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Abstract—The rational approximation of frequency-dependent
soil models is a straightforward way to deal with ground
parameters variation, once the sum of partial fractions in
frequency-domain become a sum of exponentials in time-domain.
This work proposes to investigate sensitivity analyses of the
frequency-dependent soil model proposed by Alipio and Visacro
with respect to frequency and to the dc conductivity, aiming to a
rational realization that is actually simpler than the one obtained
through a traditional fitting technique, namely, Vector Fitting
(VF). Results indicated that a simpler realization is possible
using a smaller subset of the poles and residues obtained via
VF, without compromising accuracy within the frequency range
of interest.
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grounding.

I. INTRODUCTION

AN accurate assessment of the transient behavior of the
ground during lightning related phenomena is of outmost

importance for the design and operation of any power system.
In the past, the ground was assumed as a good conductor
and a little attention has been given to its season variability
and the uncertainty regarding the actual ground measurements.
However, complexity in topology of the power networks has
increased considerably thus requiring improved modeling for
a precise evaluation of the actual stage of any given network
during and after surge occurrences. Therefore, there is a solid
demand for better, more accurate soil models.

The frequency dependence of soil parameters, in particular
the soil conductivity and permittivity, have been a subject of
intense research for quite some time now [1]–[9]. An overview
of the characteristics of most of the soil models is presented
in [10]. Shortly after this reference, Alipio and Visacro have
proposed in [11] a causal soil model that could be generalized
depending on the “nature” of the response, i.e., conservative,
relatively conservative or mean.

This work was supported in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior—Brasil (CAPES), Finance Code 001, partially
supported by the Instituto Nacional de Energia Elétrica (INERGE); in part by
the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
and in part by the Conselho Nacional de Pesquisa e Desenvolvimento (CNPq).

J. P. L. Salvador is with Federal Center of Technological Edication
“Celso Suckow da Fonseca", CEFET/RJ, Angra dos Reis, Brazil
(joao.salvador@cefet-rj.br);

A. C. S. Lima is with Federal University of Rio de Janeiro, COPPE/UFRJ,
Rio de Janeiro, Brazil (acsl@dee.ufrj.br);

R. Alipio is with Federal Center of Technological Education of Minas
Gerais, CEFET/MG, Belo Horizonte, Brazil (rafael.alipio@cefetmg.br);

M. T. Correia de Barros is with Instituto Superior Técnico, University of
Lisbon, Lisbon, Portugal (teresa.correiadebarros@tecnico.ulisboa.pt).

Paper submitted to the International Conference on Power Systems
Transients (IPST2021) in Belo Horizonte, Brazil June 6-10, 2021.

An issue for the inclusion of frequency-dependent soil
models is their time-domain implementation, especially in
studies directly based on the solution of Maxwell equations,
since most soil models do not have a closed-form inverse
transform. Even in the case where a closed-form transform can
be obtained, as in [12], the resultant convolution operations
are computationally costly. One could thus resort to Finite
Differences in Time-Domain (FDTD) [13] or consider a
rational approximation in the frequency domain as it leads to
closed-form expression in the time-domain in a straighforward
way, by means of a sum of exponentials that can be solved in
time domain with recursive convolutions [12].

In a previous paper a comparison between rational
realizations of the Alipio-Visacro (AV) and Smith-Longmire
(SL) soil models was presented. The authors have identified
that the rational approximation can lead to rather compact
realization as there is a well-defined ratio between poles and
residues [14]. In this work, we aim to further investigate
this characteristic and to identify the dominance of the
poles considered for the rational approximation. To do so,
a sensitivity analysis is carried out in frequency-domain to
identify which set of rational function is more dominant,
depending on the frequency region of interest and time-domain
results are presented for accuracy assessment. Since the AV
model showed to be more general, allowing its rational
realization with a unique universal set of poles regardless the
soil resistivity, it is assumed as reference in this paper.

This paper is organized as follows: Section II summarizes
the characteristics of a frequency-dependent soil including the
rational approximation considering the Alipio-Visacro (AV)
soil model. The sensitivity analysis is carried out in Section
III. Based on the sensitivity results a minimal realization is
proposed in Section IV. Section V presents the time-domain
results and the main conclusions of this work are detailed in
Section VI. Appendix A summarizes the characteristics of the
AV soil Model.

II. SOIL MODELING

A. Frequency-Dependent Soil Parameters

The frequency dependence of soil parameters can be
defined from the relation between the electric field E and
magnetic field H, which has the following behavior in the
frequency-domain:

∇×H =

[
σ′(ω) + ωε′′(ω) + jω

(
ε′(ω)− σ′′(ω)

ω

)]
E (1)
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with

σ′(ω)+ωε′′(ω)+jω

(
ε′(ω)− σ′′(ω)

ω

)
= σeff (ω)+jωεeff (ω)

and where σ′, σ′′, ε′, ε′′ are all real-valued functions of the
angular frequency ω, and σeff and εeff are, respectively,
the so-called effective conductivity and permittivity. The
parameter σ′′(ω) is ultimately related to conduction currents at
phase quadrature to the electric field. Although such currents
can be found in some materials at optical frequencies [15],
considering the frequency range of interest in the calculation
of transients in electrical systems, conduction currents in the
ground can be assumed to be in phase with the electric field
and, therefore, σ′′ = 0. Furthermore, considering experimental
results of frequency dependence of the electrical parameters
of real soils [11], [16], σ′ = σ0, where σ0 is a real number
corresponding to the soil dc conductivity and physically
express its ability to transportac electric charges when an
electric field is applied, and naturally is responsible for the
losses associated with this process.

The real parcel of permittivity (ε′) expresses the material
ability to be polarized and to store electric energy, when
an electric field is applied. The imaginary parcel (ε′′) is
associated with the losses occurring during the polarization
process. Such losses represent the part of energy of the applied
field, which is dissipated as heat because of the friction
experienced by the electric dipoles as they continuously move
in response to the alternating field. These two parcels are
not independent and share a causal relationship given by the
so-called Kramers-Krönig’s relation given by

ε′(ω) = ε∞ +
2

π

∞∫
0

ω′ε′′(ω′)

ω′2 − ω2
dω′ (2)

ε′′(ω) = −2ω

π

∞∫
0

ε′(ω′)− ε∞
ω′2 − ω2

dω′ (3)

where ε∞ is a real constant parameter related to the asymptotic
behavior of the permittivity at higher frequencies, ω′ is the
integration variable (real).

Considering the complex permittivity and the
Kramers-Krönig’s relations, it is possible to rewrite (1)
as

∇×H = κ(s)E (4)

where

κ(s) = σ0 + s [ε∞ + κ(s)] (5)

The frequency dependence in both ε′(ω) and ε′′(ω) is
included in κ(s), where s = jω. As shown in [12] and later in
[14], a rational approximation of κ in the frequency-domain
is feasible and accurate as it will be detailed next.

B. Rational Modeling

In this work, initially we have used the so-called Vector
Fitting (VF) [17]–[20] routine for the fitting which implies in
rewriting (4) as (5) and

κ(s) =

N∑
i=1

Ki

s− pi
(6)

A question that this approach brings is the number
of poles/residues, i.e., the order of approximation to be
considered. In a previous work [14], we have obtained a rms
error several orders of magnitude below the actual function,
regardless of the value of the dc soil conductivity and the
permittivity at the very high frequencies, i.e., σ0 and ε∞. It
should be pointed out that only real poles and residues were
obtained in the fitting process. In this procedure it is as if
the soil is to be represented by a ladder of RC circuits. It
was also found that the relation between the residues and
poles remained constant regardless of the soil dc resistivity
considered. Table I presents the relation between the dc soil
resistivity, i.e. ρ0 = (1/σ0), and the obtained first pole and
first residue.

For this soil model it is verified that the same poles are
found regardless the value of the dc soil resistivity [14].
Table II shows the relation between residue Ki (for i ≥ 2) and
the first residue. This table also presents the relation between
pole pi (also for i ≥ 2) and the first pole. Thus, the rational
approximation allows for a rather concise formulation of
frequency dependent soil parameters as we need only to define
the value of the residue associated with the dc conductivity
and the relation presented in Table II can be used to define
the other residues.

TABLE I
FIRST POLE AND RESIDUE AS A FUNCTION OF THE SOIL DC RESISTIVITY.

ρ0 [Ω.m] K1 p1

100 7.45 × 100 −2.24 × 1013

500 4.83 × 100 −2.24 × 1013

1000 4.00 × 100 −2.24 × 1013

3000 2.98 × 100 −2.24 × 1013

5000 2.59 × 100 −2.24 × 1013

It can be noticed that the function has poles in a decreasing
order and the same can be said about the residues. Thus, it
might be possible to explore this feature to derive a lower
order realization suitable for some particular analysis. For
instance, if one is interested in switching surges where the
frequency band is well-defined, a lower order might suffice
for this analysis. The results obtained in Table I along with
further fittings, i.e., calculating new sets of residues for new dc
conductivities, lead to (6), which describes a straightforward
relation between K1 and σ0:

K1 = 4.002 σ0.2699
0 (7)

Thus, together with the ratio presented in Table II, a
rather general frequency-dependent soil model can be derived
using rational approximation. It must be emphasized that the
rational approximation demands only the knowledge of the
low frequency soil conductance, i.e. σ0, for its realization.



TABLE II
RELATION BETWEEN RESIDUES AND POLES FOR THE RATIONAL

APPROXIMATION.

# Ki/K1 pi/p1

2 2.56 × 10−1 2.62 × 10−1

3 1.32 × 10−1 1.05 × 10−1

4 8.26 × 10−2 4.45 × 10−2

5 5.33 × 10−2 1.87 × 10−2

6 3.42 × 10−2 7.63 × 10−3

7 2.16 × 10−2 2.99 × 10−3

8 1.33 × 10−2 1.12 × 10−3

9 8.03 × 10−3 4.02 × 10−4

10 4.72 × 10−3 1.36 × 10−4

11 2.69 × 10−3 4.32 × 10−5

12 1.49 × 10−3 1.28 × 10−5

13 7.89 × 10−4 3.50 × 10−6

14 4.01 × 10−4 8.66 × 10−7

15 1.93 × 10−4 1.90 × 10−7

16 8.72 × 10−5 3.58 × 10−8

17 3.62 × 10−5 5.47 × 10−9

18 1.33 × 10−5 6.02 × 10−10

19 4.05 × 10−6 3.53 × 10−11

Figure 1 illustrates the behavior of the rational
approximation together with the original data using the
AV soil model for two values of the dc soil resistivity
presented in Table I. The mismatches between the rational
approximation and the original data are roughly 3 orders
of magnitude below the original data as it can be observed
from the figure. Although not shown here, the results for the
other soil dc resistivities presented in Table I had a similar
performance.

Fig. 1. Rational approximation of the AV soil model.

III. SENSITIVITY ANALYSIS

In this section we investigate the sensitivity of the rational
approximation with respect to two parameters, namely, with
respect to the low frequency soil conductivity, σ0, and with
respect to the complex frequency, s.

A. w.r.t the low frequency conductivity σ0

As mentioned earlier, the value of σ0 plays a fundamental
role in the definition of the rational approximation. Thus, it is

valuable to determine its impact in the realization. Here, we
use the simple definition of sensitivity as shown below, i.e.,

S(σ) =
∂κ(s)

∂σ
=

1 +

N∑
i=1

∂Ki

∂σ
s− pi

 (8)

where

∂Ki

∂σ
= 0.167409

(
1

σ0

)0.7301
Ki

K1
(9)

One drawback in using directly the value of the sensitivities
is the possible widespread value that a derivative might assume
in the region of interest. Thus, from a practical point of view
it is more convenient to use the relative sensitivity as in [21].
The relative sensitivity in this case can be defined as

Srel(σ) =
1

|κ(s)|

∣∣∣∣∂κ(s)

∂σ

∣∣∣∣ (10)

The results for this relative sensitivity are shown in Fig. 2
considering distinct values for σ0, as shown below in Table III.
As expected, the soil with the highest conductivity presented
the lowest sensitivity. Furthermore, it can be observed that
in all configurations regardless of the value of σ0 a rather
constant relative sensitivity is observed up to a well-defined
frequency. The lower the value of σ0, lower is the maximum
frequency where Srel(σ) can be assumed constant.

TABLE III
VALUES FOR σ0 IN [S/M].

σ1
0 σ2

0 σ3
0 σ4

0

0.01 0.002 0.001 0.00025

Fig. 2. Sensitivity w.r.t the low frequency soil conductivity considering
distinct values for σ0.

B. w.r.t the complex frequency s

For the frequency-domain analysis, we consider the
sensitivity as the variation of the soil immittance with the
complex frequency s, i.e.,

S(s) =
∂κ(s)

∂s
=

[
e+

N∑
i=1

Ki · pi
s− pi

−
N∑
i=1

Ki · s
(s− pi)2

]
(11)



The relative sensitivity is also evaluated with respect to the
complex frequency s and defined by (12). The results for the
relative sensitivity are depicted in Fig. 3.

Srel(σ) =
1

|κ(s)|

∣∣∣∣∂κ(s)

∂s

∣∣∣∣ (12)

It is noticeable now that soils with higher dc resistivity are
more affected by the inclusion of the frequency-dependent
parameters. For higher frequencies, all sensitivities tend to
similar values. This can be understood as in this region the
contribution of the rational terms is neglectable, thus all the
models behave as if

κ(s) ≈ σ0 + sε∞ (13)

These results also indicated that the value of ε∞ has an
important effect as it is defined at the higher frequency range.
For instance, for ε∞ = 10ε0 is roughly defined by 10 MHz
while if ε∞ = 40ε0, this region starts at 2 MHz. It could be
postulated that the highest frequency thus approximately the
inverse ratio of the values used for high frequency permittivity.
It should be pointed out that this analysis is an extrapolation
of the AV model as it is defined for frequencies up to 4 MHz.
Nevertheless, these results indicate that for higher frequencies
the inclusion of the soil parameters frequency dependence
might no longer be required.

It is worth mentioning that the frequency threshold for the
definition of the high frequency range depends approximately
by the inverse of the relation between the permittivities.
Furthermore, the behavior depicted shows a strong tendency
caused by one of the poles, i.e., once the first attenuation occur
the curve does not oscillate very often and follows almost the
same pattern up to higher frequencies.

IV. MINIMUM REALIZATION

The usage of the so-called dominant poles [22] has been
used for the pole-residue realization of linear power systems
based on analytical expression of the admittance in the
frequency domain. It is based on a Newton-Raphson scheme
and can be used to obtain pole and residue from an analytical
and continuous expressions. Although this procedure cannot
be directly applied to the AV soil model, some of the
fundamentals can be used as parametric tool in order to
investigate different aspects of its formulation.

When sensitivity to the complex frequency s was performed,
it was seen that, for a certain range of frequencies, the term
of the rational realization corresponding to the sum of partial
fractions tends to diminish its importance. One of the dominant
pole fundamentals is to investigate the residue over pole ratio,
i.e.,

lim
s→0

Ki

s− pi
(14)

One interesting aspect of this approach is that it can be used
to evaluate the numerical performance of simpler expressions,
i.e., considering a lower number of residues and poles in
the rational approximation. Although the residues are strictly
related to the dc conductivity whereas the poles remain the

(a) ε∞ = 10ε0

(b) ε∞ = 40ε0

Fig. 3. Relative Sensitivity of the rational approximation of the AV soil model
considering distinct values of σ0 and ε∞.

same, we are interested in the order of magnitude of the ratio
residue/pole.

As it was observed in Fig. 3, the behavior of the curves
is very close to a first order system. The main difference lies
in the upper frequency limit where the relative sensitivity no
longer is constant. An investigation in the performance of the
rational approximation indicates an interesting feature. Fig. 4
shows the ratio between the complete rational model and a
minimal rational realization considering only the first residue
and pole, i.e., those with larger magnitude. It is calculated as

∆ =

∣∣∣∣∣∣∣∣
κ(s)

σ0 + s

(
ε∞ +

K1

s+ p1

)
∣∣∣∣∣∣∣∣ (15)

As it can be seen, the minimal realization is fairly accurate
for frequencies below 1 kHz, although it gives good results
for little higher frequencies assuming low-conductive soils. In
the frequency range between tens of kHz to few MHz the
errors increase, especially in the case if high-resistivity soils.
Finally, as the frequency increases above 10 MHz the errors
tend to reduce, since the immittance behavior is approximately
dominated by σ0 + sε∞.

Further investigation is necessary to identify the realization
that provides results accurate enough through a larger
frequency range than the minimal realization. As an
illustration, see Table IV, with ratio residue/pole calculated
considering a dc resistivity (1/σ0) of 1,500 Ω.m for the soil,



Fig. 4. Ratio between AV complete model and considering 1-pole realization.

Fig. 5. Rational approximation considering simpler expressions.

Fig. 6. Ratio between AV complete model and considering 11-pole realization.

where the larger poles impose smaller ratio. Similar results
are to be found regarding soils with dc resistivity up to
15,000 Ω.m.

The difference between these ratios reaches 5 orders of
magnitude between the first and the 19th pole. However,
several tests were carried out considering the realization with
as less poles as possible and, as it is noted in Fig. 5, the
realizations with 11 to 18 poles present interesting results, i.e.,
produce fitted functions with small rms error. Therefore, even
though the rational model is more precise with 19 poles, the
realization with 11 of these poles seems to be suited enough.

Furthermore, the plot of ∆ now considering an 11-pole
realization is presented in Fig. 6, i.e. the evaluation is similar
to (15) only considering an 11-term sum in the denominator.

Unlike Fig. 4, when only one pole was used, this realization
is fairly accurate throughout the frequency range of interest.

TABLE IV
RATIO RESIDUES/POLES CONSIDERING DC RESISTIVITY OF 1500 Ω.M.

K1/p1 −1.8365 × 10−8

K2/p2 −3.5366 × 10−9

K3/p3 −1.0586 × 10−9

K4/p4 −3.8968 × 10−10

K5/p5 −1.6265 × 10−10

K6/p6 −7.4204 × 10−11

K7/p7 −3.6146 × 10−11

K8/p8 −1.8580 × 10−11

K9/p9 −9.9748 × 10−12

K10/p10 −5.5605 × 10−12

K11/p11 −3.2014 × 10−12

K12/p12 −1.8977 × 10−12

K13/p13 −1.1533 × 10−12

K14/p14 −7.1701 × 10−13

K15/p15 −4.5594 × 10−13

K16/p16 −2.9727 × 10−13

K17/p17 −2.0264 × 10−13

K18/p18 −1.5665 × 10−13

K19/p19 −1.6021 × 10−13

V. TIME-DOMAIN RESULTS

In order to assess the accuracy and illustrate the
application of the proposed minimal rational realizations for
frequency-dependent soil modeling, this section considers
a well-known electromagnetic problem. It consists of a
parallel-plate capacitor shown in Fig. 7 filled with a soil of dc
resistivity ρ0 and subjected to an impulse voltage v(t) given
by

v(t) = V0(e−at − e−bt) (16)

where V0 is a constant related to the voltage amplitude and
a and b are time constants related to the wave front and tail,
respectively.

Fig. 7. Parallel-plate capacitor subjected to an impulse voltage v(t).

The problem consists of determining the resulting transient
current density J(t) between the capacitor plates. Such current
density is given by the right side of the Ampere-Maxwell
equation (1) which, considering the proposed rational
approximation for the electrical parameters of soil, can be
written in time-domain as

J(t) = σ0E(t) + ε∞
∂E
∂t

+

(
N∑
i=1

Ki e
pit

)
∗ ∂E
∂t

(17)

where E(t) is the transient electric field between the plates
which is assumed to be E(t) = v(t)/d, neglecting the edge
effects.



(a) Fast-fronted v(t) (b) Slow-fronted v(t)

Fig. 8. Results considering ρ0 = 100 Ω.m.

(a) Fast-fronted v(t) (b) Slow-fronted v(t)

Fig. 9. Results considering ρ0 = 300 Ω.m.

In the simulations, four different soils filling the
parallel-plate capacitor were considered, namely, ρ0 = 1/σ0 =
100, 300, 1000 and 3000 Ω.m; two distinct 1 kV normalized
impulse voltages were applied, namely, a fast-fronted one
1.2/50 µs and a slow-fronted one 5/75 µs, with parameters
presented in Tab. V. All convolutions arising from (17) were
recursively computed.

TABLE V
IMPULSE VOLTAGES PARAMETERS.

Parameter Fast-Front Slow-Front

V0 [V] 1.0203 × 103 1.0633 × 103

a [s−1] 1.4294 × 104 1.0061 × 104

b [s−1] 4.8742 × 106 9.1119 × 105

Figs. 8, 9, 10 and 11 depict the obtained transient current
densities between the parallel-plate capacitor filled with soils
of 100, 300, 1000 and 3000 Ω.m, respectively, computed
considering different rational realization for the electrical
parameters of soil. According to the results, it is seen that
regardless of the soil resistivity and the applied voltage signal,
the 11-pole realization provides results basically identical to
the full 19-pole realization proposed in [14], denoting the
consistency of the proposed minimal rational realization.

It is also seen that for low-resistivity soils, the very
simple 1-pole realization gives fairly good results, especially
considering the slow-fronted voltage wave. These results
denote the feasibility of the proposed approach for rational

realization of frequency-dependent electrical parameters of
soil. Finally, depending on the soil resistivity, the use of the
proposed minimal realizations can result in a huge reduction
in computational cost, for instance, in the use of methods such
as FDTD.

VI. CONCLUSION

This paper presented a discussion on sensitivity analyses of
a rational approximation of frequency dependent soil model
base on the expression proposed by the Alipio-Visacro soil
model.

The sensitivity was carried out with respect to the low
frequency soil conductivity and with respect to the complex
frequency. The results indicate a clear dominance of some
poles in the realization of the approximation. It was shown
that for a limited bandwidth a very simple first order soil
model can be used. Furthermore, it was shown that by relying
of the sensitivity analysis it was possible to obtain a lower
order realization without a significant loss of accuracy for the
frequency range of interest in lightning protection.

A simple example of a time-domain transient calculation
showing the accuracy of the proposed minimum realizations
was presented. It was shown that, in agreement with the
sensitivity analysis, the simple 1-pole representation of the
model provided interesting results and, especially, both 11-pole
and 19-pole realizations provided consistent results regardless
of the soil dc resistivity considered.



(a) Fast-fronted v(t) (b) Slow-fronted v(t)

Fig. 10. Results considering ρ0 = 1000 Ω.m.

(a) Fast-fronted v(t) (b) Slow-fronted v(t)

Fig. 11. Results considering ρ0 = 3000 Ω.m.

APPENDIX – AV SOIL MODEL

There are several experimentally obtained formulas for
modeling the frequency dependence of soil parameters. In
this paper, the Alipio-Visacro model is considered, which
is based on the measurement of the frequency response of
65 type of soils, which presented low-frequency resistivity
values ranging from 60 to about 18,000 Ω.m [11]. This
model satisfies causality and was recently suggested in
the CIGRE Brochure to take into account the frequency
dependence of soil parameters in lightning related studies [23].
According to AV soil model, the effective soil conductivity,
σeff (f)(10−3S/m), and permittivity, εeff (f) [F/m], at a
given frequency f [Hz] can be calculated using the following
formulas [11]:

σeff (f) = σ0 + σ0 × h(σ0)

(
f

106

)ξ
(18)

εeff (f) = ε∞ +
tan(ξπ/2)× 10−3

2πε0106ξ
σ0 × h(σ0)fξ−1 (19)

where σ0 is the DC conductivity. According to [11], the
parameters ξ and ε∞ along with the function h(σ0) can be
chosen to account for the natural statistical dispersion of the
frequency dependence of soil parameters. In this work, the
following parameters are used in (18) and (19) to obtain mean
results for the frequency variation of σeff and εeff [11]:
ξ = 0.54, ε∞ = 12ε0 and h(σ0) = 1.26× σ−0.730 .
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