
  

Abstract—In this paper, the relationship between state 
space equations and nodal analysis method is theoretically 
investigated and the two approaches are shown to be 
equivalent. The modified nodal analysis method is used to 
form the descriptor state space equations. These equations 
can be directly transferred into standard state space form. 
Next, the trapezoidal integration method is directly applied 
to these descriptor state space equations. The paper shows 
that the discrete descriptor state space equations, also 
directly yield the same admittance matrix and history 
current source vector as are generated when the companion 
circuit models in a classical electromagnetic transient 
(EMT) type simulation are assembled together.  This proves 
the equivalence of the two approaches. Hence the 
theoretical body of knowledge from linear system analysis 
of the state space equations, such as eigenvalue analysis 
becomes applicable to the EMT simulation. A simple 
example is provided to show the equivalency.  
  

Index Terms—descriptor state space equation, EMT type 
simulation, generalized eigenvalues 

I.  INTRODUCTION 

letromagnetic transient (EMT) simulation is widely used in 
power system analysis [1]. There exist two main methods 

to simulate lumped circuit networks: state space equations and 
the companion circuit base nodal analysis approach introduced 
by Dommel [1].  

For state space analysis of lumped linear electric circuits, the 
tree and co-tree method is used to form the standard state space 
equations [2]. Such a method provides a set of linearly 
independent state space equations of the form: 

 �̇� = 𝑨 ∙ 𝒙 + 𝑩𝒖 (1)

where 𝒙  and 𝒖  are the state and input vector. Matrix 𝑨 
represents the system matrix and 𝑩 denotes the input matrix. 

Using a suitable integration method and suitable time-step 
value, the system can be simulated in the time domain. 
Additionally, eigenvalues of the system matrix A can yield 
important information about the system, such as its stability 
margin, time constants and oscillation modes. However, Sana 
and Mahseredjian [3, 4] point out a drawback of this approach 
in that the time and computational effort for generating state 

space equations is excessive and impractical when applied to 
large networks. Therefore, this method is used primarily for 
theoretical analysis of small circuits. 

On the other hand, the popular approach [1] for EMT type 
simulation is to convert all energy storage elements, e.g., 
inductors and capacitors into their companion circuit form 
using a suitable integration method, typically the trapezoidal 
rule. The companion circuit form generates a conductance in 
parallel with a history current source. Using nodal analysis, the 
admittance matrix corresponding to the connected set of 
companion elements can be assembled [1, 5] and the voltages 
in each time-step determined by solving the set of nodal 
equations. This method is widely used for large circuit 
simulations because it is straightforward to apply. However, [3] 
claims that the network time constants and oscillation 
frequencies can not directly be extracted, which is significant 
for stability analysis and simulation time step selection. 

 In the famous EMTP theory book [1], Prof. Hermann 
Dommel makes the comment  “…the author has never proved 
it, but suspects the answer [i.e., the two methods] are identical 
for an arbitrary circuit”. In this paper we prove that Prof. 
Dommel’s suspicions are correct and that the two approaches 
are exactly equivalent. 

Equations relating nodal equations and state space equations 
were presented in [6] to reconstruct the eigenvalues from the 
EMTP simulations. This method finds the eigenvalues in the 
discrete time domain in advance and maps them back to the 
continuous time domain according to the applied numerical 
algorithms. However, due to the fact that the state space 
equations is recovered from a EMT companion circuit, an 
implicit assumption is made that the nodal analysis method is 
theoretically identical to directly applying the trapezoidal 
method to state space equations, which has not been shown 
prior to this paper. 

In this paper, descriptor state space equations (DSEs) are 
used to show the equivalence between the state space and 
companion circuit nodal analysis approaches. DSEs are formed 
by Modified Nodal Analysis, which usually has more state 
variables (which may be linearly dependent) than the standard 
state space equations. Chua [7, 8] has shown a generic approach 
for transforming the DSEs to a standard state variable form. 
Reference [9] also points out that the transfer function obtained 
by DSEs is identical to the transfer function from the standard 
state space, and the standard state space equations 
corresponding to DSEs can be consequently obtained by 
minimum realization of its transfer function. 

In Section III, we demonstrate the equivalence of the DSEs 
and the EMT companion matrix. From the description in the 
previous paragraph, this would automatically imply the 
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equivalence between classical state variable equations (SVE) 
and the EMT approach.  

This paper only considers lumped linear circuits, e.g., circuits 
which have resistors (R), inductors (L) and capacitors (C) and 
current source input. However, it is valuable to point out that 
other elements such as voltage source can be easily included 
since MNA method is used in this paper.   

In the derivation, the trapezoidal integration method is 
applied to the DSEs, as this is the method also used in 
Dommel’s approach. The resulting discrete time domain 
equations, are then represented in nodal admittance form.    It is 
shown that the resulting admittance matrix is identical to the 
admittance matrix as generated in EMT solvers such as EMTP, 
where the admittance matric is generated from the companion 
models of the individual elements. A simple example is 
provided in Section IV to demonstrate the equivalency 

Although in theory, the state variable equation model could 
allow for theoretical calculation of the system response, it may 
be impractical for a very large system. Our intention was not to 
propose an alternative solution method to EMT solvers, but to 
show the equivalency between the two methods, so that the 
large body of control system literature becomes available to 
analyze the stability and accuracy of EMT algorithms.    

II.  BACKGROUND 

In this section, the descriptor state space equations (DSEs) 
can be generated based on Kirchhoff’s laws using modified 
nodal analysis. The admittance matrix and history current 
source terms used by EMT type simulations are reviewed, 
which will be used to show the equivalence with DSEs in next 
section.   

A.  Kirchhoff’s Law 

In lumped circuits, the electrical behavior of the network is 
completely described by Kirchhoff’s laws. This can be shortly 
summarized as below: 

Assuming branch currents 𝑖ଵ ⋯ 𝑖 entering any node n in the 
circuit, Kirchhoff’s current law (KCL) gives ∑  𝑖


ୀଵ = 0  . 

Similarly, for a loop p composed of m branches with voltages 
𝑣ଵ ⋯ 𝑣 , Kirchhoff’s voltage law (KVL) states that  
∑  𝑣


ୀଵ = 0.  
For a practical circuit, there are usually many loops and 

nodes. In order to form the standard state space equations with 
a non-singular system matrix, the circuit is partitioned into a 
normal tree and normal co-tree methods to systematically 
generate the state space equations [2]. However, Sana and 
Mahseredjian [3, 4] state that this method is impractical for very 
large circuits because of the excessive computation time to 
formulate the state space. As an alternative, the MNA method, 
which  is widely used in computer aided design [10] can be 
used. The MNA equations can be easily generated from the 
circuit netlist but in the form of descriptor state space equations, 
which are essentially Differential-algebraic equations (DAEs) 
and the descriptor state variables may be linear dependent.  

B.  Description of the Circuit by a Node Incidence Matrix 

Consider a circuit with n nodes (excluding the datum or 
ground node) and b branches. We define an orientation for each 
branch, i.e. one node is set to be the “starting” node while the 
other is the “end”. The node incidence matrix with elements as 

shown below relates the nodes to the branches [2]. Note that 
this matrix can be directly formed based on the circuit netlist, 
which is the same information used for EMT type simulations: 

 𝑎 = ൝
1,   𝑖𝑓 𝑏𝑟𝑎𝑛𝑐ℎ 𝑗 ℎ𝑎𝑠 𝑠𝑡𝑎𝑟𝑡 𝑛𝑜𝑑𝑒 𝑖
−1,   𝑖𝑓 𝑏𝑟𝑎𝑛𝑐ℎ 𝑗 ℎ𝑎𝑠 𝑒𝑛𝑑 𝑛𝑜𝑑𝑒 𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

Consequently, collecting all branch currents into one vector: 
𝒊 = [𝑖ଵ ⋯ 𝑖]் 

The KCL equations are directly represented as below: 

 𝑨 ∙ 𝒊 = 0 (3)

where 𝑨 is the incidence matrix: 

𝑨 = ൭

𝑎ଵଵ ⋯ 𝑎ଵ

⋮ ⋱ ⋮
𝑎ଵ ⋯ 𝑎

൱ 

Using vector 𝒆 and 𝒗 to represent node voltage and branch 
voltage, the node incidence matrix also represents the mapping 
from node to branch voltage as below: 

 𝒗 = 𝑨் ∙ 𝒆 (4)

C.  Generation of Descriptor State Space Equations 

  Assume there are 𝑛  capacitors, 𝑛  inductors, 𝑛ோ  resistors 
and 𝑛ூ current sources. Ordering all the columns in matrix 𝑨 in 
the sequence of capacitor, inductor, resistor, current source 
branches, i.e.,    𝑨 = (𝑨𝑪, 𝑨𝑳, 𝑨𝑹, 𝑨𝑰  ),   equation (4) can be 
rewritten as below: 

 ቌ

𝒗𝒄

𝒗𝑳
𝒗𝑹

𝒗𝑰

ቍ =

⎝

⎜
⎛

𝑨𝒄
𝑻

𝑨𝑳
𝑻

𝑨𝑹
𝑻

𝑨𝑰
𝑻

⎠

⎟
⎞

∙ 𝒆 (5)

 
Where 𝒗𝒄, 𝒗𝑳,  𝒗𝑹,  𝒗𝑰 denote capacitor, inductor, resistor and 
current source branch voltage vector respectively.  

Consequently, substituting matrix  𝑨 = (𝑨𝑪, 𝑨𝑳, 𝑨𝑹, 𝑨𝑰  ) to 
equation (3) gives: 

 𝑨𝒄 ∙ 𝒊𝒄 + 𝑨𝑳 ∙ 𝒊𝑳 + 𝑨𝑹 ∙ 𝒊𝑹 + 𝑨𝑰 ∙ 𝒊𝑰 = 𝟎 (6)

Substituting the RLC elements relation and equation (5) to 
(6) gives: 

  
൬𝑨𝒄 ∙ 𝑪 ∙ 𝑨𝒄

𝑻 𝟎
0 𝑳

൰ ∙
𝑑

𝑑𝑡
ቀ

𝒆
𝒊𝑳

ቁ 

= − ቆ
𝑨𝑹 ∙ 𝑮 ∙ 𝑨𝑹

𝑻 𝑨𝑳

−𝑨𝑳
𝑻 𝟎

ቇ ∙ ቀ
𝒆
𝒊𝑳

ቁ − ቀ
𝑨𝑰

𝟎
ቁ ∙ 𝒊𝑰  

(7)

where 𝑪 , 𝑮 , and 𝑳  are diagonal matrixes containing all the 
capacitance, admittance and inductance values respectively. With  
𝑪ᇱ = 𝑨𝒄 ∙ 𝑪 ∙ 𝑨𝒄

𝑻 and 𝑮ᇱ = 𝑨𝑹 ∙ 𝑮 ∙ 𝑨𝑹
𝑻 (6) becomes (7): 

 ቀ𝑪′ 𝟎
0 𝑳

ቁ ∙
ௗ

ௗ௧
ቀ

𝒆
𝒊𝑳

ቁ = − ቆ
𝑮′ 𝑨𝑳

−𝑨𝑳
𝑻 𝟎

ቇ ∙ ቀ
𝒆
𝒊𝑳

ቁ − ቀ
𝑨𝑰

𝟎
ቁ ∙ 𝒊𝑰  (8)

which is in the form: 

 𝑬 ∙ �̇� = −𝑨 ∙ 𝒙 + 𝑩𝒖 (9)

Equation (9) is known as descriptor state space equation [11]. 
In standard state space equations of the form (1) the state 

variables are the linearly independent capacitor branch voltages 
and linearly independent inductor branch currents (if inductor 
cut-sets or capacitor loops exists, not all inductor currents and 
capacitor voltages are SVs). These are a minimal set and are 



  

linearly independent. In DSEs, all node voltages 𝒆 and inductor 
branch currents are the descriptor state variables (might be 
linear dependent), which are a linear combination of the 
standard state variables. Consequently, the matrix 𝑬  may be 
singular and thus non-invertible. If it was invertible, (9) could 
directly be transformed to (1) by inverting E.   Reference [7, 8] 
describe methods to transform (9) to standard state variable, 
and eigenvalues of (1) are the same as the generalized 
eigenvalues [12] of (9). As a results, (9) and (1) represent the 
same physical system and embody the same information.   

D.  Update Equation in EMT Type Simulation 

The EMT algorithm is a systematic approach to obtaining 
update values for node voltages based on the input current 
sources and past history of inductor and capacitor currents and 
voltages. All inductor and capacitor branches are first 
discretized into a companion circuit consisting of a conductance 
and a history current source as shown in Fig. 1 [1].  
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Fig. 1. Companion circuit model for inductor and capacitor  

 
For the jth inductor or kth capacitor   
 

𝑖()
(𝑡) = 𝑔

() ∙ 𝑣()
(𝑡) + 𝐼()

(𝑡 − ∆𝑡) 

 𝑖
()(𝑡) = 𝑔

() ∙ 𝑣()
(𝑡) + 𝐼()

(𝑡 − ∆𝑡) (10)

The entire set of companion circuit branch equations (with 
𝑛 capacitors and 𝑛 inductors) then become as in: 

ቌ
𝑖(ଵ)

(𝑡)
⋮

𝑖()
(𝑡)

ቍ = ቌ
𝑔

(ଵ) ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑔

()
ቍ ∙ ቌ

𝑣(ଵ)
(𝑡)
⋮

𝑣()
(𝑡)

ቍ

+ ቌ
𝐼(ଵ)

(𝑡 − ∆𝑡)
⋮

𝐼()
(𝑡 − ∆𝑡)

ቍ 

 And  

ቌ
𝑖(ଵ)

(𝑡)
⋮

𝑖(ಽ)
(𝑡)

ቍ = ቌ
𝑔

(ଵ) ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑔

(ಽ)
ቍ ∙ ቌ

𝑣(ଵ)
(𝑡)
⋮

𝑣(ಽ)
(𝑡)

ቍ

+ ቌ
𝐼(ଵ)

(𝑡 − ∆𝑡)
⋮

𝐼(ಽ)
(𝑡 − ∆𝑡)

ቍ 

Which can be written in matrix and vector form as below: 
𝒊𝒄(𝑡) = 𝒈𝒄 ∙ 𝒗𝒄(𝑡) + 𝑰(𝑡 − ∆𝑡) 

 𝒊𝑳(𝑡) = 𝒈𝑳 ∙ 𝒗𝑳(𝑡) + 𝑰(𝑡 − ∆𝑡) (11)

Where 𝒈𝒄  and 𝒈𝑳  are diagonal matrixes containing all the 
equivalent inductor and capacitor admittance respectively, 𝒊𝒄, 
𝒗𝒄, 𝒊𝑳, 𝒗𝑳  are column vectors which represent capacitor and 
inductor branch currents and voltages. Their elements are 

arranged corresponding to matrix 𝒈𝒄 and 𝒈𝑳.  𝑰 , 𝑰  are history 
current source vectors: 

𝑰(𝑡 − ∆𝑡) = 𝒊𝑳(𝑡 − ∆𝑡) + 𝒈𝑳 ∙ 𝒗𝑳(𝑡 − ∆𝑡) 

 𝑰(𝑡 − ∆𝑡) = −𝒊𝑪(𝑡 − ∆𝑡) − 𝒈𝑪 ∙ 𝒗𝑪 (𝑡 − ∆𝑡) (12)

Consequently, nodal analysis is applied by substituting 
equation (11) and (12) into (5) and (6): 

 
ൣ𝑨𝒄 ∙ 𝒈𝒄 ∙ 𝑨𝒄

𝑻 + 𝑨𝑳 ∙ 𝒈𝑳 ∙ 𝑨𝑳
𝑻 + 𝑨𝑹 ∙ 𝑮 ∙ 𝑨𝑹

𝑻൧ ∙ 𝒆(𝑡) 
= −𝑨𝑰 ∙ 𝒊𝑰(𝑡) − 𝑨𝑳 ∙ 𝑰𝑳(𝒕 − ∆𝑡) − 𝑨𝑪 ∙ 𝑰𝑪(𝒕 − ∆𝑡) (13)        

Simple algebraic manipulation gives:   


2𝑪ᇱ

∆𝑡
+ 𝑨𝑳 ∙

∆𝑡

2
∙ 𝑳ି𝟏 ∙ 𝑨𝑳

𝑻 + 𝑮ᇱ൨ ∙ 𝒆(𝑡) 

= −𝑨𝑰 ∙ 𝒊𝑰(𝑡) − 𝑨𝑳 ∙ 𝑰𝑳(𝑡 − ∆𝑡) − 𝑨𝑪 ∙ 𝑰𝑪(𝑡 − ∆𝑡)             (14) 
Equation (14) will be used in next section to show the 

equivalency with the DSE approach. 
In EMT type simulation field, Equation (14) is usually 

known as new node voltage update equations form as below in 
EMT type simulations: 

 𝒀௧ ∙ 𝒆(𝑡) = 𝑰𝒉𝒊𝒔(t − ∆𝑡) + 𝑰𝒔(𝑡) (15)

where: 
𝑰𝒉𝒊𝒔(t − ∆𝑡) = −𝑨𝑳 ∙ 𝑰𝑳(𝑡 − ∆𝑡) − 𝑨𝑪 ∙ 𝑰𝑪(𝑡 − ∆𝑡) 

𝑰𝒔(𝑡) = −𝑨𝑰 ∙ 𝒊𝑰(𝑡) 

III.  RELATIONSHIP BETWEEN DESCRIPTOR STATE SPACE 

EQUATIONS AND EMT TYPE SIMULATIONS 

This section derives the update equation for new node 
voltages based on the descriptor state space and shows that it is 
identical to the update equation (14) for EMT type companion 
matrix. 

A.  Update Equation Derived from Descriptor State Equations 

 
Directly applying the trapezoidal method to equations (9) 

gives: 

 
𝑬 ∙ 𝑥(𝑡) = 𝑬 ∙ 𝑥(𝑡 − ∆𝑡) +

ି∙∆௧

ଶ
∙ ൫𝑥(𝑡) + 𝑥(𝑡 −

∆𝑡)൯ +
∙∆௧

ଶ
൫𝑢(𝑡) + 𝑢(𝑡 − ∆𝑡)൯  

(16)

Substituting equation (8) gives: 

ቀ
𝑪ᇱ 𝟎
0 𝑳

ቁ ∙ ൬
𝒆(𝑡)

𝒊𝑳(𝑡)
൰ = ቀ

𝑪ᇱ 𝟎
0 𝑳

ቁ ∙ ൬
𝒆(𝒕 − ∆𝑡)

𝒊𝑳(𝒕 − ∆𝑡)
൰ + 

∆𝑡

2
∙ − ൬

𝑮ᇱ 𝑨𝑳

−𝑨𝑳
𝑻 𝟎

൰ ∙ ቆ൬
𝒆(𝑡)

𝒊𝑳(𝑡)
൰ + ൬

𝒆(𝒕 − ∆𝑡)

𝒊𝑳(𝒕 − ∆𝑡)
൰ቇ 

 +
∆𝑡

2
∙ − ቀ

𝑨𝑰

𝟎
ቁ ∙ (𝒊𝑰(𝑡 − ∆𝑡) + 𝒊𝑰(𝑡)) (17)

B.  First Row Expansion 

Simplifying first row of equation (17) gives: 

 

ଶᇲ

∆௧
∙ 𝒆(𝑡) =

ଶᇲ

∆௧
∙ 𝒆(𝑡 − ∆𝑡) − (𝑮ᇱ 𝑨𝑳) ∙

ቆ൬
𝒆(𝑡 − ∆𝑡)

𝒊𝑳(𝑡 − ∆𝑡)
൰ + ൬

𝒆(𝒕)

𝒊𝑳(𝒕)
൰ቇ + 𝑰௦  

where 𝑰𝒔 = − ቀ
𝑨𝑰

𝟎
ቁ ∙ (𝒊𝑰(𝑡) + 𝒊𝑰(𝑡 − ∆𝑡)).  

(18)

Using KCL, we have −(𝑮′ 𝑨𝑳) ∙ ൬
𝒆(𝒕 − ∆𝑡)

𝒊𝑳(𝒕 − ∆𝑡)
൰ = 𝑨𝒄 ∙

𝒊𝒄(𝒕 − ∆𝑡) + 𝑨𝑰 ∙ 𝒊𝑰(𝒕 − ∆𝑡). Therefore: 



  

 
ଶ𝑪ᇱ

∆௧
∙ 𝒆(𝑡) = −(𝑮ᇱ 𝑨𝑳) ∙ ቆ൬

𝒆(𝑡)

𝒊𝑳(𝑡)
൰ቇ + (

ଶ𝑪ᇲ

∆௧
∙ 𝒆(𝑡 −

∆𝑡) + 𝑨𝒄 ∙ 𝒊𝒄(𝒕 − ∆𝑡) − 𝑨𝑰 ∙ 𝒊𝑰(𝑡))  
(19)

Since: 
2𝑪ᇱ

∆𝑡
∙ 𝒆(𝑡 − ∆𝑡) = 𝑨𝒄 ∙ 𝒈𝒄 ∙ 𝑨𝒄

𝑻 ∙ 𝒆(𝑡 − ∆𝑡) 

 = 𝑨𝒄 ∙ 𝒈𝒄 ∙ 𝒗𝑪 (𝑡 − ∆𝑡) (20)

Expanding equation (19) gives: 
 

ቆ
2𝑪ᇱ

∆𝑡
+ 𝑮ᇱቇ ∙ 𝒆(𝑡) 

= −𝑨𝑳 ∙ 𝒊𝑳(𝑡) + 𝑨𝒄 ∙ 𝒈𝒄 ∙ 𝒗𝑪 (𝑡 − ∆𝑡) + 𝑨𝒄 ∙ 𝒊𝒄(𝒕 − ∆𝑡) −
𝑨𝑰 ∙ 𝒊𝑰(𝑡)  

 = −𝑨𝑳 ∙ 𝒊𝑳(𝑡) − 𝑨𝑰 ∙ 𝒊𝑰(𝑡) − 𝑨𝑪 ∙ 𝑰𝑪(𝒕 − ∆𝑡)  (21)

C.  Second Row Expansion 

Similarly, expanding and simplifying the second row of 
equation (17) gives: 

 

𝒊𝑳(𝑡) = 𝒊𝑳(𝑡 − ∆𝑡) −
∆௧

ଶ
∙ (−𝑳ି𝟏 ∙ 𝑨𝑳

𝑻 𝟎) ∙

ቆ൬
𝒆(𝑡 − ∆𝑡)

𝒊𝑳(𝑡 − ∆𝑡)
൰ + ൬

𝒆(𝒕)

𝒊𝑳(𝒕)
൰ቇ  

(22)

where the bold 𝟎 represents zero matrix. 
Substituting equation (12) with simple algebra gives: 

 𝒊𝑳(𝑡) = 𝑰(𝑡 − ∆𝑡) +
∆௧

ଶ
∙ 𝑳ି𝟏 ∙ 𝑨𝑳

𝑻 ∙ 𝒆(𝑡)  (23)

D.  Update equation for node voltages derived from Descriptor 
State Space Equations 

In direct numerical integration of DSEs, the descriptor state 
variables include all node voltage and inductor currents. On the 
other hand, EMT simulation approaches using companion 
circuits and nodal analysis, only update node voltages. Hence 
to obtain the node voltage updates from DSEs, we need to 
eliminate inductor current term. This can be done by 
substituting equation (23) to the first row expansion (21) as 
below: 

ቆ
2𝑪ᇱ

∆𝑡
+ 𝑮ᇱ + 𝑨𝑳 ∙

∆𝑡

2
∙ 𝑳ି𝟏 ∙ 𝑨𝑳

𝑻ቇ ∙ 𝒆(𝑡) 

 
= −𝑨𝑰 ∙ 𝒊𝑰(𝑡) − 𝑨𝑳 ∙ 𝑰(𝑡 − ∆𝑡) − 𝑨𝑪 ∙ 𝑰𝑪(𝒕 − ∆𝑡)  

Which is also in the form of: 
𝒀௧ ∙ 𝒆(𝑡) = 𝑰𝒉𝒊𝒔(t − ∆𝑡) + 𝑰𝒔(𝑡)  

(24)

Equation (14) used for EMT type simulations, and Equation  
(24) obtained by the integration of the DSEs are exactly the 
same, which completes the proof of equivalency. 
Q.E.D. 

Although DSEs rather than classical state variable equations 
(SVEs), were used as the system equations, the equivalence to 
SVEs immediately follows from earlier work [7-9] which has 
shown that any set DSEs can be transformed to a set of SVEs. 

IV.  DEMONSTRATION EXAMPLE 

In this section, a simple example is provided that shows the 
resulting update equations for Dommel’s method and DSE are 
the same. Also simulations for two different time steps using 
the two approaches are shown and are identical. 

R1=1Ω 0.8mF

R2=0.1Ω 

0.01H

V1

V2

iC

vC

vL

iL

 
Fig. 2. Example 1 

 
The descriptor state space equations from MNA method can 

be formed as below: 
From the circuit netlist, we have: 

⎝

⎜
⎛

𝑣

𝑣
𝑣ோଵ

𝑣ோଶ
𝑣ூ ⎠

⎟
⎞

=

⎝

⎜
⎜
⎛

𝑨𝒄
𝑻

𝑨𝑳
𝑻

𝑨𝑹𝟏
𝑻

𝑨𝑹𝟐
𝑻

𝑨𝑰
𝑻 ⎠

⎟
⎟
⎞

∙ 𝒆 =

⎝

⎜
⎛

1    0
1 −1
1
0

   
0
1

−1   0⎠

⎟
⎞

∙ ൬
𝑉ଵ

𝑉ଶ
൰ , 𝐶 = 0.0008, 𝐿 = 0.01  

Substituting equation (7) gives the descriptor state space 
equations: 

൭
0.0008 0 0

0 0 0
0 0 0.01

൱ ∙
𝑑

𝑑𝑡
൭

𝑉ଵ

𝑉ଶ

𝑖

൱ 

 
= − ൭

1 0 1
0 10 −1

−1 1 0
൱ ∙ ൭

𝑉ଵ

𝑉ଶ

𝑖

൱ − ൭
−1
0
0

൱ ∙ (𝑖𝑠) 

 

(25)

Directly substituting the parameters to equation (24) gives 
the admittance matrix as below: 

𝒀௧ =
2𝑪′

∆𝑡
+ 𝑮′ + 𝑨𝑳 ∙

∆𝑡

2
∙ 𝑳ି𝟏 ∙ 𝑨𝑳

𝑻 

 = ൭
0.0016

∆𝑡
+ 1 + 50 ∙ ∆𝑡 −50 ∙ ∆𝑡

−50 ∙ ∆𝑡 10 + 50 ∙ ∆𝑡

൱ (26)

With a history current source term: 

 
𝑰𝒉𝒊𝒔(t − ∆𝑡) = ቀ

−1
1

ቁ ∙ 𝑰(𝑡 − ∆𝑡) + ቀ
−1
0

ቁ

∙ 𝑰𝑪(𝒕 − ∆𝑡) 
 

(27)

The corresponding companion circuit formed from 
Dommel’s method is shown below in Fig. 3: 

ILIC gL
1Ω 

iS

V1

V2

gC

0.1Ω 

 
Fig. 3: Companion Circuit for Example 1 



  

 

In Fig. 3, 𝑔 =
.ଵ

∆௧
𝑠 and 𝑔 = 50 ∙ ∆𝑡 𝑠 are the equivalent 

admittance term. The history current source term 𝐼(𝑡 − ∆𝑡) 
and 𝐼(𝑡 − ∆𝑡) are: 

𝐼(𝑡 − ∆𝑡) = −
0.0016

∆𝑡
∙ 𝑣(𝑡 − ∆𝑡) − 𝑖(𝑡 − ∆𝑡) 

 𝐼(𝑡 − ∆𝑡) = 𝑖(𝑡 − ∆𝑡) + 50 ∙ ∆𝑡 ∙ 𝑣(𝑡 − ∆𝑡)  (28)

Assembling the nodal admittance matrix and history current 
vector from Fig.3 gives: 

 𝒀௧ = ቆ
.ଵ

∆௧
+ 1 + 50 ∙ ∆𝑡 −50 ∙ ∆𝑡

−50 ∙ ∆𝑡 10 + 50 ∙ ∆𝑡
ቇ  (29)

And 

 𝑰𝒉𝒊𝒔(t − ∆𝑡) = ൬
−𝐼(𝑡 − ∆𝑡) − 𝐼(𝑡 − ∆𝑡)

𝐼(𝑡 − ∆𝑡)
൰ (30)

which is identical to equation (26) and (27), as it should be, 
because the DSE approach and Companion Circuit approach 
were proved to be identical in Section III. 
 

 
Fig 4. Node 1 voltage for ∆𝑡 = 50 𝜇𝑠 

 

 
Fig 5. Node 1 voltage for ∆𝑡 = 8000 𝜇𝑠 

 
Fig. 4. shows the voltage of node 1 for a time-step of 50 𝜇𝑠, 
using Dommel’s method, as well as from integration of the 
DSEs and SVEs by Trapezoidal method. Similarly, Fig. 5. 
shows the same for a time-step of 8000 𝜇𝑠.  In both cases the 
results are exactly overlapping, as they should be due to the 
exact equivalence. Note the 8000 𝜇𝑠 timestep is too large for 

accuracy and gives useless results, however, the point here was 
to show that regardless of the time-step used, the two equivalent 
approaches yield the same results, accurate or otherwise!  

V.  CONCLUSION 

In this paper, transient simulation based on state variable 
approach is theoretically shown to be equivalent to Dommel’s 
companion circuit/nodal analysis approach.   

To show the equivalence, Dommel’s method is first applied 
and the update equation consisting of the overall resultant 
admittance matrix and history terms is derived. Then Descriptor  
State Space Equations (DSEs) which can be directly obtained 
from the MNA method are obtained. By algebraic manipulation 
of the DSEs, the resulting update equations for node voltages 
are derived and have the form of an admittance matrix and 
history terms. The admittance matrix and history terms obtained 
from the DSEs are exactly the same, thereby proving the 
equivalence.  Although DSEs rather than classical state variable 
equations (SVE), were used as the DSEs equations are easily 
obtainable for arbitrary circuits, the equivalence to SVEs 
immediately follows from earlier work [7-9]which has shown 
that DSEs can be transformed to SVEs. 

One simple example is provided in the end to demonstrate 
the equivalency.  Simulations with two different time-steps are 
presented and show that the simulations too are exactly the 
same. 
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