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Abstract--This paper presents an analysis of some numerical 

integration methods that can be used for multirate simulation in 

electromagnetic transient programs. Among the existing 

methods, the trapezoidal, backward Euler and Simpson’s 

integration rules will be evaluated. These methods are analyzed 

regarding characteristics such as accuracy and stability when 

applied to the simulation of electrical transients involving two 

different time steps. The transient solution of an RLC network is 

then presented using these numerical methods and simulating it 

with double integration time steps. 
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I.  INTRODUCTION 

HE time domain simulation plays a key role in the design 

and analysis of electrical networks. The EMTP 

(Electromagnetic Transients Program) [1], in its several 

versions, is regarded as the leading tool for the simulation of 

electromagnetic transients in power systems. However, this 

tool has a limitation that is the necessity of using a single 

integration step for the entire network. As a result, the size of 

this step is determined by the characteristics of the elements 

that have faster dynamics, possibly resulting in a waste of 

computational resources, since the integration step could be 

larger for certain network components with slower dynamics. 

This context has led several groups of researchers to seek 

new techniques capable of performing faster simulations 

without sacrificing accuracy and stability. In the 1980’s and 

1990’s, the possibility of using two or more different time 

steps for simulation of electrical networks was the focus of 

several studies, both for the simulation of electronic circuits 

and for the simulation of power systems [2]-[3]. There are also 

recent works that continue exploring this possibility [4]-[5]. 

This paper presents an analysis of accuracy and stability of 
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some integration rules used for the simulation of 

electromagnetic transients when applying the technique 

developed in [6] for the simulation of power systems with 

multiple time steps, also called latency exploitation 

The remainder of this paper is organized as follows. 

Section II summarizes the technique adopted for the 

simulation with double time steps, although it may be 

extended to multiple time steps as well. Section III presents 

the modifications performed in some integration rules for 

double time step simulations. In sections IV and V, the 

stability and accuracy of the integration rules for the double 

time step scenario are analyzed, respectively. In section VI, 

some simulation results are presented. Finally, in section VII, 

the conclusions are stated. 

II.  SIMULATION METHOD WITH DOUBLE INTEGRATION STEPS 

The method used in this work for the time-domain 

simulation of a network with more than one integration step, is 

applied in the context of a partitioned network which is 

divided into subnetworks connected by links [7]. The 

partitioning technique is based on the recognition that some 

subsystems may have large time constants, and therefore can 

be simulated with large time steps, and other subsystems may 

have small time constants, requiring consequently smaller 

time steps [6]. Fig. 1 shows a network partitioned into fast and 

slow subsystems, connected through a link. Each subsystem 

contains any combination of voltage and current sources, 

passive elements, and transmission lines. They are connected 

through a resistance in this case, although any other element 

could have been chosen as a link. 

 
Fig. 1.  Diagram of a generic network partitioned into a fast subsystem and a 
slow one. 

 

The MATE (Multi-Area Thévenin Equivalent) concept [7] 

guarantees an accurate solution of the complete network for a 

single time step solution if both subsystems are first solved 

T 



separately, as if they were completely decoupled and then the 

nodal voltages are recalculated taking into account the current 

flowing through the link. Even if different integration steps are 

used, it is still possible to ensure accurate results if each of the 

subsystems can be well characterized as being either slow or 

fast. 

In the technique already presented in previous contributions 

[6, 8] the time step set for the slow subsystem must always be 

an integer multiple of the fast subnetwork time step. By setting 

ΔT as the large time step and Δt as the small time step, this 

relationship can be expressed as 
 

Δ𝑇 = 𝑛Δ𝑡 (1)  
 

where n ˃ 1. In this work, the analysis will be performed with 

only two time steps, although a greater number of time steps 

can be used following the framework presented. 

Fig. 2 shows a timeline of a general network simulation 

when a double time step simulation is performed. 

 
Fig. 2.  Simulation timeline with two distinct time steps. 
 

For a synchronized solution, both subsystems are solved 

together at instants multiple of ΔT. The particularity of the 

method is that for the time steps located between two 

consecutive ΔT’s intervals, only the fast subsystem is solved. 

III.    INTEGRATION RULES FOR SIMULATION WITH DOUBLE-

TIME STEP. 

To verify the efficiency of the method proposed, this study 

will analyze the behavior of three numerical integration rules 

for the discretization of the differential equations relating 

voltage and current in inductors and capacitors when working 

with two different time steps. From the equations in the 

continuous time domain:  
 

𝑖𝑐(𝑡) = C
𝑑𝑣𝑐(𝑡)

𝑑𝑡
 

(2)  

 

v𝐿(𝑡) = L
𝑑𝑖𝐿(𝑡)

𝑑𝑡
 

(3)  

where vc (t), vL (t), ic (t), and iL (t) are the voltage in a capacitor, 

the voltage in an inductor, the current in a capacitor and the 

current in an inductor, respectively. 

A.   Trapezoidal rule 

Integrating both sides of (2) and (3) from t−ΔT to t leads to 
 

∫
𝑡

𝑡−Δ𝑇

𝑣𝐿(𝑡)𝑑𝑡 = 𝐿[(𝑖𝐿(𝑡) − 𝑖𝐿(𝑡 − Δ𝑇)] 
(4)  

 

∫
𝑡

𝑡−Δ𝑇

𝑖𝑐(𝑡)𝑑𝑡 = 𝐶[(𝑣𝑐(𝑡) − 𝑣𝑐(𝑡 − Δ𝑇)] 
(5)  

 

Applying the trapezoidal integration rule to (4) and (5), and 

considering all solutions between two consecutive large steps, 

results in 

∫
𝑡

𝑡−Δ𝑇

𝑣𝐿(𝑡)𝑑𝑡 =
Δ𝑡

2
[(𝑣𝐿(𝑡) + 𝑣𝐿(𝑡 − Δ𝑇)]

+  Δ𝑡 ∑

𝑛−1

𝑘=1

𝑣𝐿(𝑡 − ΔT + 𝑘Δt) 

(6)  

 

∫
𝑡

𝑡−Δ𝑇

𝑖𝑐(𝑡)𝑑𝑡 =
Δ𝑡

2
[(𝑖𝑐(𝑡) + 𝑖𝑐(𝑡 − Δ𝑇)]

+ Δ𝑡 ∑

𝑛−1

𝑘=1

𝑖𝑐(𝑡 − ΔT + 𝑘Δt) 

(7)  

 

The equations relating voltage and current in an inductor 

and a capacitor in discrete time can be written as: 

𝑖𝐿(𝑡) =
Δ𝑡

2𝐿
𝑣𝐿(𝑡) + ℎ𝐿(𝑡) 

(8)  

 

𝑖𝑐(𝑡) =
2𝐶

Δ𝑡
𝑣𝑐(𝑡) + ℎ𝑐(𝑡) 

(9)  

 

The history terms are given by:  
 

ℎ𝐿(𝑡) = 𝑖𝐿(𝑡 − Δ𝑇) +
Δ𝑡

2𝐿
𝑣𝐿(𝑡 − Δ𝑇) +

Δ𝑡

𝐿
∑

𝑛−1

𝑘=1

𝑣𝐿(𝑡 − ΔT + 𝑘Δ𝑡) 
(10)  

 

ℎ𝑐(𝑡) = −
2𝐶

Δ𝑡
𝑣𝑐(𝑡 − Δ𝑇) − 𝑖𝑐(𝑡 − Δ𝑇) − 2 ∑

𝑛−1

𝑘=1

𝑖𝑐(𝑡 − Δ𝑇 + 𝑘Δ𝑡) 
(11)  

 

Equations (10) and (11) generate the history sources for an 

inductor and a capacitor, respectively, with all the information 

gathered from these elements within the large integration step 

ΔT. 

This avoids the almost randomness of just considering the 

individual values of the last calculated solution from the 

fastest subnetwork. The number of numerical operations does 

not increase significantly when the history terms of the fast 

elements have to be finally updated so that the complete 

network may be solved together, since they are continuously 

accumulated at each small 𝛥t [8]. 

B.  Backward Euler rule 

Applying the backward Euler rule for (2) and (3), voltage 

and current ratios of an inductor and a capacitor in the 

discretized time domain can be obtained leading to, after some 

mathematical manipulations: 

∫
𝑡

𝑡−Δ𝑇

𝑣𝐿(𝑡)𝑑𝑡 = Δ𝑡𝑣𝐿(𝑡) + Δ𝑡 ∑

𝑛−1

𝑘=1

𝑣𝐿(𝑡 − Δ𝑇 + 𝑘Δ𝑡) 
(12)  

  

∫
𝑡

𝑡−Δ𝑇

𝑖𝑐(𝑡)𝑑𝑡 = Δ𝑡𝑖𝑐(𝑡) + Δ𝑡 ∑

𝑛−1

𝑘=1

𝑖𝑐(𝑡 − Δ𝑇 + 𝑘Δ𝑡) 
(13)  

 

In compact form the following equations may be derived 

for the backward Euler rule:  
 

𝑖𝐿(𝑡) =
Δ𝑡

𝐿
𝑣𝐿(𝑡) + ℎ𝐿(𝑡) 

(14)  

 

𝑖𝑐(𝑡) =
𝐶

Δ𝑡
𝑣𝑐(𝑡) + ℎ𝑐(𝑡) 

(15)  

The history terms, considering all the information gathered 

for the larger integration step ΔT are given by 
 



ℎ𝐿(𝑡) = 𝑖𝐿(𝑡 − Δ𝑇) +
Δ𝑡

𝐿
∑

𝑛−1

𝑘=1

𝑣𝐿(𝑡 − Δ𝑇 + 𝑘Δ𝑡) 

(16)  

 

ℎ𝑐(𝑡) = −
𝐶

Δ𝑡
𝑣𝐿(𝑡 − Δ𝑇) − ∑

𝑛−1

𝑘=1

𝑖𝑐(𝑡 − Δ𝑇 + 𝑘Δ𝑡) 

(17)  

C.  Simpson’s rule  

The Simpson rule consists in the hypothesis of 

approximating the derivative of a function to be integrated by 

a second-degree function. 

Applying the same development as before to (2) and (3), 

the following equations may be derived: 
 

𝑖𝐿(𝑡) =
Δ𝑡

3𝐿
𝑣𝐿(𝑡) + ℎ𝐿(𝑡) 

(18)  

 

𝑖𝑐(𝑡) =
3𝐶

Δ𝑡
𝑣𝑐(𝑡) − ℎ𝑐(𝑡) 

(19)  

The history terms are given by 
 

ℎ𝐿(𝑡) = 𝑖𝐿(𝑡 − 2Δ𝑇) +
Δ𝑡

3𝐿
[4𝑣𝐿(𝑡 − Δ𝑇) + 𝑣𝐿(𝑡 − 2Δ𝑇)]

+ (
Δ𝑡

𝐿
∑

𝑛−1

𝑘=1

𝑣𝐿(𝑡 − 2Δ𝑇 + 𝑘Δ𝑡)) 

(20)  

 

ℎ𝑐(𝑡) = −
3𝐶

Δ𝑇
𝑣𝑐(𝑡 − 2Δ𝑇) − 4𝑖𝑐(𝑡 − Δ𝑇) − 𝑖𝑐(𝑡 − 2Δ𝑇)

− 3 ∑

𝑛−1

𝑘=1

𝑖𝑐(𝑡 − 2Δ𝑇 + 𝑘Δ𝑡) 

(21)  

IV.  ANALYSIS OF THE STABILITY OF THE INTEGRATION RULES 

FOR SIMULATION WITH DOUBLE-TIME STEP 

In this section, the stability of the integration rules 

presented in the previous section will be analyzed for the case 

of double time steps. The z-transform is applied to the 

difference equations and the poles and zeros shall be checked. 

A.  Trapezoidal rule 

Applying for an inductor an entry in the form 𝑣𝐿(𝑡)  =

𝑒𝑗𝜔𝑡  and assuming the output in the form 𝑖𝐿(𝑡)  =

𝑌𝑒(𝜔)𝑒𝑗𝜔𝑡  to (8), where Ye(ω) is the admittance in the 

frequency domain, in terms of the small time step Δt, after 

some manipulation it is possible to obtain: 
 

𝑌𝑒(𝜔) =
Δ𝑡

2𝐿
[
𝑒𝑗𝜔𝑛Δ𝑡 + 1

𝑒𝑗𝜔𝑛Δ𝑡 − 1
] +

Δ𝑡

2𝐿
[
2 ∑𝑛−1

𝑘=1 𝑒𝑗𝜔𝑘Δ𝑡

𝑒𝑗𝜔𝑛Δ𝑡 − 1
] 

(22)  

 

Replacing 𝑒𝑗𝜔𝛥𝑡  by z, the transfer function in the z-

domain is then given by 
 

𝑌𝑒(𝜔) =
Δ𝑡

2𝐿
[
𝑧𝑛 + 1 + 2 ∑𝑛−1

𝑘=1 𝑧𝑘

𝑧𝑛 − 1
] 

(23)  

Expanding (23) results in 
 

𝑌𝑒(𝜔) =
Δ𝑡

2𝐿
[
(𝑧 + 1)

(𝑧 − 1)

(𝑧 + 𝑧2)

(𝑧 + 𝑧2)
. . .

(𝑧 + 𝑧𝑛)

(𝑧 + 𝑧𝑛)
] =

Δ𝑡

2𝐿
[
𝑧 + 1

𝑧 − 1
] (24)  

 

Equation (24) is the same transfer function obtained for the 

trapezoidal rule for the single time step case as it can be 

verified in [9]. It is possible to notice that the transfer function 

has a pole in z = 1 and a zero in z = −1, and the system is 

stable for both the integrator and the differentiator. However, 

the pole in z = −1 for the equivalent differentiator introduces 

numerical bounded oscillations at discontinuities, as when a 

single time step is used.  

B.  Backward Euler rule 

Applying an entry in the form 𝑣𝐿(𝑡) = 𝑒𝑗𝜔𝑡  and assuming 

the output in the form 𝑖𝐿(𝑡) = 𝑌𝑒(𝜔)𝑒𝑗𝜔𝑡  to (14), where 

Ye(𝜔) is the admittance in the frequency domain, in terms of 

the small time step Δt, after some manipulation it is possible to 

obtain  
 

𝑌𝑒(𝜔) =
Δ𝑡

𝐿
[

𝑒𝑗𝜔𝑛Δ𝑡

𝑒𝑗𝜔𝑛Δ𝑡 − 1
] +

Δ𝑡

𝐿
[
∑𝑛−1

𝑘=1 𝑒𝑗𝜔𝑘Δ𝑡

𝑒𝑗𝜔𝑛Δ𝑡 − 1
] 

(25)  

 

Replacing 𝑒𝑗𝜔𝛥𝑡 by z, the transfer function is then given 

by 
 

𝑌𝑒(𝜔) =
Δ𝑡

𝐿
[
𝑧𝑛 + ∑𝑛−1

𝑘=1 𝑧𝑘

𝑧𝑛 − 1
] 

(26)  

 

Expanding (26) results in 
 

𝑌𝑒(𝜔) =
Δ𝑡

𝐿
[

𝑧

(𝑧 − 1)

(𝑧 + 𝑧2)

(𝑧 + 𝑧2)
. . .

(𝑧 + 𝑧𝑛)

(𝑧 + 𝑧𝑛)
] =

Δ𝑡

𝐿
[

𝑧

𝑧 − 1
] (27)  

 

The transfer function has a pole in z = 1 and a zero in z = 0, 

exactly the same as when the single integration step is used 

[9], and the system is again stable for both the integrator and 

differentiator. The pole in z = 0 for the equivalent 

differentiator makes the system critically damped as a 

differentiator, as already occurs in the case of a single 

integration step [10]. 

C.  Simpson’s rule  

It is again assumed an entry in the form 𝑣𝐿(𝑡) = 𝑒𝑗𝜔𝑡  and 

assuming the output in the form 𝑖𝐿(𝑡) = 𝑌𝑒(𝜔)𝑒𝑗𝜔𝑡 in (18), 

the admittance in the frequency domain for the Simpson rule 

is given by:  
 

𝑌𝑒(𝜔) =
Δ𝑡

3𝐿
[
𝑒𝑗𝜔2nΔ𝑡 + 4𝑒𝑗𝜔𝑛Δ𝑡 + 1

𝑒𝑗𝜔2nΔ𝑡 − 1
] +

Δ𝑡

3𝐿
[
3 ∑𝑛−1

𝑘=1 𝑒𝑗𝜔𝑘Δ𝑡

𝑒𝑗𝜔2nΔ𝑡 − 1
] 

(28)  

 

Replacing 𝑒𝑗𝜔𝛥𝑡 by z, the transfer function is then given 

by 
 

𝑌𝑒(𝜔) =
Δ𝑡

3𝐿
[
𝑧2𝑛 + 4𝑧𝑛 + 1

𝑧2𝑛 − 1
] +

Δ𝑡

3𝐿
[
3 ∑𝑛−1

𝑘=1 𝑧𝑘

𝑧2𝑛 − 1
] 

(29)  

 

Expanding (29), results in 
 

𝑌𝑒(𝜔) =  
Δ𝑡

3𝐿
[
𝑧2 + 4𝑧 + 1

𝑧2 − 1

(𝑧 + 𝑧2)

(𝑧 + 𝑧2)
. . .

(𝑧 + 𝑧𝑛)

(𝑧 + 𝑧𝑛)
]

=
Δ𝑡

3𝐿
[
𝑧2 + 4𝑧 + 1

𝑧2 − 1
] 

(30)  

 

The transfer function has poles in z = ±1 and zeros in z = 

−0.268 and z = −3.732. Therefore the Simpson rule is stable as 

an integrator, although it may become unstable as a 

differentiator. 

V.   ANALYSIS OF THE ACCURACY OF THE INTEGRATION RULES 

FOR SIMULATION WITH DOUBLE-TIME STEP 

A.  Trapezoidal rule 

For accuracy analysis, (22) can be rewritten as 
 



𝑌𝑒(𝜔) = 𝑌𝑒(1)(𝜔) + 𝑌𝑒(2)(𝜔) (31)  
 

where  

𝑌𝑒(1)(𝜔) =
Δ𝑡

2𝐿
[
𝑒𝑗𝜔𝑛Δ𝑡 + 1

𝑒𝑗𝜔𝑛Δ𝑡 − 1
] 

(32)  

𝑌𝑒(2)(𝜔) =
Δ𝑡

2𝐿
[
2 ∑𝑛−1

𝑘=1 𝑒𝑗𝜔𝑘Δ𝑡

𝑒𝑗𝜔𝑛Δ𝑡 − 1
] 

(33)  

 

Both the terms 𝑌𝑒(1)(𝜔) and 𝑌𝑒(2)(𝜔)  depend on the 

ratio between the integration steps n = 𝛥T/𝛥t. However, the 

number of terms in 𝑌𝑒(2)(𝜔)  increases as n grows. The 

equivalent inductance Le(1) (ω), after some manipulation, can 

be obtained from (32) as 
 

𝐿𝑒(1)(𝜔) = 𝑛𝐿
𝑡𝑎𝑛(

𝜔𝑛Δ𝑡

2
)

𝜔𝑛Δ𝑡

2

 

(34)  

 

The frequency-dependent distortion factor 𝑘𝑒(1)(𝜔) can 

then be obtained:   
 

𝐾𝑒(1)(𝜔) = 𝑛
𝑡𝑎𝑛(

𝜔𝑛Δ𝑡

2
)

𝜔𝑛Δ𝑡

2

 

(35)  

 

It is possible to verify that the distortion factor ke(1) (ω) is n 

times greater than the distortion of the trapezoidal rule with a 

single time step. From (33), one can write 𝑌𝑒(2)(𝜔) as  
 

𝑌𝑒(2)(𝜔) =
Δ𝑡

2𝐿

∑𝑛−1
𝑘=1 cos [𝜔 (𝑘 −

𝑛

2
) Δ𝑡]

𝑗𝑠𝑖𝑛(
𝜔𝑛Δ𝑡

2
)

 

(36)  

 

With the equivalent inductance 𝐿𝑒(2)(𝜔) given by: 
 

𝐿𝑒(2)(𝜔) = 𝑛𝐿
𝑠𝑖𝑛(

𝜔𝑛Δ𝑡

2
)

(
𝜔𝑛Δ𝑡

2
) ∑𝑛−1

𝑘=1 𝑐𝑜𝑠[𝜔(𝑘 −
𝑛

2
)𝛥𝑡]

 

(37)  

 

The distortion factor 𝐾𝑒(2)(𝜔) can then be obtained as 

𝐾𝑒(2)(𝜔) = 𝑛
𝑠𝑖𝑛(

𝜔𝑛Δ𝑡

2
)

(
𝜔𝑛Δ𝑡

2
) ∑𝑛−1

𝑘=1 𝑐𝑜𝑠[𝜔(𝑘 −
𝑛

2
)𝛥𝑡]

 

(38)  

 

The summation term present in the denominator of (38) 

takes into account all the contributions of the small time step 

solutions within the large time step ΔT. 

The frequency response of the equivalent admittance Ye(ω) 

for the trapezoidal rule using double time step may be 

compared to the exact continuous time admittance Y(ω): 
 

𝑌𝑒(𝜔)

𝑌(𝜔)
=

1

𝑗𝜔𝐿𝑒(𝜔)
1

𝑗𝜔𝐿

⁄ =
𝐾𝑒(1)(𝜔) + 𝐾𝑒(2)(𝜔)

𝐾𝑒(1)(𝜔)𝐾𝑒(2)(𝜔)
=

1

𝐾𝑒(𝜔)
 

(39)  

where Ke(ω) is the global distortion factor for the trapezoidal 

rule with two different time steps. 

Fig. 3 shows the frequency response in magnitude and 

phase, given in per unit of the Nyquist frequency, for a 

particular situation where ΔT = 2Δt. 

 
Fig. 3.  Frequency response in magnitude and phase of the trapezoidal rule 

considering ΔT = 2Δt. 
 

If the frequency response shown in Fig. 3 is compared to 

the frequency response for the conventional single step 

trapezoidal integration rule or when considering larger ratios 

between ΔT and Δt, it is possible to verify that the history 

source accumulation procedure has not introduced any 

difference to the frequency response. This fact is detailed in 

[9]. It is concluded, therefore, that the accuracy of the 

simulation is not compromised for the fast part of the network 

as long as the large time step ΔT is adequate to represent the 

slower characteristic frequencies of the network.  

B.  Backward Euler rule 

Rewriting (25) to better analyze the accuracy of the 

backward Euler integration rule for double time step 

simulation: 

𝑌𝑒(1)(𝜔) =
Δ𝑡

𝐿
[

𝑒𝑗𝜔𝑛Δ𝑡

𝑒𝑗𝜔𝑛Δ𝑡 − 1
] 

(40)  

 

𝑌𝑒(2)(𝜔) =
Δ𝑡

𝐿
[
∑𝑛−1

𝑘=1 𝑒𝑗𝜔𝑘Δ𝑡

𝑒𝑗𝜔𝑛Δ𝑡 − 1
] 

(41)  

 

Performing some manipulations in (40), results in 
 

𝑌𝑒(1)(𝜔) =
Δ𝑡

2𝐿
+

Δ𝑡

2𝐿
[

1

𝑗𝑡𝑎𝑛(
𝜔𝑛Δ𝑡

2
)
] 

(42)  

 

From (42) it is possible to visualize that there is a real part 

in the equivalent admittance in the case of the backward Euler 

rule. This real part corresponds to an equivalent conductance 

which is responsible for a phase distortion and the damping 

capabilities of the backward Euler rule [10]. 

The distortion factor 𝐾𝑒  (1) (𝜔) can be obtained after the 

appropriate algebraic manipulations, resulting in 
 

𝐾𝑒(1)(𝜔) = 𝑛
𝑡𝑎𝑛(

𝜔𝑛Δ𝑡

2
)

𝜔𝑛Δ𝑡

2

 

(43)  

 

By executing the same procedures for 𝑌𝑒(2)(𝜔) , the 

distortion factor Ke(2)(ω) can be obtained as 
 

𝐾𝑒(2)(𝜔) = 𝑛
𝑠𝑖𝑛(

𝜔𝑛Δ𝑡

2
)

(
𝜔𝑛Δ𝑡

2
) ∑𝑛−1

𝑘=1 𝑐𝑜𝑠[𝜔(𝑘 −
𝑛

2
)𝛥𝑡]

 

(44)  

 

The accuracy of the backward Euler rule can then be 

evaluated by comparing the frequency response of the 

equivalent admittance Ye(𝜔) to the exact continuous time 

admittance Y(𝜔). 

The frequency response of the equivalent admittance Ye(ω) 



for the backward Euler rule using the double time step 

simulation may be compared to the exact continuous time 

admittance Y(ω).  
 

𝑌𝑒(𝜔)

𝑌(𝜔)
=

(
Δ𝑡

2𝐿
+

1

𝑗𝜔𝐿𝑒(𝜔)
)

1

𝑗𝜔𝐿

⁄ =
jΔ𝑡𝜔

2
+

𝐾𝑒(1)(𝜔) + 𝐾𝑒(2)(𝜔)

𝐾𝑒(1)(𝜔)𝐾𝑒(2)(𝜔)
 

Fig. 4 shows the frequency response in amplitude and 

phase, given in per unit of the Nyquist frequency, assuming, 

once again, 𝛥T = 2𝛥t: 

Once again, when comparing to the single step backward 

Euler rule, no difference has been introduced when the history 

source accumulation procedure is adopted for the simulation 

with two different integration steps, therefore not 

compromising the accuracy of the simulation, at least for the 

fast part of the network [9]. 

 
Fig. 4.  Frequency response of the magnitude and phase of the backward 

Euler for the case of ΔT = 2Δt. 

C.  Simpson’s rule  

From (28) one can write: 
 

𝑌𝑒(𝜔) = 𝑌𝑒(1)(𝜔) + 𝑌𝑒(2)(𝜔) + 𝑌𝑒(3)(𝜔) (45)  
 

Applying the same procedure previously performed for the 

Euler and trapezoidal rules, the distortion factor associate to 

each equivalent admittance can be determined by 

𝐾𝑒(1)(𝜔) =
𝑛

3

𝑡𝑎𝑛(
𝜔𝑛Δ𝑡

2
)

𝜔𝑛Δ𝑡

2

 

(46)  

 

𝐾𝑒(2)(𝜔) =
𝑛

3

𝑠𝑒𝑛(
𝜔Δ𝑇

2
)

(
𝜔Δ𝑇

2
) ∑𝑛−1

𝑘=1 𝑐𝑜𝑠[𝜔(𝑘 −
𝑛

2
)

Δ𝑇

𝑛
]
 

(47)  

 

𝐾𝑒(3)(𝜔) =
2𝑛

3

𝑠𝑒𝑛(
𝜔Δ𝑇

2
)

(
𝜔Δ𝑇

2
) ∑𝑛−1

𝑘=1 𝑐𝑜𝑠[𝜔(𝑘 −
𝑛

2
)

Δ𝑇

𝑛
]
 

(48)  

Fig. 5 shows the frequency response in amplitude and 

phase, assuming again, 𝛥T = 2𝛥t. 

The Simpson’s rule is accurate for frequencies below 0.4 

pu of the Nyquist frequency. It is interesting to notice that it 

has a distinct behavior in magnitude and phase below and 

above half the Nyquist frequency.  

VI.  SIMULATION RESULTS 

An example proposed in [8] was chosen for the purpose of 

presenting simulation results using two different time steps for 

the three integration rules discussed in this manuscript. 

 
Fig. 5.  Frequency response in magnitude and phase of the Simpson’s rule 

for the case ΔT = 2Δt. 

Fig. 6 shows the proposed circuit where Vfast is the fast 

capacitor (1μF) voltage and Vslow is the slow capacitor 

(100μF) voltage. This is a simple circuit where the dominant 

eigenvalues in each of the subnetworks are reasonably 

independent [11]. Therefore, it is ideal for the double time step 

simulation. The voltage source, with a frequency of 60 Hz and 

an amplitude of 1.0 V has been connected for a long time, and 

the switch closes at t = 0. Three different simulation methods 

are chosen and tested using the integration rules previously 

analyzed, as follows:  

    1. Simulation using the shortest time step to ensure 

maximum accuracy for the complete network: Δt = 0.2 μs;  

    2. Two different time steps: Δt = 0.2 μs for the fast 

part of the network and ΔT = 2.0 μs for the slow part;  

    3. Simulation using the large time step for the 

complete network: ΔT = 2.0 μs. 

 
Fig. 6.  Network considered for the double time step simulation. 

 

Fig. 7 shows the voltage across the capacitor of the fast part 

of the network for the three methods proposed when using the 

trapezoidal rule. 

Fig. 8 shows the voltage across the fast capacitor for the 

three methods proposed when using the backward Euler 

integration rule. 

Fig. 9 shows the voltage across the fast capacitor of the 

network for the three methods proposed when using the 

Simpson’s rule. 

By analyzing Fig. 7, it is possible to verify that the 

trapezoidal rule represents accurately the voltage across the 

fast capacitor when using the double time step method, as 

expected from the accuracy analysis presented in section V-A. 

The voltage across the fast capacitor, however, is not well 

represented when using the single large time step. 
 



 
Fig. 7.  Voltage across the capacitor C2 (“fast”) using trapezoidal rule. 

 

 
Fig. 8.  Voltage across the capacitor C2 (“fast”) using backward Euler rule. 

 

 
Fig. 9.  Voltage across the capacitor C2 (“fast”) using Simpson’s rule. 

 

In the case of the backward Euler method (Fig. 9), the 

voltage in the fast capacitor when simulated with the double 

time step method has a good agreement with the single fast 

time step, as also expected from the accuracy analysis 

presented in section V-B. However, in both cases, there is an 

increased attenuation due to the equivalent conductance shown 

in (42). On the other hand, the Simpson’s rule has 

demonstrated to be unstable for all the three methods. In 

particular, when using a small time-step for the complete 

circuit, the Simpson’s rule gives accurate results for the initial 

voltage oscillations across the fast capacitor. However as the 

simulation time approaches 0.1 ms, growing oscillations start 

to appear which will eventually lead to numerical instability. 

Fig. 10 shows the comparison of the three integration rules 

proposed in this work specifically for the case of double time 

step simulation: 0.2 μs for the fast part and 2.0 μs for the slow 

part. The voltage in the “fast” capacitor is shown. 

The trapezoidal and backward Euler integration rules gave 

good results when using the double time step simulation 

method, although there is a considerable attenuation in the 

case of the backward Euler rule as previously mentioned. The 

Simpson's rule was unstable as expected from the stability 

analysis performed in section IV-C. 

 

 
Fig. 10.  Voltage across the capacitor C2 (“fast”). For the three integration 
rules and considering the double time step simulation. 

VII.  CONCLUSIONS 

In this work an analysis of some of the numerical 

integration rules that can be used for time-domain transients 

simulation has been performed when considering the 

possibility of executing the simulation with different 

integration steps in order to take advantage of the different 

time constants that distinct parts of a network may exhibit. 

The integration rules analyzed were trapezoidal, backward 

Euler, and Simpson’s, and they have been evaluated both in 

terms of the accuracy and stability of the simulation. It was 

not the purpose of this work to demonstrate the decrease in the 

simulation time. A quantitative comparison is shown in [8]. 

The accuracy and stability of the trapezoidal and backward 

Euler rules under the double time step condition did not 

change when compared to the respective integration rules for a 

single time step for the fast capacitor. Due to the numerical 

damping, the backward Euler rule provides a greater 

attenuation of the electrical variables. The Simpson’s rule did 

not present a satisfactory response due to its unstable 

behavior. 
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