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 

Abstract-- This paper investigates an alternative method for 

EMT simulation of power networks, which uses Descriptor State-

space Equations (DSE) to represent the dynamical equations of 

the circuit. An automated procedure to formulate the DSEs 

directly from the circuit’s netlist is presented. Once formulated, 

the DSEs can be discretized using the trapezoidal integration 

method, and subsequently used for EMT simulations. This 

approach is compared with the widely used Companion Circuit 

(CC) approach. Advantages and disadvantages of each approach 

are discussed. Finally, a procedure for interfacing a DSE-based 

formulation with a CC-based EMT simulator is also presented. 

This procedure enables interfacing of arbitrary power networks 

with a commercial CC-based EMT simulation package and can 

also be used to speed up the simulation using parallel processing. 

 
Keywords: Companion Circuits (CC), Descriptor State-space 

Equations (DSE), EMT Simulations, Eigenvalues. 

I.  INTRODUCTION 

LECTROMAGNETIC TRANSIENT (EMT) simulations 

are widely used for analyzing the transient behavior of 

power networks. There are many commercial EMT simulation 

packages available today [1]–[3]. At its most basic level, every 

EMT simulator solves the dynamical equations of a circuit 

using a suitable numerical integration method. Most 

commercial EMT programs use the fixed time-step trapezoidal 

integration method [1]–[3]. It is well-known that mainly there 

are two approaches to formulate the equations of a given 

circuit for EMT simulations [4]. 

The first is the Companion Circuits (CC) approach 

proposed by Dommel [5]. In this approach, each branch 

inductor and capacitor are discretized using trapezoidal 

integration method to get their corresponding companion 

circuit representation. Subsequently, Modified Nodal Analysis 

(MNA) [6] is used for formulating the equations of the 

discretized circuit which are then solved at every time-step. 

Alternatively, the second approach is to formulate the state-

space equations of the circuit in the form given in (1).  
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 𝑥̇𝑆 = 𝑨𝒔𝑥𝑆 + 𝑩𝒔𝑢 (1) 

Here, 𝑥𝑆 is a vector of state variables (typically consists of 

linearly independent inductor currents/flux-linkages and 

capacitor voltages/charges [4]), 𝑢 is the input vector, and 𝑨𝒔 

and 𝑩𝒔 is the state and input matrix respectively. Once (1) has 

been formulated, we can use any numerical integration 

algorithm (e.g. trapezoidal method) to compute the updated 

values of the states 𝑥𝑆 knowing inputs 𝑢 at every time-step. 

Traditionally, graph theory-based methods have been used 

for formulating the state-space equations of a circuit for EMT 

simulations [4], [7]. But these methods have many 

intermediate matrix manipulation steps which makes them 

inefficient (w.r.t time and memory) and thus impractical for 

EMT simulations of large networks [8], [9]. 

In this paper, we investigate an alternative method to 

formulate the state-space equations of a circuit. It uses 

Descriptor State-space Equations (DSE) which are formulated 

using MNA. Unlike classical state variables which are always 

linearly independent, descriptor state variables can be linearly 

dependent. This avoids special considerations for all inductor-

current source cutsets or all capacitor-voltage source loops 

which is required in many strict state variable formulations. 

Once the DSEs are formulated, they can be discretized 

using an implicit integration method such as the trapezoidal 

rule and used for EMT simulations. Moreover, the paper 

shows that a discretized DSE-based formulation can also be 

easily interfaced with a CC-based EMT simulator without any 

time-step delay errors. The mathematical equivalence of 

discretized DSE-based EMT simulation with CC-based EMT 

simulation has been already proven in [10]. 

The main advantages of DSE-based formulation are: 1) it 

can be done automatically without any large matrix 

manipulations, and 2) gives matrices which are sparse thus 

making it suitable for large systems. Also, the set of DSEs 

describing the network immediately allow for the application 

of widely available linear system analysis tools such the 

calculation of system eigenvalues of the real-world network. 

Although not impossible with CC-based approaches, obtaining  

such eigenvalues requires additional post-processing [11] 

because the state-space equations in continuous time-domain 

are never explicitly formulated. 

This paper begins with a review of the CC-based approach 

for EMT simulations. Next, a procedure for automatically 

formulating the equations for the DSE-based approach is 
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introduced. Using various test cases, the advantages and 

disadvantages of the CC-based and DSE-based approaches are 

discussed. A procedure for combining the two approaches in a 

single simulation is often desirable, particularly when a user 

wants to interface a custom designed model to a commercial 

EMT simulator. Hence, an example of this is also presented. 

In brief, the paper investigates an alternative method for 

EMT simulations using Descriptor State-space Equations 

(DSE) which are readily derivable from the circuit’s netlist, 

and makes the following key contributions: 

1. It compares the accuracy and speed of the DSE-based 

approach with the traditional CC-based approach. 

2. It develops an algorithm for interfacing a DSE-based 

formulation with a CC-based simulator. This can be used 

to interface arbitrary power networks with commercial 

EMT simulators and is also easily parallelizable. 

3. It validates this algorithm by simulating a benchmark 

system viz. IEEE 39 bus with HVdc converters. 

4. It demonstrates that computation time savings do accrue 

from the parallelization offered by the proposed 

interfacing algorithm. 

This paper only considers lumped circuit elements viz. 

resistors (𝑅), inductors (𝐿) and capacitors (𝐶) along with 

independent current sources (𝐽𝑆) and voltage sources (𝑉𝑆) 

while formulating the equations. But this approach can be 

easily extended to include other elements or components.    

II.  FORMULATION OF EQUATIONS FOR EMT SIMULATIONS 

A.  Companion Circuit (CC)-based EMT Simulation 

This section briefly reviews the widely used CC-based 

EMT simulation [5], so that it can later be contrasted with 

DSE-based EMT simulation. In a CC-based EMT simulation, 

each branch inductor and capacitor are transformed to their 

corresponding companion circuits in discrete time-domain 

using trapezoidal integration method. The companion circuits 

are as shown in Fig. 1. They consist of a history current source 

(which is a function of the element’s current and voltage in the 

previous time-step) in parallel with a conductance which 

depends on the time-step Δ𝑡 used for simulation.  

 
Fig. 1. Companion Circuits for Inductor and Capacitor 

After this, the difference equations of the circuit are 

directly formulated using Modified Nodal Analysis (MNA) in 

the form given in (2) and solved at every time-step.  

 𝑮 𝑉(𝑡) = 𝐽(𝑡) (2) 

where, 

𝑮: Augmented admittance matrix. 

𝑉(𝑡) = [ 𝑣𝑁
𝑇(𝑡) 𝑖𝑆

𝑇(𝑡) ]𝑇  

𝑣𝑁(𝑡): Node voltages at time 𝑡. 

𝑖𝑆(𝑡): Currents through independent voltage sources at 

time 𝑡. 

𝐽(𝑡) = [ 𝑖𝐻𝑆
𝑇 (𝑡) 𝑣𝑆

𝑇(𝑡) ]𝑇  

𝑖𝐻𝑆(𝑡): Vector containing history current sources for 

inductors & capacitors, and independent current sources at 

time 𝑡. 

𝑣𝑆(𝑡): Independent voltage sources at time 𝑡. 

Any CC-based EMT simulator uses the following general 

procedure:  

1. Form the 𝑮 matrix using the circuit’s netlist. 

2. Initialize 𝑉(𝑡). 
3. Advance the solution time 𝑡 = 𝑡 + Δ𝑡. 
4. Update 𝐽(𝑡) by computing the history current values for 

each inductor and capacitor, and the values of 

independent voltage and current sources. 

5. If switches are present, check if any switch has changed 

its state and modify the 𝑮 matrix accordingly. 

6. Compute 𝑉(𝑡) by solving (2). 

7. Update the currents 𝑖𝐿(𝑡) and 𝑖𝐶(𝑡) for each inductor and 

capacitor using the history current values from Step 4 

and 𝑉(𝑡) from Step 5. 

8. Go back to Step 3 if end time not reached. 

The case of other non-linearities such as inductor or 

transformer saturation can also be accommodated by 

modelling them with parallel inductors with switches [12], 

[13]. As we can see, the CC-based EMT simulation approach 

is highly scalable which is why it is used in the majority of 

commercial EMT simulation packages today [1]–[3]. 

B.  Descriptor State-space Equation (DSE)-based EMT 

Simulation 

In this section, we discuss the DSE-based EMT simulation 

approach. In this approach, the equations of the circuit are 

formulated using MNA in the continuous time-domain in the 

form given in (3)1. 

 𝑬𝑥̇ = −𝑨𝑥 + 𝑩𝑢 (3) 

After (3) has been formulated, it is discretized using 

trapezoidal integration method with a time-step Δ𝑡. This gives 

the update equation as in (4) which can then be used to carry 

out EMT simulations studies. 

 

(𝑬 +
𝑨Δ𝑡

2
) 𝑥(𝑡) = ((𝑬 −

𝑨Δ𝑡

2
) 𝑥(𝑡 − Δ𝑡) 

+
𝑩Δ𝑡

2
(𝑢(𝑡) + 𝑢(𝑡 − Δ𝑡))) 

(4) 

Equation (3) is called the Descriptor State-space Equation 

(DSE) where 𝑥 is the vector of descriptor state variables and 𝑢 

is the input vector, both as given in (5). 

 𝑥 = [ 𝑣𝑁
𝑇 𝑖𝐿

𝑇 𝑖𝑆
𝑇 ]𝑇 and 𝑢 = [ 𝑣𝑆

𝑇 𝑗𝑆
𝑇
]
𝑇
 (5) 

 

                                                           
1Note that the matrix 𝑬 is often singular, so inverting it to get the classical 

state variable form (of (1)) is generally not possible [14] 
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where, 

𝑣𝑁: Node voltages. 

𝑖𝐿: Inductor currents. 

𝑖𝑆: Currents through independent voltage sources. 

𝑣𝑆: Independent voltage sources. 

𝑗𝑆: Independent current sources. 

When (3) is expanded using 𝑥 and 𝑢 from (5), we get (6). 

 

[
𝑪 𝟎 𝟎
𝟎 𝑳 𝟎
𝟎 𝟎 𝟎

]
𝑑

𝑑𝑡
[

𝑣𝑁
𝑖𝐿
𝑖𝑆

] = − [

𝑮 𝑨𝑳 𝑨𝒗𝒔
−𝑨𝑳

𝑻 𝟎 𝟎

−𝑨𝒗𝒔
𝑻 𝟎 𝟎

] [

𝑣𝑁
𝑖𝐿
𝑖𝑆

] 

+[
𝟎 −𝑨𝒋𝒔
𝟎 𝟎
 −𝑰 𝟎

] [
𝑣𝑆
𝑗𝑆
] 

(6) 

Here, 

𝑪: Capacitance matrix 

𝑳: Diagonal matrix containing inductance values. 

𝑮: Conductance matrix (corresponding to lumped 𝑅’s) 

𝑨𝑳, 𝑨𝒗𝒔, 𝑨𝒋𝒔: Incidence matrix for inductor, independent 

voltage source, and current source branches respectively. 

In most cases, the matrix 𝑬 is singular as seen in (6). The 

exception is the relatively rare case when there are no voltage 

sources (i.e., the last row of 𝑬 in (6) does not exist) and 𝑪 is 

also non-singular. Singularity of 𝑬 implies that the entries of 

the descriptor state vector 𝑥 are linearly dependent. Also, 

when 𝑬 is singular, an explicit integration method like 

Forward Euler cannot be used for numerical integration [14]. 

A detailed derivation of (6) can be found in [10]. If the sub-

equations in (6) are expanded, we get (7) – (9). 

 𝑪
𝑑𝑣𝑁
𝑑𝑡

=  −𝑮𝑣𝑁 − 𝑨𝑳𝑖𝐿 − 𝑨𝒗𝒔𝑖𝑆 − 𝑨𝒋𝒔𝑗𝑆 (7) 
 

 𝑳
𝑑𝑖𝐿
𝑑𝑡

= 𝑨𝑳
𝑻𝑣𝑁 (8) 

 

 𝑨𝒗𝒔
𝑻 𝑣𝑁 − 𝑣𝑆 = 0 (9) 

Taking a closer look at (7) – (9), we can conclude the 

following: 

1. Equation (7) is obtained by applying Kirchhoff’s Current 

Law (KCL) at every node. 

2. Equation (8) is obtained by applying Kirchhoff’s Voltage 

Law (KVL) in every inductor branch. 

3. Equation (9) is obtained by applying KVL in every 

independent voltage source branch. 

Based on the above discussion, we can say that a DSE-

based EMT simulator can use the following general 

procedure: 

1. Form the 𝑬, 𝑨 and 𝑩 matrices using the circuit’s netlist. 

2. Initialize 𝑥(𝑡) and 𝑢(𝑡). 
3. Advance the solution time 𝑡 = 𝑡 + Δ𝑡. 
4. Update 𝑢(𝑡) by computing the independent voltage 

source and current source values at time 𝑡. 
5. Compute the RHS of (4) from the history values and 

𝑢(𝑡) from Step 4. 

6. If switches are present, check if any switch has changed 

its state and modify the 𝑨 matrix accordingly. 

7. Compute 𝑥(𝑡) by solving (4) using the RHS computed in 

Step 5. 

8. Go back to Step 3 if end time not reached. 

From the above discussion, we can see that this approach is 

also highly scalable (just like the CC-based approach). The 

key step is the automatic generation of 𝑬, 𝑨 and 𝑩 (from (3)) 

for any arbitrary circuit using its netlist. This is summarized in 

the remainder of this section. 

C.  Formulation of 𝑬, 𝑨 and 𝑩 

In this section, we present a procedure to automatically 

formulate 𝑬, 𝑨 and 𝑩. We know from (6) that each of these 

are composed of other sub-matrices (𝑪, 𝑮, 𝑳 etc.). The sizes of 

the different sub-matrices are given in Table I. Here, 𝑛𝑛 is the 

number of nodes, 𝑛𝑙 is the number of inductors, 𝑛𝑣𝑠 is the 

number of independent voltage sources, and 𝑛𝑗𝑠 is the number 

of independent current sources in the circuit. 
 

TABLE I.  

SIZE OF SUB-MATRICES IN 𝑬, 𝑨 AND 𝑩 
 

Matrix Size 

𝑪 and 𝑮 
 

𝑳 
 

𝑨𝑳 
 

𝑨𝒗𝒔 
 

𝑨𝒋𝒔 

𝑛𝑛 × 𝑛𝑛 
 

𝑛𝑙 × 𝑛𝑙 
 

𝑛𝑛 × 𝑛𝑙  
 

𝑛𝑛 × 𝑛𝑣𝑠 
 

𝑛𝑛 × 𝑛𝑗𝑠 
 

 

The matrix 𝑪 includes all the capacitors present in the 

circuit. The general expression for (𝑖, 𝑗) entry of 𝑪 is given by 

(10), where 𝑐𝑖 is the sum of all the capacitance between node 𝑖 

and ground while 𝑐𝑖𝑗  is the capacitance between node 𝑖 and 𝑗. 

Here both 𝑖 and 𝑗 vary from 1 to 𝑛𝑛. 

 𝑪(𝑖, 𝑗) =

{
 
 

 
 
𝑐𝑖 +∑𝑐𝑖𝑘

𝑛𝑛

𝑘=1
𝑘≠𝑖

for 𝑖 = 𝑗

−𝑐𝑖𝑗 for 𝑖 ≠ 𝑗

 (10) 

The matrix 𝑮 includes all the resistors present in the circuit. 

The general expression for (𝑖, 𝑗) entry of 𝑮 is given by (11), 

where 𝑔𝑖 is the sum of all the conductance between node 𝑖 and 

ground while 𝑔𝑖𝑗 is the conductance between node 𝑖 and 𝑗. 

Here both 𝑖 and 𝑗 vary from 1 to 𝑛𝑛. 

 𝑮(𝑖, 𝑗) =

{
 
 

 
 
𝑔𝑖 +∑𝑔𝑖𝑘

𝑛𝑛

𝑘=1
𝑘≠𝑖

for 𝑖 = 𝑗

−𝑔𝑖𝑗 for 𝑖 ≠ 𝑗

 (11) 

The matrix 𝑳 is a diagonal matrix which includes all the 

inductors present in the circuit. The general expression for 

(𝑘, 𝑘) entry of 𝑳 is given by (12) where 𝑙𝑘 is the 𝑘𝑡ℎ 

inductance in the circuit’s netlist. Here 𝑘 varies from 1 to 𝑛𝑙. 
 𝑳(𝑘, 𝑘) = 𝑙𝑘 (12) 

The matrices 𝑨𝑳, 𝑨𝒗𝒔 and 𝑨𝒋𝒔 are incidence matrices 

corresponding to inductor branches, independent voltage 

source branches and independent current source branches 

respectively. Each of these can be formulated using (13).   
 

 𝑨(𝑖, 𝑘) = {
1 if branch 𝑘 has start node 𝑖
−1 if branch 𝑘 has end node 𝑖
0 otherwise

 (13) 
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III.  COMPARISON OF THE TWO APPROACHES 

A.  Comparison of Simulation Results 

Firstly, we compare the simulation results from the two 

approaches. For this, consider a simple power system example 

as shown in Fig. 2. Transmission lines are modelled by 

coupled Π-sections and loads as three-phase resistors, 

inductors, and capacitors. System data is given in Appendix A. 

 
Fig. 2. A Simple Power System Example 

A time-step of 200 𝜇𝑠 is used for both the approaches. The 

system initially operates in steady state. At 𝑡 = 0.05 𝑠, a 

50 𝑚𝑠 (three cycles) solid three phase fault occurs at Bus 3. A 

comparison of the simulation results from the two approaches 

is shown in Fig. 3. 

 
(a) Phase A current of Source 1 

 
(b) Absolute Error in Phase A current of Source 1 

 
(c) Phase A current of Source 2 

 
(d) Absolute Error in Phase A current of Source 2 

 

Fig. 3. Simulations Results - Example 1 

We can see that the simulation results from both the 

approaches are essentially exactly identical. The maximum 

absolute error in both 𝐼𝑆1(𝐴) and 𝐼𝑆2(𝐴) is exactly zero. This 

must be so since these two approaches are mathematically 

equivalent [10].  

B.  Computation of Eigenvalues 

In addition to providing a framework for EMT simulation, 

the DSE formulation has an additional advantage which is 

lacking in traditional CC-based EMT solvers. It is that it 

directly permits the application of analytical tools for linear 

systems (e.g., eigenvalue analysis, root locus etc.). Although 

classical state-space (SS) formulations can also be used for 

this, formulating equations in classical SS form may involve 

many intermediate matrix manipulation steps. This makes 

them inefficient (w.r.t time and memory) and thus impractical 

for formulating the equations of large systems [8], [9].   

An appropriately simple example as in Fig. 4 is chosen to 

demonstrate the basic principles. The example includes an all 

capacitor-voltage source (C-V) loop 𝑣𝑆-𝑣𝐶2-𝑣𝐶3-𝑣𝐶1 which 

highlights the advantage of DSE-based formulation over 

classical SS formulation. 

 
Fig. 4. Simple RLC Circuit (Computation of Eigenvalues) 

For the DSEs, 𝑥 = [𝑣1 𝑣2 𝑣3 𝑖𝐿 𝑖𝑆]
𝑇, and then the 𝑬 

and 𝑨 matrices are as in (14) and (15). 

 𝑬 =

[
 
 
 
 
0.0001 0 −0.0001 0 0
0 0.0015 −0.001 0 0

−0.0001 −0.001 0.0011 0 0
0 0 0 0.01 0
0 0 0 0 0]

 
 
 
 

 (14) 

 

 𝑨 =

[
 
 
 
 
0 0 0 1 1
0 0 0 −1 0
0 0 0.1 0 0
−1 1 0 0 0
−1 0 0 0 0]

 
 
 
 

 (15) 

Due to the C-V loop 𝑣𝑆-𝑣𝐶2-𝑣𝐶3-𝑣𝐶1, only two out of the 

three capacitor voltages can be state variables in a classical SS 

formulation. Hence, 𝑥𝑠 = [𝑣𝐶1 𝑣𝐶2 𝑖𝐿]
𝑇  is taken for 

formulating the equations in classical SS form (as in (1)). 

Note, to eliminate the extra algebraic variable 𝑣𝐶3 in this case, 

intermediate matrix manipulations are needed. After 

eliminating 𝑣𝐶3, we finally get the state matrix 𝑨𝒔 as given in 

(16).  

 𝑨𝒔 = [
0 153.85 1692.31
0 −230.77 −1538.46

−100 0 0
] (16) 

To corroborate the fact that one can obtain the system 

eigenvalues from the DSE-based formulation, a comparison of 

the eigenvalues of 𝑨𝒔 with the eigenvalues of the matrix pencil 

(−𝑨, 𝑬) is given in Table II. 
 

1 2 
16.5∠0𝑜  𝑘𝑉 

3 4 5 100 𝑘𝑚 18∠−5𝑜𝑘𝑉 

16.5/230 𝑘𝑉 230/18 𝑘𝑉 
100 𝑘𝑚 

100 𝑘𝑚 

100 𝑘𝑚 𝐼𝑆1 𝐼𝑆2 

𝑖𝑆  

𝑖𝐿  

𝑣1  𝑣2  𝑣3  10 mH 

10 Ω 500 μF 

100 μF 

𝑣𝐶1 

𝑣𝐶2 

𝑣𝑆  

1000 μF 

𝑣𝐶3 
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TABLE II  

COMPARISON OF EIGENVALUES 
 

Eigenvalues of 𝑨𝒔 
[𝜎(𝑨𝒔) ] 

Eigenvalues of (−𝑨, 𝑬) 
[𝜎(−𝑨,𝑬) ] 

−66.139 ± 𝑗389.65 

−98.491 

−66.139 ± 𝑗389.65 

−98.491 

−∞,−∞ 
 

Here, 𝜎(𝑨𝒔) are the system eigenvalues. We can clearly see 

from Table II that 𝜎(𝑨𝒔) ⊆ 𝜎(−𝑨, 𝑬). In fact, the two extra 

−∞ eigenvalues arise in the case of (−𝑨, 𝑬) because 𝑬 here is 

rank-deficient by two [15], which implies that only three 

elements of the descriptor state vector 𝑥 (out of five) are 

linearly independent. 

It is worthwhile to note the ease with which C-V loops are 

handled in a DSE-based formulation. Unlike a classical SS 

formulation, there is no strict requirement in a DSE-based 

formulation to eliminate the intermediate algebraic variables. 

The same can be concluded if all inductor-current source (L-J) 

cutsets are present in a circuit.  

Note that although in the above discussion we have 

demonstrated the computation of eigenvalues with DSE-based 

formulation using a relatively simple example, it can be easily 

accomplished for any arbitrary circuit using the procedure to 

automatically formulate 𝑨 and 𝑬 given earlier in Section II.C.  

C.  Comparison of Simulation Run Time 

To investigate how the computer run-times for DSE-based 

and CC-based simulation approaches scale with increasing 

system sizes, we consider four different systems. These 

include standard IEEE test systems (39-bus, and 118-bus) and 

synthetic versions of the Illinois 200-bus system and the South 

Carolina 500-bus system. The data for the latter two is 

available in the public domain [16], [17]. In each case, a 10 𝑠 
simulation is performed with a time-step of 50 𝜇𝑠. 
Transmission lines in each of these systems have been 

modelled by coupled Π-sections and loads as three-phase 

resistors, inductors, and capacitors. 

Fig. 5 plots a comparison of the simulation run times for 

the CC-based and DSE-based approaches as a function of the 

number of three phase busses in the system. On an average, 

the CC-based approach is about 1.3 times faster for the cases 

considered here. Note however that although the DSE-based 

simulation approach is slower, it directly yields additional 

information such as system eigenvalues, which the CC-based 

approach does not.  

To understand why this difference exists, let’s look at the 

size of the matrices involved in the computations in every 

time-step for each of the approaches. The 𝑮 matrix (in (2)) for 

the CC-based approach is a square matrix of size (𝑛𝑛 + 𝑛𝑣𝑠). 
On the other hand, the (𝑬 + 𝑨Δ𝑡/2) matrix (in (4)) for the 

DSE-based approach is a square matrix of size (𝑛𝑛 + 𝑛𝑙 +
𝑛𝑣𝑠). Here, 𝑛𝑛 is the number of nodes, 𝑛𝑣𝑠 is the number of 

independent voltage sources and 𝑛𝑙 is the number of inductors. 

Hence, we can conclude that the superior speed of the CC-

based approach can be attributed to the fact that the size of the 

matrix involved in its computations at every time-step is 

smaller than that in a DSE-based approach. 

 
Fig. 5. Comparison of Simulation Run Times 

IV.  INTERFACING OF DSE-BASED FORMULATION WITH CC-

BASED EMT SIMULATOR 

We will now present a procedure for interfacing a DSE-

based formulation with a CC-based EMT simulator. This 

procedure is similar to the ones presented in [18], [19] but 

derived here for a DSE-based formulation.  

A.  Interfacing Procedure 

Consider the network to be interfaced is represented by a 

black box as shown in Fig. 6 with 𝑛 ports for interfacing. 

 
Fig. 6. A General n-Port Network 

Consider that this network has lumped circuit elements 

(viz. resistors (𝑅), inductors (𝐿) and capacitors (𝐶)) and 

independent voltage or current sources internally. Then, 

internal dynamics of this network can be easily modelled in 

continuous time-domain using DSEs.  

For doing this, let 𝑣𝑝, 𝑖𝑆 and 𝑖𝑝 be as given in (17), (18) and 

(19) respectively.  

 𝑣𝑝 = [𝑣𝑝1 𝑣𝑝2 … 𝑣𝑝𝑛]𝑇 (17) 
 

 𝑖𝑆 = [𝑖𝑆1 𝑖𝑆2 … 𝑖𝑆𝑛]
𝑇 (18) 

 

 𝑖𝑝 = [𝑖𝑝1 𝑖𝑝2 … 𝑖𝑝𝑛]𝑇 (19) 

Then, the DSEs for this network in continuous time-domain 

can be written in the form given in (20). 

 𝑬𝑥̇ = −𝑨𝑥 + 𝑩𝑣𝑝 +𝑩𝒊𝑢𝑖 (20) 

Here, 𝑥 = [ 𝑣𝑁
𝑇 𝑖𝐿

𝑇 𝑖𝑆
𝑇 ]𝑇;  𝑣𝑁 is the vector of internal node 

voltages,  𝑖𝐿 is the vector of internal inductor currents; and 𝑢𝑖 

is the vector of internal sources. In addition to this, it can be 

easily verified that the relationship between  𝑖𝑝 and 𝑥 is as 

given in (21).  

  𝑖𝑝 = 𝑩
𝑻𝑥 (21) 

Now, to interface this 𝑛-port network with a CC-based EMT 

𝑣𝑝1 

𝑣𝑝2 

𝑣𝑝𝑛  

𝑖𝑝1 

𝑖𝑝2 

𝑖𝑆1  

𝑖𝑆2  

𝑖𝑝𝑛  𝑖𝑆𝑛  

. 

. 

. 

General 𝑛 − port 

Network . 
. 
. 

𝑛 − ports 

for 

Interfacing 

with CC − based 

EMT Simulator 

(Internal dynamics 
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simulator, we need a discrete time-domain relationship 

between  𝑖𝑝(𝑡) and  𝑣𝑝(𝑡) as given by (22). 

 𝑖𝑝(𝑡) = 𝑮𝒏 𝑣𝑝(𝑡) + 𝐼𝐻𝐼𝑆𝑇(𝑡 − Δ𝑡) (22) 

This relationship can be derived from the DSE-based 

formulation by firstly discretizing (20) using trapezoidal 

integration method to give (23). 

𝑥(𝑡) = (𝑬 +
𝑨Δ𝑡

2
)
−𝟏

{(𝑬 −
𝑨Δ𝑡

2
)𝑥(𝑡 − Δ𝑡) 

                                             +
𝑩Δ𝑡

2
(𝑣𝑝(𝑡) + 𝑣𝑝(𝑡 − Δ𝑡)) 

                                             +
𝑩𝒊Δ𝑡

2
(𝑢𝑖(𝑡) + 𝑢𝑖(𝑡 − Δ𝑡))} 

(23) 

Subsequently, substituting (23) in (21) gives 𝑖𝑝(𝑡) as in (24). 

𝑖𝑝(𝑡) = 𝑩
𝑇 (𝑬 +

𝑨Δ𝑡

2
)
−𝟏𝑩Δ𝑡

2
𝑣𝑝(𝑡) 

               + 𝑩𝑇 (𝑬 +
𝑨Δ𝑡

2
)
−𝟏

(𝑬 −
𝑨Δ𝑡

2
) 𝑥(𝑡 − Δ𝑡) 

               + 𝑩𝑇 (𝑬 +
𝑨Δ𝑡

2
)
−𝟏𝑩Δ𝑡

2
𝑣𝑝(𝑡 − Δ𝑡) 

               +𝑩𝑇 (𝑬 +
𝑨Δ𝑡

2
)
−𝟏𝑩𝒊Δ𝑡

2
(𝑢𝑖(𝑡) + 𝑢𝑖(𝑡 − Δ𝑡)) 

(24) 

We can see that (24) has the same form as (22) with 𝑮𝒏 and 

𝐼𝐻𝐼𝑆𝑇  as given in (25) and (26) respectively. Thus, we have the 

required discrete time-domain relationship between  𝑖𝑝(𝑡) and 

 𝑣𝑝(𝑡). Note, since 𝑢𝑖 is a vector of internal sources, it is 

already known for time 𝑡 and hence can be part of 𝐼𝐻𝐼𝑆𝑇. 

 𝑮𝒏 = 𝑩
𝑇 (𝑬 +

𝑨Δ𝑡

2
)
−1𝑩Δ𝑡

2
 (25) 

 

𝐼𝐻𝐼𝑆𝑇 = {𝑩
𝑇 (𝑬 +

𝑨Δ𝑡

2
)
−𝟏

(𝑬 −
𝑨Δ𝑡

2
)𝑥(𝑡 − Δ𝑡) 

             + 𝑩𝑇 (𝑬 +
𝑨Δ𝑡

2
)
−𝟏𝑩Δ𝑡

2
 𝑣𝑝(𝑡 − Δ𝑡) 

             +𝑩𝑇 (𝑬 +
𝑨Δ𝑡

2
)
−𝟏 𝑩𝒊Δ𝑡

2
(𝑢𝑖(𝑡) + 𝑢𝑖(𝑡 − Δ𝑡))} 

(26) 

Now we can interface this network with any CC-based EMT 

simulator using the following procedure: 

1. Form 𝑬, 𝑨 and 𝑩 matrices for the network to be 

interfaced using the procedure given in Section II and 

then calculate 𝑮𝒏 using (25). 

2. Add 𝑮𝒏 to the overall 𝑮 matrix of the CC-based EMT 

simulator. 

3. Initialize 𝑥(𝑡). 

4. Advance the solution time 𝑡 = 𝑡 + Δ𝑡. 
5. Knowing 𝑥(𝑡 − Δ𝑡) and 𝑣𝑝(𝑡 − Δ𝑡), calculate 𝐼𝐻𝐼𝑆𝑇  

using (26). Then, add 𝐼𝐻𝐼𝑆𝑇 to the overall 𝐽(𝑡) of the CC-

based simulator (see (2)). 

6. If switches are present inside the interfaced network, 

check if any switch has changed its state and modify 𝑮𝒏 

accordingly.  

7. Update the 𝑮𝒏 added to the overall 𝑮 matrix of the CC-

based EMT simulator. 

8. The CC-based simulator computes 𝑉(𝑡) by solving (2). 

9. Read  𝑣𝑝(𝑡) from the overall 𝑉(𝑡) of the CC-based EMT 

simulator (see (2)). Then, calculate 𝑥(𝑡) using (23). 

10. Go back to Step 4 if end time not reached. 

Note that there is no time-step delay involved while 

interfacing the DSE-based formulation, and the interfaced 

modelling is mathematically exactly equivalent to a full CC-

based approach being used directly [10]. If distributed 

parameter elements (such as cables or transmission lines) are 

present in the system, then these can be easily included as CC-

models and interfaced with the DSE-based formulation using 

the given procedure.  

Significant parts of the above algorithm can be inherently 

computed in parallel, thus making it suitable for 

implementation on a parallel computing platform. For 

example, if a large network is divided into multiple 

subnetworks {1, 2 …𝑁}, then we can see that Steps 5 to 7, and 

Step 9 for a subnetwork 𝑖 are completely independent of those 

for subnetwork 𝑗. Therefore, these step sequences in the above 

procedure can be performed in parallel for each subnetwork. 

Note that the parallel implementation proposed here does not 

rely on transportation delays introduced by distributed 

parameter elements like transmissions lines [20]. 

Also note that Steps 6 and 7 in the above algorithm allow 

inclusion of time-varying network components (like switches) 

in DSE-based formulations. Hence it could be used for 

modelling complex switching systems such as HVdc 

converters. However, efficient implementation of such 

systems will require additional steps such as optimal ordering 

of switches to ensure efficient matrix refactorizations [21], 

[22]. At present, this is outside the scope of this paper and is 

proposed for future work.  

However, the ability to interface DSE-based formulation 

with traditional CC-based EMT (host) platforms is a powerful 

feature that enables the immediate utilization of the 

capabilities of the host platform. For example, traditional CC-

based EMT platforms have evolved advanced (efficient) 

models for various types of HVdc converters and controls. 

This feature could be exploited by including them in the host 

CC-based EMT simulator and including the remainder of the 

network in a DSE-based formulation.   

B.  Example Case – IEEE 39 bus system with LCC-HVdc 

The main objectives of this test case are: (i) to verify the 

accuracy of the proposed interfacing procedure, (ii) to 

demonstrate that it can be used to interface arbitrary power 

networks with a commercial CC-based EMT simulator, and 

(iii) to run the partitioned system on a parallel computing 

platform to measure its speedup performance.  

The test system is the standard IEEE 39-bus system shown 

in Fig. 7. The data for this system has been taken from [17]. 

The standard case has been modified to include an embedded 

LCC-HVdc link. The parameters and controls for the dc link 

have been taken from [23].  

The interfacing procedure has been implemented as a 

subroutine in PSCAD/EMTDC (a commercial CC-based EMT 

simulator) [24]. As a reference, the entire system is also 

modelled in the CC-based EMT simulator to compare the 

accuracy of the interfacing procedure.  

The system is partitioned into two parts as shown in Fig. 7. 

All components inside the blue dashed boxes are modelled 
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using the DSE-based approach and then interfaced, while the 

components in the red dashed boxes are directly modelled in 

the commercial CC-based EMT simulator [24]. Transmission 

lines are modelled by coupled Π-sections, and loads as three-

phase resistors, inductors, and capacitors.  

 
Fig. 7. Interfacing Example - IEEE 39 Bus System with LCC-HVdc 

A time-step of 20 𝜇𝑠 is used for simulation. The system 

initially operates in steady state. At 𝑡 = 0.1 𝑠, a three cycle 

(50 𝑚𝑠) phase-A-to-ground fault occurs near Bus 16 (internal 

to Partition #1). Note that this causes a change in the Norton 

equivalent admittance (i.e. 𝑮𝒏 in (25)) of Partition #1. 

Fig. 8(a) shows the current in phase A (𝐼𝑇𝐹(𝐴)) flowing into 

the Bus 22 computed using the full CC-based simulation and 

the proposed DSE-based formulation interfaced with CC-

based EMT simulator. As we can see, they match closely. The 

maximum absolute error is 0.003 𝑘𝐴 (as shown in Fig. 8(b)) 

which corresponds to a relative error of 0.15% (relative to the 

steady state peak value of 𝐼𝑇𝐹(𝐴)). Fig. 9(a) shows the 

comparison of the results for the dc link current (𝐼𝑑𝑐) from 

both the approaches. This also matches closely. The absolute 

error in 𝐼𝑑𝑐  is shown in Fig. 9(b).  

Thus, this example verifies the accuracy of the proposed 

interfacing procedure presented earlier. It also demonstrates 

how the DSE-based approach can be used for interfacing 

arbitrary power networks with a commercial CC-based EMT 

simulation package. 

As discussed in Section IV.A, partitioning the system and 

using the proposed interfacing approach permits the use of 

parallel computing techniques for speeding up the simulation. 

To demonstrate this feature, the two partitions (shown in Fig. 

7) were simulated in parallel on a general-purpose Intel i7-

8700 based PC with 6 cores running at 3.2 GHz and having 

Windows 10 OS. Table III shows a comparison of the CPU 

times for the parallel and serial simulation cases (here, serial 

simulation means the one that is not using parallel computing 

techniques). The times are for a 10 𝑠 simulation with a time-

step Δ𝑡 = 20 𝜇𝑠. 

 
(a) Phase A Current of Transformer 22-35 on Bus 22 Side 

 
(b) Absolute Error in Phase A Current of Transformer 22-35 

Fig. 8. Phase A Current of Transformer 22-35 on Bus 22 Side (IEEE 39-bus) 

 
(a) Dc Link Current 

 
(b) Absolute Error in dc Link Current 

Fig. 9. Dc Link Current (IEEE 39-bus) 

 

TABLE III  

COMPARISON OF TOTAL CPU TIMES (IEEE 39 BUS SYSTEM) 
 

Serial Simulation 

𝑻𝑺 (𝐬𝐞𝐜) 
 

Parallel Simulation 

𝑻𝑷 (𝐬𝐞𝐜)  
Speedup 

(𝑻𝑺/𝑻𝑷) 

161.25 
 

93.15 1.73 
 

As we can see in Table III, partitioning the system into two 

roughly equally sized subsystems gave a speedup factor of 

173%. Thus, this also verifies the fact that the proposed 

interfacing procedure can be used to speed up a simulation 

using parallel processing. 

V.  CONCLUSIONS 

This paper investigates an alternative method to formulate 

state variable equations of a circuit for EMT simulations using 

Descriptor State-space Equations (DSE). A step-by-step 

procedure is presented for automatically formulating the DSEs 

using a circuit’s netlist. The formulation is straightforward 
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compared to that of deriving classical state space equations. 

Also, intermediate matrix manipulation steps are avoided in 

the DSE-based formulation thus making it suitable for large 

systems. Once formulated, the DSEs are discretized using 

trapezoidal integration method and used to carry out EMT 

simulations studies.  

This approach is compared with the widely used 

Companion Circuits (CC) approach. One of the advantages of 

using the DSE-based formulation is that in addition to running   

EMT simulations, it is possible to analytically calculate the 

eigenvalues of the network directly. However, it has the 

disadvantage of having a higher run-time than the CC-based 

approach for EMT simulation. 

Finally, a procedure for interfacing a DSE-based 

formulation with a commercial CC-based EMT simulator is 

also presented. There is no time-step delay involved while 

interfacing. This procedure enables interfacing of arbitrary 

power networks with a commercial CC-based EMT simulation 

package without the need for building it in that package. 

Moreover, this combined approach also allows easy parallel 

simulation as multiple DSE-based modules can be run on 

separate processors and then interfaced with a CC-based EMT 

simulator.  

VI.  APPENDIX 

A.  Data for Example 1 (Section III.A) 

Transmission Lines: 

1000 𝑀𝑉𝐴, 230 𝑘𝑉  
 

𝑅+ = 1.05 × 10
−5 𝑝𝑢/𝑚; 𝑋+ = 1.233 × 10−4 𝑝𝑢/𝑚 

𝐵+ = 1.6987 × 10−5 𝑝𝑢/𝑚 
 

𝑅0 = 1.0658 × 10
−4 𝑝𝑢/𝑚; 𝑋0 = 3.211 × 10

−4 𝑝𝑢/𝑚 

𝐵0 = 1.2064 × 10−5 𝑝𝑢/𝑚 
 

Transformers: 

1: 1000 𝑀𝑉𝐴, 16.5/230 𝑘𝑉, 𝑋𝑙 = 0.181 𝑝𝑢,  𝐼𝑚𝑎𝑔 = 2% 

2: 1000 𝑀𝑉𝐴, 230/18 𝑘𝑉, 𝑋𝑙 = 0.181 𝑝𝑢,  𝐼𝑚𝑎𝑔 = 2% 
 

Loads: 

522 𝑀𝑊, 150 𝑀𝑉𝐴𝑟 
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