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Abstract

Vector format tangential interpolation (VFTI) framework for deriving controllable and observable descriptor state space
model using Loewner matrix pencil from the transfer matrix data has been recently proposed for VLSI circuits. It uses
data sampled directionally i.e. two columns or two rows of the transfer matrix, called tangential interpolation data. In
VFTI the information contained in the frequency samples is not fully utilized and the accuracy gets affected with large
number of samples. Matrix format tangential interpolation (MFTI) has been proposed as an enhancement to VFTI in
the literature which uses the entire transfer matrix so that all the information contained in the samples is fully utilized.
This paper investigates the applicability of MFTI for state space modeling of power system FDNEs and proposes a novel
MATLAB R© based implementation for Loewner matrix construction. Properties of MFTI such as convergence speed,
accuracy, stability and passivity are compared with vector fitting (VF) and VFTI. Impact of number of samples is also
studied.

Keywords: Tangential interpolation, Loewner Matrix, Vector fitting, Frequency Dependent Network Equivalents,
EMTP

1. Introduction

Network equivalents are very useful tools for analyz-
ing network transients, lightning impacts, network inter-
actions with the advanced control systems etc. in large
power networks [1]. The frequency dependent admittance
or impedance of a network that needs to be simplified in
electromagnetic transient studies is usually modeled as a
frequency dependent network equivalent (FDNE). These
are usually modeled either as a lumped parameter circuit
model or as a rational function model [1]. Various types
of equivalents are needed for studying different types of
phenomenon. A good survey of these equivalents and their
modeling techniques are reported in [1]. In [2], early meth-
ods of FDNEs have been summarized.

Rational function approximation of FDNEs using vec-
tor fitting has seen significant growth [3] in the last decade.
Ill-conditioning issues in FDNEs are addressed using fre-
quency partitioning in [4, 5, 6]. A multi-port FDNE based
on time domain simulations is proposed in [7]. Several
variations of vector fitting are discussed for FDNE’s in
[8, 3, 9]. Vector fitting needs good initialization for success-
ful pole-relocation and needs separate passivity enforce-
ment in some conditions. In [10], a new method for ini-
tialization of poles is proposed. In [11], a matrix pencil
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based method is proposed for rational function approxi-
mation of frequency responses.

Loewner matrix pencil based tangential interpolation
framework is proposed in [12] to construct a controllable
and observable state space model from the transfer matrix
data. Data of the transfer matrix sampled directionally
called tangential interpolation data is used in these mod-
els. Recently, a multi-port modelling technique is pro-
posed in [13, 14] for VLSI systems with higher number
of terminals. This method uses two vectors which sample
only two columns or rows of the transfer matrix, hence
referred as vector format tangential interpolation (VFTI)
[15]. VFTI is originally proposed with a half samples data
splitting scheme for tangential data. In [16], VFTI is in-
vestigated for the modeling of power system FDNEs and
shown that alternate samples data splitting is more ac-
curate than half samples data splitting. In [17], it has
been shown that VFTI loses accuracy with large number
of samples. However, this is concluded using the half sam-
ples data splitting and no attempt is made to optimize the
Loewner matrix construction. A matrix format tangential
interpolation (MFTI) is proposed in [17] as an enhance-
ment to VFTI with half samples data splitting. MFTI
uses the entire transfer matrix sample instead of two sam-
pled vectors there by all the information contained in the
transfer matrix is fully utilized for better accuracy. MFTI
requires only 1/p samples to recover the system compared
to VFTI where p is the number of ports. MFTI is non-
iterative, robust, results in stable fitted models and do not
require pole initialization like vector fitting. The order
of the system can be approximately recognized from the
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singular values of Loewner matrix pencil.
Because of the above compelling advantages, appli-

cability of the MFTI for the modeling of power system
FDNEs is explored in this paper by comparing its perfor-
mance with vector fitting (VF) and VFTI. In this paper, a
novel MATLAB R© based implementation for Loewner ma-
trix construction is proposed to improve the convergence
speed of MFTI. The MFTI is compared with VFTI using
alternate samples data splitting and also with widely used
vector fitting. Two representative power system examples
have been used for performance comparison.

2. Matrix format tangential interpolation

The goal of tangential interpolation [12] is to construct
an observable and controllable generalized linear time in-
variant (LTI) descriptor system with m-inputs, p-outputs
and n-internal variables of the form Σ from frequency re-
sponse of H(s) for a frequency range of {smin,smax}.

Σ :

{
Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) + Y∞u̇(t)
(1)

where x(t) is a state vector (if E is singular and invertible),
u(t) is input, y(t) is output. While E, AεRn×n, BεRn×m,
CεRp×n, D, Y∞εRn×n are constants. Transfer function
H(s) of Σ is expressed as

H(s) = C(sE −A)
−1
B︸ ︷︷ ︸

Regular Part

+ D + sY∞︸ ︷︷ ︸
Irregular Part

(2)

Sample data of H(s) is {H(s1), ...,H(sP )} at set points
S = {s1, ..., sP } which are partitioned as

S = {λ1, ..., λk} ∪ {µ1, ..., µh} . (3)

The sampled data can be of scalar data, matrix data or
tangential data (matrix data sampled directionally on the
left and on the right) [12]. Using the k samples of H(s)
(Y/Z matrix in this application) at k frequency points, the
matrix format right tangential data is constructed as [17]

{λi, Ri,Wi|λi = j2πfi,Wi = H (fi)Ri for i = 1, 3..k − 1;

λi = −λi−1, Ri = Ri−1,Wi = W̄i−1 for i = 2, 4....k
} (4)

The matrix format left tangential data is constructed as

{µi, Li, Vi|µi = j2πfi+1, Vi = LiH (fi+1) for i = 1, 3..k − 1;

µi = −µi−1, Li = Li−1, Vi = V̄i−1 for i = 2, 4....k
} (5)

where λi, µiε{±2πfi}. Matrices Wi and Vi are right and
left interpolation data. Ri and Lj are called right and left
tangential directions. Tangential data can be represented
in a more compact matrix form as

Λ = diag[λ1, .., λ1︸ ︷︷ ︸
t1

,−λ1, ..,−λ1︸ ︷︷ ︸
t2

, . . . , λk−1, .., λk−1︸ ︷︷ ︸
tk−1

,−λk−1, . . . ,−λk−1︸ ︷︷ ︸
tk

]

R = [R
m×t1
1 , R

m×t2
1 , . . . , R

m×tk−1
k−1 , R

m×tk
k−1 ]

W = [W
p×t1
1 ,W

p×t2
1 , . . . ,W

p×tk−1
k−1 ,W

p×tk
k−1 ]

M = diag[µ1, . . . , µ1︸ ︷︷ ︸
t1

,−µ1, ..,−µ1︸ ︷︷ ︸
t2

, . . . , µk−1, .., µk−1︸ ︷︷ ︸
tk−1

,−µk−1, ..,−µk−1︸ ︷︷ ︸
tk

]

(6)

L =



L
t1×p
1

L
t2×p
1

.

.

.

L
tk−1×p

k−1

L
tk×p

k−1


, V =



V
t1×m
1

V
t2×m
1

.

.

.

V
tk−1×m

k−1

V
tk×m

k−1


, (7)

where t1 = t2, t3 = t4, ..., tk−1 = tk. For systems with
m = p, if ti = m and rank(Li) = rank(Ri) = ti(for i =
1, 2, ...k), then all entries in the transfer matrices are used
for interpolation. ti can be adjusted to decide between
speed and accuracy and/or to assign different weights to
ill-conditioned samples [17]. In MFTI these are usually
selected as p×p identity matrices for a p-port network. The
transfer function (2) obtained using interpolation method
satisfies the following right and left conditions by finding
a minimal realization [E,A,B,C,D] for tangential data

H (λi)Ri = Wi

LjH (µj) = Vj
(8)

The choice of identity matrices as interpolation vectors
simplifies the above constraints as

H (λi) = Wi

H (µj) = Vj
(9)

Thus the entire H(s) matrix is used at every frequency
point [15, 17]. The tangential interpolation framework
uses Loewner matrix (L) and the shifted Loewner matrix
(σL) as the underlying tools for the solution because these
matrices have a system theoretically significant factoriza-
tion [12, 17]. Using the directions Ri and Lj , Loewner
matrix (L) of H(s) can be built as follows

L =


V1R1−L1W1

µ1−λ1
· · · V1Rk−L1Wk

µ1−λk

...
. . .

...
VhR1−LhW1

µh−λ1
· · · VhRk−LhWk

µh−λk

 (10)

Similarly shifted Loewner matrix (σL) of sH(s) can be
built as follows

σL =


µ1V1R1−λ1L1W1

µ1−λ1
· · · µ1V1Rk−λkL1Wk

µ1−λk

...
. . .

...
µhVhR1−λ1LhW1

µh−λ1
· · · µhVhRk−λkLhWk

µh−λk

 (11)

In MFTI, the elements [Li,j ], [σLi,j ] are block matrices
of size p× p and the size of L, σL is np× np.

Similar to VFTI, MFTI data satisfies the following
Sylvester equations.

LΛ−ML = LW − V R (12)

σLΛ−MσL = LWΛ−MVR (13)

The Loewner matrix is factored as a product of the gen-
eralized controllability and generalized observability ma-
trices. The derivation can be found in [12, 13]. The pair
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(E,A,B) is controllable and (C,E,A) is observable, so by
appropriately choosing the sampling directions Ri and Lj ,
the rank of the Loewner matrix is same as the rank of E
matrix, while the rank of the shifted Loewner matrix is
+p more than the rank of A matrix [12, 13]. The state
space realization can be obtained from the singular value
decomposition (SVD) of L [12, 13] as shown below

E = −Y ∗1 LX1,

A = −Y ∗1 ΣLX1

B = Y ∗1 V ;

C = WX1;

D = 0;

(14)

where
∀x ∈ S
SV D(xL − σL) = Y1ΣX∗1 ;

(15)

The pencil (σL,L) loses rank only when x is one of its
eigenvalues [13], so choice of x would not be an issue. One
can identify the order of the underlying system based on
a large drop in the singular values of (xL − σL).

3. MFTI implementation

This section describes the implementation details of the
MFTI using MATLAB R© syntax.

Step 1: Reading frequency response data
A p-port system admittance/impedance matrix
H(s) sampled at frequencies S = {s1, s2..., sNs

},
can be represented in MATLAB R© as a p×p×Ns
matrix, where si = jωi. Even number of samples
are assumed without loss of generality. MFTI
only needs 1 : p : Ns samples. So only N =
Ns/p samples will be used. The required data is
obtained as

H1 = H(:, :, 1 : p : Ns)

S1 = S(1 : p : Ns)

Step 2: Generation of even and odd samples
The required data H1, S1 need to be separated
into even and odd samples as follows

Sλ = S1(1 : 2 : end, 1)

Sµ = S1(2 : 2 : end, 1)

Hλ (s) = H1 (Sλ)

Hµ (s) = H1 (Sµ)

Step 3: Calculation of W and V matrices
A real system should satisfyH(s) = H(s̄). There-
fore in (4), Wi, Vi are built in such a way that the
Y-parameters at the complex conjugate values of
the sample points −jωi are equal to the complex
conjugates of the measurements at jωi. This is
done in MATLAB R© as follows

µ(1 : 2 : N, 1) = Sµ

µ(2 : 2 : N, 1) = −Sµ
λ(1 : 2 : N, 1) = Sλ

λ(2 : 2 : N, 1) = −Sλ
for kk = 1 : N/2

V 1 = squeeze(Hµ(:, :, kk))

V = [V ;V 1; conj(V 1)]

W1 = squeeze(Hλ(:, :, kk))

W = [W,W1, conj(W1)]

end

Step 4: Construction of tangential data
After the V,W matrices are constructed, the tan-
gential data need to be constructed as in (4) to
solve Sylvester equations for forming Loewner
(L) and shifted Loewner (σL) matrices. Alter-
nately, L and σL can be formed using for−loops
from individual components of tangential data
matrices. It is found that both the approaches
become computationally expensive when the num-
ber of samples increase. In MFTI, since Ri, Li
are identity matrices, the numerator of (L) is
(Vj −Wi)/µj − λi where j changes in rows from
j = 1 to j = k and i changes in columns from
i = 1 to i = k. So this can be obtained by
stacking V, µ matrices horizontally and W,λ ma-
trices vertically. This can be done efficiently us-
ing MATLAB R© repmat command. One has to
remember that each element of µ, λ will be mul-
tiplying p × p matrix elements of W,V . So we
first define µ1, λ1 which are matrices formed by
the replacement of singleton elements of µ, λ with
respective p×p matrix elements. Then we define
µ2, λ2 which are respective stacked matrices as
shown below

µ1 = [ ]

λ1 = [ ]

for kk = 1 : N

µ1 = [µ1; ones(noports, noports) ∗ µ(kk)]

λ1 = [λ1, ones(noports, noports) ∗ λ(kk)]

end

µ2 = repmat(µ1, 1, N)

λ2 = repmat(λ1, N, 1)

Vstack = repmat(V, 1, N)

Wstack = repmat(W,N, 1)

Step 5: Construction of L and σL
The loewner and shifted loewner matrices can be
constructed efficiently without using for− loops
or solution of Sylvester equations as shown below

L = (Vstack −Wstack)./(µ2 − λ2)

σL = (µ2. ∗ Vstack − λ2. ∗Wstack)./(µ2 − λ2)
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This is a novel implementation for Loewner and
shifted Loewner matrix construction to improve
the convergence speed of MFTI in this paper.

Step 6: The remaining steps after construction of L &
σL are same as VFTI and they are repeated in
APPENDIX for the sake of completeness.

The following error measures [13] are used for quanti-
fying the performance of MFTI,

H∞ error =
maxi=1...,Ns

σ1

(
Y (i) −Hfit (j2πfi)

)
maxi=1...,Nsσ1

(
Y (i)

) (16)

H2 error =

√√√√√√√√
Ns∑
i=1

∥∥Y (i) −Hfit (j2πfi)
∥∥
F

2

Ns∑
i=1

∥∥Y (i)
∥∥
F

2
(17)

The first error measure is the normalizedH∞−norm which
evaluates the maximum deviation in the singular values.
and second one is the normalized H2−norm which evalu-
ates the error in all entries, a good estimate of the overall
performance.

4. Comparison of VFTI, MFTI and vector fitting

In this section, state space models for frequency re-
sponse data of two representative power system exam-
ples is derived using MFTI and its performance is com-
pared with the vector fitting and VFTI. Alternate sam-
ples data splitting is used for VFTI because it is more
accurate than the half samples data splitting which was
originally proposed for VFTI [16]. This study uses matrix
fitting toolbox1 from the vector fitting web site [18, 19, 20].
Passivity over the entire frequency range is tested using
eig(Re{Y (s)}) > 0 [21]. Passivity is also checked using
time domain simulations, for a unit step voltage excita-
tion at port-1 through a 5Ω resistor with other ports open
using the discretization scheme proposed in [22].

4.1. Test System 1: FDNE of an electrical distribution
system

Consider a power distribution system shown in Fig.1
with two 3-phase terminals (A, B) [3]. The 6 × 6 admit-
tance matrix Y (s) with respect to A & B terminals is fitted
with MFTI, VFTI and VF approaches. The data is taken
from [18]. This data set has 300 frequency samples in the
frequency range 10 Hz - 100 kHz. Fig.2a shows the singu-
lar values of xL−σL from which the approximate order of
the system can be identified. The singular values of both
the VFTI and MFTI approaches are close to each other.
The largest singular value drop is not very evident in the
plots. However, a gradual change in the slope is clearly
visible in the circled area. This is because of the infinite

Figure 1: Test System 1, Power Distribution Network

dimensional distributed parameter model of the distribu-
tion line [15]. The order of the system for vector fitting
is taken as 60. From the singular value plots orders 70
and 76 are selected respectively for VFTI and MFTI cor-
responding to the largest drop in the circled region. The
actual orders of the system are 55, 61 for VFTI, MFTI
respectively after extracting the irregular part.

The results of the fitting for all elements are shown in
Fig.2b along with the error in all the fitting methods with
respect to original data in Fig.2c. It can be observed that
fitting responses with VFTI and MFTI are accurate and
comparable to vector fitting. Magnitude of error in case
of VFTI and MFTI is in the order of 10−4 or less for all
the frequencies. They are indistinguishable because they
overlap with each other.

The eigenvalues ofRe{Y } over the wide frequency range
are shown in Fig.3a. No passivity violations are found.
The time domain responses, current through phase-a of
port-A and Voltage at phase-a of port-B, for a unit step
voltage applied at the phase-a of port-A with other port-
B open is shown in Fig.3b and Fig.3c respectively. Stable
time domain simulations are obtained. All the FDNEs are
implemented as state space models as in [22]. So all the
time domain simulations took more or less similar execu-
tion times.

Table 1: Comparison of VFTI, MFTI & VF: Test System 1

Method H2 error H∞ error Order Passive Fitting Time, s

VFTI 0.0037 0.0085 55 Yes 0.28
MFTI 0.0035 0.0033 61 Yes 0.23
VF 0.0003 0.0003 60 Yes 0.8834

The performances of all the three methods are shown
in Table 1. The error measures of MFTI, VFTI are com-
parable to vector fitting. The system orders after irregular
part extraction are also shown in the table. The execution
times of the programs in fitting the FDNEs are also shown
in the table. The results are based on a laptop equipped
with Intel core i7-3632QM quad core 2.2GHz processor
with 8GB RAM. It can be observed that MFTI is faster
than VFTI and vector fitting.

Fig.4 shows the frequency response of the system with
full samples and 1/p samples. It can be observed that sev-
eral peaks and valleys are missing in the 1/p samples plot.
However, the MFTI has fitted the responses very accu-
rately. This shows the superior interpolation capabilities
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(a) Singular Values

(b) Frequency Response

(c) Errors in the Fitted Frequency Response

Figure 2: Singular values of xL−σL and Frequency response of Y(s):
Test System 1

of the MFTI method.

4.2. Test System 2: 500kV Transmission Network

FDNE for studying the switching transient on TL4
while closing CB1 of the 500kV test system shown in Fig.5
is obtained by MFTI in this subsection. The lower part
seen from Bus A is represented in detail as study zone of
the system. The remaining upper part need to be replaced
by an FDNE. The system data is available in [4]. The
admittance matrix of the external network is calculated
between 0 Hz and 10 kHz with 2000 equidistant frequency
points [4]. The data is obtained from the author of [4].

The singular values of the Loewner matrix shown in
Fig.6a doesn’t show large sudden drop. Only a gradual
change in the slope of the singular values observed and
shown in the circled area which starts around 100 Hz. Or-
ders 155,164 are selected for MFTI and VFTI whereas the

(a) Eigenvalues of Re(Y)

(b) Current through Phase-a of Port-A

(c) Voltage at Phase-a of Port-B

Figure 3: Eigenvalues of Re{Y } and Time domain results: Test
System 1

Figure 4: Y (s) with all samples and 1/p samples: Test System 1

vector fitting produces an accurate passive fit with order
150.

The frequency response fits of elements Y(1,1) and
Y(1,2) for all methods are shown in Fig.6b along with the
error in all the fitting methods with respect to original
data in Fig.6c. Both VFTI and MFTI methods fitted ac-
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Figure 5: Test System 2, 500kV Transmission Network

curate models comparable to vector fitting. As the plots
are over lapping it is difficult to distinguish them. Errors
in case of VFTI and MFTI for this case are similar to that
of the VF. The passivity of the fitted models can be ver-
ified from the eigenvalues of Re{Y } and the time domain
simulations shown in Fig.7b and Fig.7c respectively. It can
be observed that there are no passivity violations and the
simulations are stable.

Table 2 summarizes the performances of the three meth-
ods for test system 2. Here also the MFTI is found to be
faster than VFTI but slower than vector fitting because
of the large number of samples. The order of MFTI is
slightly higher and accuracy measures are comparable.

Table 2: Comparison of VFTI, MFTI & VF:Test System 2

Method H2 error H∞ error Order Passive Fitting Time, s

VFTI 0.0302 0.081 150 Yes 17.69
MFTI 0.028 0.069 156 Yes 16.45
VF 0.0004 0.0039 150 Yes 5.9

In [15, 17], MFTI was shown to be superior to VFTI
with half samples data splitting. Since this paper used
the alternate samples data splitting proposed in [16], the
accuracy measures of MFTI and VFTI are turned out to
be closer in the two examples. MFTI is found to be faster
than VFTI and vector fitting with comparable accuracy for
sample sizes of 300 or lower. When the number of sam-
ples are increased beyond that MFTI apparently produced
slightly higher order models faster than VFTI, but slower
than vector fitting. The VFTI in this paper is implemented
using an efficient Loewner matrix formation proposed in
[16]. So the speedup of MFTI is not very significant as
claimed in [17] with large number of samples. This is be-
cause the singular value decomposition becomes expensive
with increase in sample size. In all these cases MFTI and
VFTI have shown similar singular value drops. The order
of the system has been identified from a region correspond-
ing to the gradual change in slope of the singular values.

(a) Singular Values

(b) Frequency Response

(c) Errors in the Fitted Frequency Responses

Figure 6: Singular values of xL − σL and Frequency response of
Y(1,1), Y(1,2): Test System 2

In vector fitting, the order determination takes consider-
ably large number of trials compared to MFTI. It is ad-
vantageous to use MFTI over VFTI because of the less
number of samples and better accuracy. The advantage of
less number of samples will be more pronounced with large
number of ports [17]. No passivity violations are observed
in the test systems used. However, Loewner frameworks
do not guarantee passivity and for any violations, passiv-
ity enforcement can be done using the methods proposed
in [23]. The difference in errors of the fitted frequency
responses will emerge as small deviations in time domain
simulations. Investigations on the application of proposed
technique to higher frequencies above 100 kHz also can
be carried out. It is envisioned that further research in
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(a) Eigenvalues Re(Y)

(b) Current through port1

(c) Voltage at port 2

Figure 7: Eigenvalues of Re{Y } and Time domain results: Test
System 2

these directions will make the Loewner matrix approaches,
MFTI and VFTI, a viable alternatives to iterative meth-
ods.

5. Conclusions

The frequency dependent network equivalents are in-
dispensable in electromagnetic transient simulations of large
power systems. This paper presents the application of
matrix format tangential interpolation method for FDNE
modeling of power systems and compares it’s performance
with VF and VFTI. A novel MATLAB R© based implemen-
tation for Loewner matrix construction is proposed to im-
prove the convergence speed of MFTI. Following are the
key observations from the comparison,

• The impact of number of data samples is studied
and MFTI uses less number of samples than VF and
VFTI.

• MFTI has shown superior interpolation properties

in-spite of loss of several peaks and valleys due to
1/p samples.

• It is found that MFTI is faster than VFTI irrespec-
tive of sample size. MFTI is shown to be faster than
vector fitting for sample sizes 300 or lower. Further
research is needed to improve the speed of MFTI
with large number of samples.

• MFTI approach is shown to be accurate and stable
for all the test systems studied.

Appendix A.

The MATLABr implementation steps after the con-
struction of Loewner and shifted Loewner matrices are
same as VFTI. They are repeated here from [16] for com-
pleteness.

Step 6a: Obtain real L & σL
The following steps convert L, σL matrices into
real matrices so that the state space matrices
will be real.

Define : I = eye(noports)

g =
1√
2

[
I −i ∗ I
I i ∗ I

]

G = kron(eye(
N

2
), g);

Lr = G′LG;

σLr = G′σLG;

Vr = G′V ;

Wr = WG;

Step 6b: Identify the order of system
The Loewner matrix pencil singular values can
be used to identify the order of the system.
The steps below plot the singular values of the
Loewner matrix

Define : k1 = any value between 1 toN ;

x = imag (λ1 (k1, 1)) ;

[Y,Σ,X] = svd (xLr − sLr) ;

SV = diag (Σ) /Σ (1, 1) ;

semi log y (SV ) ;

The order of the system can be selected approx-
imately from the plot where the largest drop in
singular values occurs and is denoted as K.

Step 6c: Formulation of state space model
From the singular value decomposition the state
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space model can be formulated as follows

YK = Y (:, 1 : K) ;

XK = X (:, 1 : K) ;

E = −YK
′LrXK ;

A = −YK
′σLrXK ;

B = YK
′Vr;

C =WrXK ;

The realization obtained above sometimes will
have unstable poles and the order may not be
the true order of the system because of the em-
bedded D matrix in the realization [12]. Stable
reduced order model is obtained by using the
procedure in [16] which essentially separates the
unstable part and fits a first order polynomial
to the unstable response as shown below

Step 6d: Obtains Stable Reduced Order Model

sys = dss(A,B,C, 0, E);

sys = ss(sys,′ explicit′);

[sys1 sys2] = stabsep(sys);

[ARBR CRDR1] = ssdata(sys1);

ER = eye(size(AR, 1), size(AR, 1));

Step 6e: D and Y∞ extraction using polyfit

for k = 1 : length(S)

s = S(k);

HU (:, :, k) = H(:, :, k)− CR(sER −AR)−1BR;

end

for k = 1 : p

for i = 1 : p

Pfit = polyfit(ST , squeze(HU (k, i, :)), 1);

Y∞(k, i) = Pfit(1);

D(k, i) = Pfit(2);

end

end
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