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Abstract-- Laplace transform analysis of electromagnetic power 

system transients generally is based on a technique in which the 

Laplace inversion integral is truncated with a suitable data 

window. This technique, being referred to as WNLT, is 

appropriate for most practical cases. Nevertheless, it results 

inadequate for certain R&D tasks. This paper presents a new 

technique for numerical Laplace inversion that does not require 

truncation with a data window; it instead uses Brezinski's theta 

algorithm to account for the infinite range of the Laplace inversion 

integral. As opposed to the WNLT, the new technique guarantees 

consistent and high accuracy levels at low computational costs. 

Finally, the new technique is applied to the transient analysis of a 

power-system network. Its results compare favorably well with 

those from the PSCAD/EMTDC program. 
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I.  INTRODUCTION 

he analysis and simulation of electromagnetic transients 

(EMTs) are essential for the design and the safe and relia-

ble operation of electric power systems (PS). These activi-

ties are usually carried out using time domain (TD) methods 

based on EMTP methodologies (ATP, PSCAD/EMTDC, 

EMTP-RV, etc.) [1], [2]. Nevertheless, for many years, pro-

gress in EMT analysis has been driven by advances in fre-

quency-domain (FD) analysis. At this respect, a key player 

among power-system specialists has been the Windowed Nu-

merical Laplace Transform (WNLT) [6], [7]. The WNLT has 

been adopted both, as an R&D tool and as a reference method 

to assess time-domain methods, models, and results [3]-[5] 

The WNLT discretizes the Laplace inversion integral con-

verting it to an infinite sum that is then truncated for numerical 

evaluation. [2], [6]. The errors due to this truncation are de-

creased by applying a suitable data window [2], [6]-[10]. Typi-

cal accuracies delivered by the WNLT are within the range of 

103 and 106., which is appropriate for most practical situa-

tions. Until recently, the WNLT had responded well to the 

needs of PS-EMT specialists. However, sustained progress in 

this field is pushing the WNLT beyond its limits. Therefore, 

new and more advanced tools are needed to support progress in 

EMT analysis. This paper demonstrates the limitations of the 

WNLT and has as its main objective the introduction of a new 

FD tool that is more accurate and reliable than the WNLT. Alt-

hough the new method is primarily intended as an R&D tool, 

the general community of PS-EMT specialists may also benefit 

from its use. 

One limitation of the WNLT is that its accuracy is not fixed; 

that is, if any parameter of a signal to be inverted is modified, 

the resulting precision changes. Another limitation is that the 

maximum precision offered by the WNLT is 10-9 and this is at-

tained at a very high computational cost; that is, it requires a 

high number of spectral samples, in the order of 220 (1,048,576). 

An application of the WNLT requiring a guaranteed accuracy 

of 10-9 or better is the delay identification and extraction from a 

frequency-domain function prior to applying a rational fit [11], 

[23]. A poor delay extraction can result in rational fits of an 

unnecessary high order and with increased possibilities of being 

non-passive. 

Other methods to invert numerically the Laplace transform 

do not truncate the integration range; instead, these methods use 

extrapolation techniques to approximate sums of infinite series; 

these are referred to as sum-acceleration methods and offer high 

and fixed accuracies with a moderate number of samples and, 

in consequence, with moderate computational cost. These 

methods have not been extensively applied to PS-EMT analy-

sis. If anything, only to small networks with single-phase lines 

with constant parameters [12]. Previously, the authors of this 

paper have presented one of these methods, the QD algorithm 

[13].  

This paper presents a new numerical inversion technique for 

the Laplace transform that is based on Brezinski's Theta algo-

rithm [14], [15] to accelerate the convergence of infinite sums. 

To the best of these authors’ knowledge, this is the first appli-

cation of Brezinski's Theta algorithm in the inversion of the La-

place transform, as well as in the analysis of power-system 

EMTs. This paper shows that the Theta algorithm far exceeds 

the limitations of the WNLT at a moderate computational cost 

II.  NUMERICAL TREATMENT OF THE LAPLACE TRANSFORM 

Let f(t) represent a time-domain signal and F(s) its corre-

sponding Laplace transform, both are related by the Laplace in-

version integral: 

𝑓(𝑡) =
1

𝜋𝑗
∫ 𝐹(𝑠)𝑒𝑠𝑡

𝑐+𝑗∞

𝑐−𝑗∞

𝑑𝑠,                                       (1) 

where s=c+j is the Laplace variable with c representing a 

damping constant and  the angular frequency. If 𝑓(𝑡) is real 

and causal, a convenient form for (1) is: 

𝑓(𝑡) =
𝑒𝑐𝑡

𝜋
𝑅𝑒 {∫ 𝐹(𝑐 + 𝑗𝜔)𝑒𝑗𝜔𝑡

∞

0

𝑑𝜔}.                 (2) 
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A.  Discretization 

In practice, F(s) usually is given either as a collection of 

samples or as an analytic function, with the latter being often 

intractable. These are the two main reasons for the numerical 

treatment of (1). This is performed substituting  in (2) by k, 

where  is the frequency step. Hence: 

𝑓(𝑡) ≅ 𝑓(𝑡) =
𝑒𝑐𝑡∆𝜔

𝜋
𝑅𝑒 {∑ 𝐹(𝑐 + 𝑗𝑘∆𝜔)𝑒𝑗𝑘∆𝜔𝑡

∞

𝑘=0
},      (3) 

where 𝑓(𝑡) is an approximation to 𝑓(𝑡). It follows from (3) 

that 𝑒−𝑐𝑡𝑓(𝑡) is periodic [7]; moreover: 

𝑓(𝑡) = 𝑓(𝑡) + 𝜖𝑎𝑙                                                           (4) 
with 

𝜖𝑎𝑙 = ∑ 𝑓(𝑡 + 𝑚𝑇)𝑒−𝑐𝑚𝑇
∞

𝑚=1
                                  (5) 

and 

𝑇 = 2𝜋 / ∆𝜔 .                                                                 (6) 

𝜖𝑎𝑙 is the aliasing error produced by the discretization of F(s) 

in (3) and 𝑇 is the repetition period for 𝑓(𝑡). 𝑇 also is the 

maximum time span at which a non-periodic 𝑓(𝑡) can be ef-

fectively approximated by 𝑓(𝑡). 𝑇 is therefore referred to as 

the observation time. Aliasing error 𝜖𝑎𝑙 and Laplace damping 

constant c are related through the following expression [10]: 

𝑐 = − log𝑒(𝜖𝑟𝑒𝑙) 𝑇⁄ ,                                                     (7) 

where 𝜖𝑟𝑒𝑙 = 𝜖𝑎𝑙/𝑓𝑚𝑎𝑥  and 𝑓𝑚𝑎𝑥  is the maximum expected 

value for 𝑓(𝑡) [10]. The aliasing error can thus be controlled 

by a proper choice of constant c. 

Full numerical treatment of (2) requires the discretization 

also of t in (3); that is, the substitution of t by nt. For conven-

ience, t is selected as a multiple of 𝑇: 

∆𝑡 = 𝑇 / 𝑁 .                                                                    (8) 

On replacing t by nt in (3) and on applying (4) and (6): 

𝑓(𝑛∆𝑡) + 𝜖𝑎𝑙 =
2𝑒𝑐𝑛∆𝑡

∆𝑡
𝑅𝑒 {

1

𝑁
∑ 𝐹(𝑐 + 𝑗𝑘∆𝜔)𝑒𝑗2𝜋𝑛𝑘/𝑁

∞

𝑘=0

} , (9) 

with 𝑛 = 0, 1, 2, … , 𝑁 − 1. 

For the sake of clarity, the following notation is now adopted: 

𝑓𝑛 = 𝑓(𝑛∆𝑡) 

and    𝐹𝑘 = 𝐹(𝑐 + 𝑗𝑘∆𝜔). 

The evaluation of (9) requires truncating the summation at 

its right-hand-side to a finite number of terms M: 

𝑓𝑛 + 𝜖𝑎𝑙 =
2𝑒𝑐𝑛∆𝑡

∆𝑡
𝑅𝑒 {

1

𝑁
∑ 𝐹𝑘𝑒𝑗2𝜋𝑛𝑘/𝑁

𝑀−1

𝑘=0
} + 𝜖𝑡𝑟 ,       (10) 

with 𝜖𝑡𝑟 being the truncation error: 

𝜖𝑡𝑟 =
2𝑒𝑐𝑛∆𝑡

∆𝑡
𝑅𝑒 {

1

𝑁
∑ 𝐹𝑘𝑒𝑗2𝜋𝑛𝑘/𝑁

∞

𝑘=𝑀
}                (11) 

The term 𝑒𝑗2𝜋𝑛𝑘/𝑁 in (9) is periodic with respect to running 

index k and N is its period; (9) can thus be restated as follows: 

𝑓𝑛 + 𝜖𝑎𝑙 =
2𝑒𝑐𝑛∆𝑡

∆𝑡𝑁
𝑅𝑒 {∑ 𝐹̃𝑘𝑒𝑗2𝜋𝑛𝑘/𝑁

𝑁−1

𝑘=0
} ,          (12) 

with 

𝐹̃𝑘 = ∑ 𝐹𝑘+𝑙𝑁

∞

𝑙=0
 

Note that 𝐹̃𝑘  is the aliased version of 𝐹𝑘 . This is a conse-

quence of discretizing the time in (9) [19]. 

B.  Windowed Numerical Laplace Transform (WNLT) 

For the WNLT, sum truncation in (10) is taken at M=N and 

truncation error is mitigated by applying a data window k [7], 

[9], [10]: 

𝑓𝑛 ≅
2𝑒𝑐𝑛∆𝑡

∆𝑡
𝑅𝑒 {

1

𝑁
∑ 𝐹𝑘𝜎𝑘𝑒

𝑗2𝜋𝑛𝑘
𝑁

𝑁−1

𝑘=0
}.                (13) 

The Von Hann (or Hanning) data window has been found sim-

ple and effective [3], [5]:  

𝜎𝑘 = {
[1 + 𝑐𝑜𝑠(𝜋𝑘/𝑁)]/2 0 ≤ 𝑘 ≤ 𝑁

0 𝑘 < 0 , 𝑘 > 𝑁
.       (14) 

One advantage of truncating at M=N is that the summation 

inside braces in (13) corresponds to the Discrete Fourier Trans-

form (DFT) which is evaluated with high computational effi-

ciency with the Fast Fourier Transform (FFT) algorithm [8]. 

For further simplicity and computational efficiency, N is often 

taken as an integer power of 2 (2m). 

The selection of damping constant c at the WNLT method is 

based on (7). 𝜖𝑟𝑒𝑙 depends at some point on the number of sig-

nal samples N [10]. A value of 𝜖𝑟𝑒𝑙 = 10−5 has been estab-

lished empirically for an N between 29 (512) and 211 (2048) 

samples [3], [5], [10]. 

III.  INFINITE-SERIES ACCELERATION METHODS 

Instead of truncating the summation range of (9) with a data 

window, other methods resort to extrapolation techniques to ac-

celerate the convergence of the infinite sum of (9). Two of these 

are the QD algorithm [12], [13], and the Epsilon algorithm [16]. 

The latter is the precursor of the one being proposed here and, 

for this reason, it is described next. 

A.  Epsilon Algorithm. 

The infinite sum in (9) is expressed as follows: 

𝑓(𝑧) = 𝑆 = ∑ 𝑐𝑘𝑧𝑘
∞

𝑘=0
                                            (15) 

where 𝑐𝑘 = 𝐹𝑘 y 𝑧 = 𝑒2𝜋𝑗𝑛/𝑁. The definition of 𝑆𝑛 is intro-

duced here as the partial sum of the first n+1 terms in S: 

𝑆𝑛 = ∑ 𝑐𝑘𝑧𝑘
𝑛

𝑘=0
.                                                        (16) 

Now S in (15) is approximated by the following rational 

function, so that the division of 𝑃𝑛(𝑧) by 𝑄𝑘(𝑧) generates a 

series with positive powers of z whose first n + k + 1 coeffi-

cients coincide with their corresponding ones in (15). 

𝑓(𝑧) ≅
𝑃𝑛(𝑧)

𝑄𝑘(𝑧)
=

𝑎0 + 𝑎1𝑧 + ⋯ + 𝑎𝑛𝑧𝑛

1 + 𝑏1𝑧 + + ⋯ + 𝑏𝑘𝑧𝑘
 ;          (17) 

then, 𝑃𝑛(𝑧)/𝑄𝑘(𝑧) corresponds to the Padé approximant of S 



(or of f(z)) and is denoted by [n, k] [18]. The approximant pro-

vides a value closer than 𝑆𝑛 to the infinite series S in (15); ad-

ditionally, [n, k] tends to extend its validity as a representation 

of S far beyond that of the partial sums 𝑆𝑛+𝑘+1. Nevertheless, 

its convergence is still slow as for an iterative approach [16]. 

Shanks transformation performs the change of 𝑆𝑛  by an-

other series denoted by 𝑒𝑘(𝑆𝑛) whose convergence is faster 

than that of the Padé approximants. This transformation can be 

expressed as a relationship between Hankel determinants [16]: 

𝑒𝑘(𝑆𝑛) =
𝐻𝑘+1

𝑛 (𝑆𝑛)

𝐻𝑘
𝑛(∆2𝑆𝑛)

                                                   (18) 

where 𝐻𝑘
𝑛(𝑆𝑛) represents the Hankel determinant of order k×k, 

whose first row is a simple sequence of partial sums begining 

with 𝑆𝑛 and ending with 𝑆𝑛+𝑘−1. Each successive row consists 

of a circular rotation of one step to the right of the elements of 

the previous one. Here ∆ represents the forward difference op-

erator on the index “n”, and: 

∆2𝑆𝑛 = ∆(∆𝑆𝑛) = ∆(𝑆𝑛+1 − 𝑆𝑛) 
           = 𝑆𝑛+2 − 2𝑆𝑛+1 + 𝑆𝑛 . 

A problem with (18) is that it involves the calculation of de-

terminants, so it is impractical for an iterative estimation of S. 

Wynn's Epsilon algorithm (-A) substantially improves the 

Shanks transformation by accelerating its convergence, with-

out requiring the calculation of determinants and providing the 

successive values of 𝑒𝑘(𝑆𝑛) recursively [16], [17]. 

From Sylvester's identity for determinants, the following re-

lation is first obtained [15]: 

𝐻𝑘
𝑛(∆3𝑆𝑛)

𝐻𝑘+1
𝑛 (∆𝑆𝑛)

−
𝐻𝑘−1

𝑛+1(∆3𝑆𝑛+1)

𝐻𝑘
𝑛+1(∆𝑆𝑛+1)

= [
𝐻𝑘+1

𝑛+1(𝑆𝑛+1)

𝐻𝑘
𝑛+1(∆2𝑆𝑛+1)

−
𝐻𝑘+1

𝑛 (𝑆𝑛)

𝐻𝑘
𝑛(∆2𝑆𝑛)

]

−1

;       (19) 

then, on replacing 𝑆𝑛 by ∆𝑆𝑛 in (18): 

  𝑒𝑘(∆𝑆𝑛) =
𝐻𝑘+1

𝑛 (∆𝑆𝑛)

𝐻𝑘
𝑛(∆3𝑆𝑛)

 ;                                 (20) 

next, on applying (18) and (20) in (19), along with the corre-

sponding index changes, the following expression is obtained: 

1

𝑒𝑘(∆𝑆𝑛)
=

1

𝑒𝑘−1(∆𝑆𝑛+1)
+  

1

𝑒𝑘(𝑆𝑛+1) − 𝑒𝑘(𝑆𝑛)
;                 (21) 

finally, as the following definitions are introduced in (21): 

𝜀2𝑘
𝑛 = 𝑒𝑘(𝑆𝑛)                                      (22) 

𝜀2𝑘+1
𝑛 =

1

𝑒𝑘(∆𝑆𝑛)
,                                  (23) 

one obtains: 

𝜀𝑘+1
𝑛 = 𝜀𝑘−1

𝑛−1 +
1

𝜀𝑘
𝑛+1 − 𝜀𝑘

𝑛 .                          (24) 

Note in this last expression the index change, from “2k” to “k”, 

that has been made to merge both subseries, (22) and (23), into 

(24). According to (22) and (23), when the subscript "k + 1" is 

even, (24) provides an approximation to S and, when this sub-

script is odd, (24) provides an intermediate value. 

Expression (24) is the basis for the Epsilon algorithm, which 

was applied for the first time in the calculation of the inverse 

Laplace transform by Crump in 1972 [21]. More recently, 

Brančík [12] has improved the algorithm by initializing it with 

the IFFT. He has also applied it to the analysis of circuits with 

distributed-parameter elements. 

B.  Theta Algorithm 

To further accelerate the convergence of 𝜀𝑘
𝑛 in the Epsilon 

algorithm, Brezinski derives from (24) the following two ex-

pressions [15]: 

𝜃2𝑘+1
𝑚 = 𝜃2𝑘−1

𝑚+1 + 𝐷2𝑘
𝑚                                                   (25) 

𝜃2𝑘+2
𝑚 = 𝜃2𝑘

𝑚+1 + 𝑤𝑘𝐷2𝑘+1
𝑚                                          (26) 

with   𝐷𝑘
𝑚 = [𝜃𝑘

𝑚+1 − 𝜃𝑘
𝑚]−1.                                                 (27) 

Note the notation change from 𝜀𝑘
𝑛 to 𝜃𝑘

𝑚. Also note the intro-

duction of the factor 𝑤𝑘 in (26) for accelerating the conver-

gence. It is required that 𝜃2𝑘+2
𝑚  converges faster than 𝜃2𝑘

𝑚+1; 

i.e., [15]: 

lim
𝑚→∞

𝜃2𝑘+2
𝑚

𝜃2𝑘
𝑚+1 = 0.                                           (28) 

To determine 𝑤𝑘, first apply the operator ∆ on both sides of 

(26): 

∆𝜃2𝑘+2
𝑚 = ∆𝜃2𝑘

𝑚+1 + 𝑤𝑘∆𝐷2𝑘+1
𝑚 ; 

then divide by 𝜃2𝑘
𝑚+1: 

∆𝜃2𝑘+2
𝑚

∆𝜃2𝑘
𝑚+1 = 1 + 𝑤𝑘

∆𝐷2𝑘+1
𝑚

∆𝜃2𝑘
𝑚+1 ;                                        (29) 

next, take the limit as m and consider relation (28) to obtain: 

𝑤𝑘 lim
𝑚→∞

∆𝐷2𝑘+1
𝑚

∆𝜃2𝑘
𝑚+1 = −1 ; 

or, 

𝑤𝑘 = − lim
𝑚→∞

∆𝜃2𝑘
𝑚+1

∆𝐷2𝑘+1
𝑚 .                                                  (30) 

Given the difficulty of evaluating this limit algorithmically, 

Brezinski replaces 𝑤𝑘 by the following factor in (26): 

𝑤𝑘
𝑚 = −

∆𝜃2𝑘
𝑚+1

∆𝐷2𝑘+1
𝑚 = −

[𝜃2𝑘
𝑚+2 − 𝜃2𝑘

𝑚+1]

[𝐷2𝑘+1
𝑚+1 − 𝐷2𝑘+1

𝑚 ] 
;               (31) 

so, 

𝜃2𝑘+2
𝑚 = 𝜃2𝑘

𝑚+1 +
[𝜃2𝑘

𝑚+2 − 𝜃2𝑘
𝑚+1][𝜃2𝑘+1

𝑚+2 − 𝜃2𝑘+1
𝑚+1 ]

𝜃2𝑘+1
𝑚+2 − 2𝜃2𝑘+1

𝑚+1 + 𝜃2𝑘+1
𝑚 .   (32) 

Expressions (25) and (32) form the basis of the Theta algo-

rithm (-A). These expressions are applied alternately in the re-

cursive update of 𝜃𝑖
𝑚; (25) when “i ” is odd (i = 2k + 1) and 

(32) when it is even (i = 2k + 2). 

Fig. 1a illustrates the structure of the Theta algorithm, both 

for the estimation of S in (15) and for the inversion of the La-

place transform. This figure consists of a two-dimensional ar-

rangement of the terms 𝜃𝑖
𝑚 whose subscripts “i” and “m” in-

dicate its column and its diagonal, respectively. For the numer-

ical inversion of the Laplace transform, the terms 𝜃𝑖
𝑚 are vec-

tors of dimension “N”; i.e., the number of time samples time to 

be obtained. The terms in the first column are initialized with 

zero vectors: 



𝜽−1
𝑚 = 𝟎;  𝑚 = 1, 2, … ,3𝐽 + 3, 

where J is the number of iterations (or refinements) of the algo-

rithm. Fig. 1 illustrates, for example, the case J = 2. The first 

term of the second column 𝜽0
0 is initialized with the vector of 

partial sums 𝑺𝑁 which is obtained in a highly convenient way 

with the inverse fast Fourier transform of N samples (𝑖𝑓𝑓𝑡𝑁): 

𝜽0
0 = 𝑺𝑛 = 𝑁 × 𝑖𝑓𝑓𝑡𝑁(𝑭), 

where F is the vector of N samples of the function F(s) that is 

to be inverted: 

𝐹 = [𝐹0/2 , 𝐹1, … , 𝐹𝑁−1]𝑇 . 

The additional terms in the second column of Fig. 1a are ob-

tained iteratively as follows: 

 𝜽0
𝑚+1 = 𝜽0

𝑚 + 𝑬𝑚 × 𝐹𝑁+𝑚;  𝑚 = 0,1, … ,3𝐽 + 2 
where E is the vector with the N samples of the complex expo-

nential: 

   𝑬 = [1, 𝑒2𝜋𝑗/𝑁 , 𝑒4𝜋𝑗/𝑁 , … , 𝑒2𝜋𝑗(𝑁−1)/𝑁 ]
𝑇
 

Once 𝜽−1
𝑚  and 𝜽0

𝑚 have been initialized (i.e., the first two 

columns of the diagram in Fig. 1a), the elements 𝜽𝑖
𝑚  at the 

other columns on the right are obtained with (25) when “i” is 

odd and with (32) when "i" is even. Note that Fig. 1b shows the 

dependence of odd-column element 𝜃2𝑘+1
𝑚  to be updated with 

those elements of the previously available columns 2k and 

2k1. Note also that Fig. 1c shows the dependence of even-col-

umn element 𝜃2𝑘+2
𝑚  to be updated with those elements of the 

previously available columns 2k+1 and 2k. 

At Fig. 1a, the columns with an odd index are marked in blue 

and those with an even index in black. The elements 𝜽2𝑘
0  of 

even index on the upper diagonal of the diagram are the ones 

providing the estimates for S and, the higher their subscript is, 

the better approximation these are to the expression between 

braces in (9). 

 

 

 

 

Fig. 1. a) Theta algorithm diagram. b) Diagram for equation (25). c) Diagram 

for equation (32). 

From all the above, the inverse d Laplace transform is as fol-

lows: 

𝒇 = (
2

𝑇
) × 𝑪 ∘ ℜ𝔢{𝜽2𝐽+2

0 },                  (33) 

where f is the vector of N samples for the signal being obtained 

in the time domain; C is the vector of order N whose elements 

Cn are of the form 

𝐶𝑛 = 𝑒𝑐𝑛∆𝑡 ,    𝑛 = 0, 1, 2, … , 𝑁 − 1; 

finally, the operator "∘" represents the Hadamard product of two 

vectors resulting in another vector formed with the multiplica-

tion between corresponding elements. In the experience of these 

authors, the theta algorithm often converges at the first itera-

tion; i.e., at J = 0. 

IV.  VALIDATION 

One way to evaluate the precision and performance of the 

method proposed here is to apply it to s-domain functions 

whose inverse transforms are already analytically determined. 

The numerical analysis community has already established a set 

of 35 test functions to evaluate numerical methods for inverting 

Laplace transforms [18], [20]. The proposed Theta algorithm 

has been tested with all these functions and, except for one case 

that is addressed below, this algorithm shows practically the 

same satisfactory performance. For the sake of paper-space 

economy, only one representative case is presented below in 

which the WNLT, Epsilon, and Theta algorithms are tested and 

compared. 

Consider the following function of s, along with its inverse 

transform: 

𝐹(𝑠) = [1 𝑠⁄ +
𝑠 + 0.5

(𝑠 + 0.5)2 + (2𝜋𝑓)2
] 𝑒−0.2𝑠        (34) 

and 

𝑓(𝑡) = [1 + cos(2𝜋𝑓(𝑡 − 0.2))𝑒−0.5(𝑡−0.2)]𝑢(𝑡 − 0.2),    (35) 

where u(t) is the unit step (Heaviside function). The three 

abovementioned methods are now applied in the numerical in-

version of (34) for three different values of the oscillation fre-

quency: f = 2 Hz, f = 10 Hz and f = 20 Hz. The observation time 

for the inverted function is T = 1.2 s and N = 1024 samples are 

used. According to subsection II.B, the Laplace damping con-

stant c is determined by means of (7) with a relative error 

𝜖𝑟𝑒𝑙 = 10−5 for the WNLT, while 𝜖𝑟𝑒𝑙 = 10−9 is used for de-

termining c in the Epsilon and the Theta algorithms. 

Fig. 2a shows the plots of f(t) as obtained with the WNLT 

for the three values of frequency being considered. All the dif-

ferences between the algorithmically obtained plots and their 

corresponding ones from (35) cannot be differentiated by eye. 

For this reason, the plots of the base 10 logarithm of the relative 

errors for the WNLT are provided in Fig. 2b. Relative errors are 

calculated as follows: 

𝜖𝑟𝑒𝑙(𝑛) =
|𝑓(𝑛∆𝑡) −  𝑓𝑛|

𝑚𝑎𝑥{𝑓(𝑡)}
,         𝑛 = 0, 1, 2, … , 1 023. 

where f(n∆t) is the corresponding value of the analytic function 

in (35), fn is the n-th value being obtained numerically and 

max{f (t)} is the maximum value of |f(t)| in (35). Note that the 

precision level of 10−5 is obtained only for the case with f = 

2 Hz. By modifying f in (34) the precision does not remain 

fixed; in fact, it is degraded.  

Figs. 3a and 3b show the respective relative errors of the re-

sults with the Epsilon and Theta algorithms when applied to 

(34). It can be observed that the precisions of both methods are 

similar and remain fixed despite the changes in f. In terms of 

(b) 

(a) (c) 



computational speed, the Theta algorithm is two times faster 

than the Epsilon one and 4.2 times slower than the WLNT. On 

a personal computer with processor Core i9, 2.3 Ghz, 16 GB 

RAM and running in MatLab, the test case function (35) was 

executed with the WNLT in 0.04 ms, with the Theta algorithm 

in 0.17 ms and with the Epsilon algorithm in 0.32 ms. From all 

the above, it follows that the accuracies of the Theta and Epsi-

lon algorithms are practically the same, Nevertheless, the Theta 

algorithm is preferred for its higher computational efficiency. 

 

 

 

 

 

 

 

 Fig. 2. a) Plots of f(t) being obtained with the WNLT. b) Plots of errors for the 

obtained f(t) with three different oscillation frequencies. 

Fig. 3. a) Plots of errors for the f(t) being obtained with the Epsilon algorithm. 

b) Plots of errors for the f(t) being obtained with the Theta algorithm.  

Out of the previously mentioned 35 test functions, for func-

tion 34 as listed in [18] the accuracy of both algorithms, the 

Epsilon and the Theta, falls to levels like those of the WNLT. 

This function is given as follows and corresponds to a square 

wave:  

𝑓34(𝑠) =
2𝑒𝑠/2

𝑠
𝑐𝑜𝑠𝑒𝑐ℎ (

𝑠

2
). 

It is apparent from this case that the three methods being tested 

here (WNLT, Epsilon, and Theta) cannot satisfactorily handle 

signals and functions that include multiple discontinuities. This 

could well be a topic for future research. 

V.  POWER SYSTEM EMT TEST CASE 

Fig. 4 shows the one-line diagram of an electrical power net-

work consisting of three generators, three transformers, eight 

overhead transmission lines, four R-XL loads and one capacitive 

load. Table I provides the data for the generators and transform-

ers, while Table II provides the values for the loads. The base 

voltage is 200 kV. All the lines have the same transversal ge-

ometry and electrical properties of materials. Fig. 5 shows the 

line geometry and provides its material data. Table III provides 

the lengths of the lines. Fig. 4 network is based on a test case 

provided in references [24] and [25] and has been adapted for 

the purposes of this paper. 

Fig. 4. Network one-line diagram. 

For the calculation of transient responses (overvoltages), the 

network is represented in nodal form in the Laplace domain. 

Generators are incorporated into this representation by their 

Norton equivalents, transformers are represented by series R-L 

branches. The transmission lines are included through their 

three-phase nodal representations with full frequency-depend-

ent AB parameters [1], [2], [22]. 

TABLE I 
GENERATOR AND TRANSFORMER DATA. 

 

TABLE II 

LOAD DATA. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Line transversal geometry and material data. 

TABLE III 

LINE LENGTHS. 
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The simultaneous energization of the entire network is now 

simulated. To do this, the following relationship is used: 

𝑽(𝑠) = 𝒀(𝑠)−1𝑰(𝑠)                               (36) 

where 𝑽(𝑠) is the vector of nodal voltages of the network, 

𝑰(𝑠) is the vector of currents injected into the nodes and 𝒀(𝑠) 

is the nodal matrix of the network. Once (36) is solved, the 

waveforms of nodal voltages are determined with the inverse 

Laplace transform: 

𝒗(𝑡) = ℒ−1(𝑽(𝑠)) 

For the Laplace numerical inversion, the Epsilon and Theta 

algorithms are used with 1024 samples and the observation time 

is set at T = 40 ms. Figures 6a and 6b show the respective volt-

age responses for nodes 6 and 9. These figures also include the 

simulations being obtained with the PSCAD / EMTDC program 

with the same number of time steps N=1 024. Note that the re-

sults with the three methods apparently are in good agreement. 

Fig. 7a provides plots of the logarithm base 10 of absolute dif-

ferences for the voltage waveforms of phase a at node 6. In blue 

color is the plot of differences between PSCAD/EMTDC and 

the Theta algorithm, both with N=1 024 time steps. The plot in 

red color corresponds to the differences as the number of time 

steps in the PSCA/EMTDC is increased to N=8 192, and the 

Theta algorithm remains with N=1 024 steps. Note that one seg-

ment of the differences in blue color is above 1 %. Also note 

that, at higher resolutions, the results from PSCAD/EMTDC 

approach those of the Theta algorithm. 

Fig. 7b shows in blue color the base 10 logarithms of the 

differences between the results of the WNLT and those from 

the Theta algorithm both using the same number of frequency 

steps N=1 024. The red color plot corresponds to the differences 

between the WNLT with N=8 192 frequency steps and the 

Theta algorithm remaining with N=1 024. Also note that as the 

number of samples is increased in the WNLT its results become 

closer to those of the Theta algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. a) Voltage waveforms at node 6. b) Voltage waveforms at node 9. 

 

  
 

Fig. 7. a) Comparing PSCAD with the Theta algorithm. b) Comparing the 
WNLT with the Theta algorithm. 

VI.  CONCLUSIONS 

The windowed numerical Laplace transform (WNLT) is 

commonly used for frequency domain analysis of electromag-

netic transients in power systems [3], [5]-[10]. This technique 

is appropriate for many practical applications and often is 

adopted as reference to assess newly developed time-domain 

methods. However, the authors of this article have found that it 

presents serious limitations as reference method, as well as for 

research and development tasks. One of its limitations is that 

the WNLT does not guarantee a fixed precision. This has been 

shown with an example in this paper. Another limitation is that 

its accuracy is limited to values between 10−5 and 10−6 and, 

in addition, an accuracy up to 10−9 can be attained at an ex-

cessive computational cost. For these reasons, the authors of 

this paper have dedicated themselves to the search for other 

methods of numerical inversion of the Laplace transform that 

can achieve high accuracies at a moderate computational cost, 

and that their precision levels are fixed.  

In this article, a new method of numerical inversion of the 

Laplace transform based on Brezinski's Theta algorithm [14], 

[15], [17] has been proposed and described. Apparently, this is 

the first time that this algorithm has been used for the numerical 

inversion of the Laplace transform and for the analysis of EMTs 

in power systems. Along with the theta algorithm, the descrip-

tion of Wynn's Epsilon algorithm [12], [16] has also been in-

cluded, since this is a precursor to the first one. The proposed 

algorithm has been evaluated first by its application to a set of 

35 test functions that has been established by the Numerical 
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Analysis community [18], [20]. Except for one function which 

corresponds to a square wave with several discontinuities, this 

algorithm shows a high performance. The Theta algorithm has 

been then applied to a transient study in a 10-node electric net-

work with three generators, three transformers, eight overhead 

lines and five loads. The results of this study have been com-

pared satisfactorily with those obtained with the 

PSCAD/EMTDC program.  

Finally, it has been demonstrated that the proposed method 

offers a guaranteed high precision at a moderate computational 

cost; therefore, it is recommended both, as reference method 

and as a tool for research and development activities in the field 

of EMT analysis. 
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