25). The inverse Laplace transform of (25) is 

𝑓(𝑡) = cos (𝑡 − 2) × 𝑢(𝑡 − 2) (26) 



The numerical inversion of (25) is now performed using both 

the W-NLT and the QD-NLT methods, setting the observation 

time at T=20 s. Damping coefficient c is obtained from (11) by 

considering an aliasing error-bound of 𝜖 = 10−10. A number 

N=1024 of frequency-domain samples is used with the W-NLT, 

while a number M=1031 of those samples is used with the QD-

NLT (i.e., J=3). 

Figure 2 shows the plot for analytic function (26) together 

with the other two numerical results plots obtained with the W-

NLT and the QD-NLT methods. The differences among these 

three plots cannot be seen by the naked eye. Figure 3 shows the 

relative errors plots for both numerical methods. Relative errors 

are calculated as follows: 

𝜖𝑟𝑒𝑙,𝑛 =
|𝑓𝑟𝑒𝑓,𝑛 − 𝑓𝑛𝑢𝑚,𝑛|

𝑚𝑎𝑥(𝑓𝑟𝑒𝑓)
;  𝑛 = 0, 1, 2, … , 𝑁 − 1) (27) 

where 𝑓𝑟𝑒𝑓,𝑛 is the n-th sample of analytic f(t) in (26), 𝑓𝑛𝑢𝑚,𝑛 is 

the n-th sample obtained from the numerical method being 

evaluated, and 𝑚𝑎𝑥(𝑓𝑟𝑒𝑓) is the maximum value of analytic 

function 𝑓𝑟𝑒𝑓(𝑡). Note that 𝜖𝑟𝑒𝑙,𝑛 is plotted in Fig. 3 on a base-10 

logarithmic scale. This figure shows that the overall relative 

error for the W-NLT is approximately 𝜖𝑟𝑒𝑙 = 10−4, while that 

for the QD-NLT is 𝜖𝑟𝑒𝑙 = 10−8. Clearly, there are four orders of 

magnitude-difference between the accuracies of the W-NLT and 

the QD-NLT methods. 

 

Figure 2. Time-domain image for F(s) given by (24) as obtained analytically 

and numerically with W-NLT and QD-NLT.   

     

 

Figure 3. Differences plot between analytic f(t) and its numerical 

approximations with W-NLT and QD-NLT. 

6.2 EMT response of an aerial power-line. 

Figure 4 provides the transversal geometry for an aerial 

power line of length L=320 km that is energized at time t=0 in 

its phase A (left most conductor) with an ideal voltage source  

𝑣0,1(𝑡) = cos(120𝜋𝑡). (28) 

 

The radius of the phase-conductor is r=1.5 cm with 

resistivity𝜌𝑐 = 5.3 × 10−8  m, the radius of the ground wire 

is r=0.5 cm with resistivity 𝜌𝑔𝑤 = 1.78 × 10−7  m, and 

ground resistivity is 𝜌𝑔𝑛𝑑 = 100  m. Figure 5 shows the 

longitudinal layout for the line being considered. Note that the 

three phase conductors are open-ended at both extremes. 

 
Figure 4. Transversal geometry for the aerial transmission-line case. 

 

 

Figure 5. Longitudinal layout for the aerial transmission-line case. 

According to the nodal representation of the line, far-end 

voltages after energizing are given as follows in the Laplace-

domain: 

𝑽𝟏 = 𝑩−𝟏𝑨𝑽𝟎 (29) 

with 𝑨 = 𝒀𝒄𝑐𝑜𝑡ℎ(𝜞𝐿), 𝑩 = 𝒀𝒄𝑐𝑜𝑠𝑒𝑐ℎ(𝜞𝐿), 𝜞 = √𝒀𝒁 and 𝒀𝒄 =
𝒁−1𝜞 . Line-parameter matrices Y and Z are calculated as 

functions of frequency using standard procedures as in [16]. 

The transient response 𝑽𝟏 given by (29) is now transformed 

numerically into the time-domain. An observation time T=50 ms 

is set for this purpose. The number of frequency samples is 

N=8096 and the damping coefficient c is set for an aliasing error-

bound 𝜖 = 10−9. Figure 6 provides the transient responses from 

the three phase-conductors at the far end, obtained by means of 

the W-NLT and the QD-NLT. This figure also includes those 

responses obtained using the EMTP-rv. Again, the differences 

among results obtained with the three methods cannot be seen by 

the naked eye. Figure 7 provides the relative difference plots of 

the W-NLT and the EMTP-rv results with respect to those of the 

QD-NLT. Expression (27) is used for this purpose, taking the 

QD-NLT results as reference values 𝑓𝑟𝑒𝑓. Note also that the 

differences are plotted in Fig. 7 on a base-10 logarithmic scale. 

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

2

Time(s)

M
ag

n
it

u
d

e

 

 

f(t) W-NLT QD-NLT

0 2 4 6 8 10 12 14 16 18 20

10
-10

10
-5

10
-2

Time(s)

lo
g

1
0
(E

rr
o

r)

 

 

W-NLT QD-NLT

9.6 m

30 m

5.5 m

7.5 m

swt

 av t



 

Figure 6. Transient responses at the far-end for the transmission-line case. 

 

Figure 7. Relative differences plots of W-NLT and EMTP-rv with respect to the QD-NLT for the transmission-line case. Only for far-end phase 

A

 6.3 EMT response from an underground power-cable. 

Figure 8 shows the transversal geometry of a three-phase 

underground transmission cable-system of length L=5 km. Each 

of the three cables is a concentric array with an innermost 

nucleus, an insulation layer, a sheath, and an outermost 

insulating protecting-layer. The corresponding radii are provided 

in the figure. Both insulating layers present a relative 

permeability 𝜀𝑟𝑒𝑙 = 3. The respective resistivities for the nuclei 

and the sheaths are 𝜌𝑛 = 1.72 × 10−8  m and 𝜌𝑠ℎ = 1.38 ×
10−7  m. The ground resistivity is 𝜌𝑔𝑛𝑑 = 40  m. Figure 9 

shows the longitudinal layout of the cable. Note that the three 

nuclei and sheaths are open-ended at both extremes of the cable. 

Core A is energized at time t=0 with an ideal voltage source 

given by (28). 

 
Figure 8. Transversal geometry for the underground transmission-cable case. 

 
            Figure 9. Longitudinal layout for the underground transmission-cable 

case 

The transient responses from the cable system are obtained 

in the Laplace-domain using relation (29). Far-end responses are 

then transformed numerically to time domain with the W-NLT 

and the QD-NLT. For this purpose, the observation time is set at 

T=5 ms, the number of frequency samples is set at N=8192, and 

damping coefficient c is set for an aliasing error-bound 𝜖 =
10−9. Cable parameter-matrices Y and Z are calculated 

according to the methods in [17]. The plots so obtained at the far 

ends of nuclei A and B are provided in Fig. 10. Transient 

responses are also obtained with the EMTP-rv program, and their 

plots are included in Fig. 10. As in the previous test-case, 

differences among the three sets of results cannot be seen by the 

naked eye. 

 

Figure 10. Transient responses at the far-end for nuclei A and B of the transmission-cable case. 
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Figure 11. Relative differences plots of W-NLT and EMTP-rv with respect to the QD-NLT. For far-end phase A only (transmission-cable case). 

Thus, relative-difference plots for W-NLT and for 

PSCAD/EMTDC, with respect to QD-NLT, are provided in Fig. 

11 for nucleus A only, since the results for nuclei B and C are 

similar. 

VII. CONCLUSIONS 

The W-NLT method is often used to conduct electromagnetic 

transient analyses of power systems in the frequency-domain. 

For most engineering applications, it provides adequate accuracy 

at moderate computational costs. For research activities, 

however, much higher accuracy-levels are often required, and 

these come at an excessive computational cost. In addition to 

this, high accuracy-levels are not guaranteed with the W-NLT. 

For this reason, the authors of this paper have introduced an NLT 

method based on Rutishauser’s Quotient-Difference algorithm in 

this paper [8]. This method has been termed QD-NLT here, and 

its primary purpose is as a research tool. Application examples 

provided in this paper have corroborated the high accuracy and 

moderate computational costs of the QD-NLT method. 

Comparisons have also been made of the QD-NLT method 

against the conventional W-NLT method, as well as with a 

commercial-grade time-domain computer program, the EMTP-

rv®. Finally, the authors of this paper consider that the QD-NLT 

method can still be improved upon substantially and are actively 

working towards this goal. 
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