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Abstract—The increasing penetration of converter-interfaced
renewable energy sources (RESs) is expected to reduce the overall
system inertia. Additionally, due to the intermittent nature of
RESs, the overall inertia of modern power systems will vary
significantly during the day, resulting in frequency stability issues.
In this uncertain environment, it is important for power system
operators to monitor in real-time the overall system inertia. Scope
of this paper is to systematically evaluate the performance of the
most known measurement-based inertia estimation techniques.
These include ARMAX-based methods and methods based on
the sliding window concept. Algorithmic details and distinct
characteristics of each method are presented and discussed. The
effect of several parameters on the accuracy of the examined
methods is investigated by means of Monte Carlo simulations.
For the analysis both ringdown and ambient data are considered.
The performance of the examined methods is evaluated under
different network conditions and configurations, using simulation
results obtained from a system frequency response model and the
IEEE 9-Bus system. The applicability of both approaches is also
assessed using laboratory measurements.

Keywords—ARMAX modeling, frequency stability, inertia
response, power system dynamics, swing equation.

I. INTRODUCTION

NOWADAYS, due to environmental concerns,
synchronous generators (SGs) are replaced by renewable

energy sources (RESs), connected to the utility grid via
power converters [1]. Consequently, they are mechanically
decoupled from the power system frequency and cannot
automatically contribute to power system inertia [2].

This research is co-financed by Greece and the European Union (European
Social Fund - ESF) through the Operational Programme «Human Resources
Development, Education and Lifelong Learning» in the context of the project
“Reinforcement of Postdoctoral Researchers – 2nd Cycle” (MIS-5033021),
implemented by the State Scholarships Foundation (IKY).

E. O. Kontis, I. D. Pasiopoulou, D. A. Kirykos, and G. K. Papagiannis are
with the School of Electrical and Computer Engineering, Aristotle University
of Thessaloniki, Thessaloniki 54124, Greece (e-mail: ekontis@ece.auth.gr,
ipasiopo@gmail.com, dimkirik@gmail.com, grigoris@eng.auth.gr)

T. A. Papadopoulos is with the Power Systems Laboratory, Department
of Electrical and Computer Engineering, Democritus University of Thrace,
Xanthi 67100, Greece (e-mail: thpapad@ee.duth.gr)

E. O. Kontis is also with the Department of Electrical and Computer
Engineering, University of Western Macedonia, Kozani, 50100, Greece.

Paper submitted to the International Conference on Power Systems
Transients (IPST2021) in Belo Horizonte, Brazil June 6-10, 2021.

The increased penetration of converter-interfaced RESs both
decreases the overall power system inertia [3] and changes
the inertia distribution, leading to the formation of low inertia
areas [4]. Additionally, due to the intermittent nature of RESs,
the overall system inertia varies significantly during the day,
resulting in frequency stability issues [5], [6]. Hence, power
system operators shall estimate close to real-time, using wide
area monitoring systems (WAMS), the overall inertia of their
grids [2], [5], [7]. For this purpose, several inertia estimation
techniques have been proposed in the literature.

A statistical approach based on switching Markov Gaussian
models is developed in [8], allowing inertia estimation using
field measurements and historical data. Linear regression
methods are proposed in [9], [10], [11]. To provide
accurate results, these methods require real-time information
concerning load level and generation mix. An online approach
is developed in [12]. Nevertheless, this method requires the
injection of probing signals, complicating its implementation.

In [13] a method, based on dynamic regressor extension
and mixing, is proposed. However, this approach requires
full knowledge of the turbine-governor systems of all SGs.
A method to derive system inertia using synchrophasor
measurements is proposed in [14]. To provide accurate results,
the method requires precise data concerning the magnitude
of the disturbance, i.e., active power imbalance. In [15]
and [16] system inertia is estimated by utilizing frequency
and voltage responses after a disturbance. However, these
approaches require the existence of aggregated load models
that simulate efficiently the behavior of the total system load
during disturbances [16].

To perform satisfactorily, all the above-mentioned methods
require, apart from system measurements some additional
information concerning power system properties. In the next
paragraphs, techniques that provide system inertia using only
system measurements are reviewed.

In [17] a procedure to derive system inertia during
ringdown, i.e., transient, events is proposed. The method
uses active power variation and rate of change of frequency
(RoCoF) at the onset of the event to compute via the swing
equation the system inertia. Considering only data recorded
at the onset of the event renders inertia estimation extremely
sensitive to noise [18]. To overcome this issue, [6] proposes
a more robust approach, that estimates active power and
RoCoF variations using four sliding windows (SWs). The SWs
are used as filters to eliminate measurement error. However,
validation results reveal that the method accuracy is affected
by the length of the adopted SWs and the noise level [19].
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In [2] the use of autoregressive moving average exogenous
input (ARMAX) models is proposed to estimate the system
inertia using ringdown data, while the application of ARMAX
modeling to ambient data, i.e., normal operation data, is
discussed in [7]. In both cases, active power and frequency
responses are used to develop transfer functions, describing
the active power - frequency relationship. Inertia estimates
are then determined by processing the parameters of the
derived transfer functions. Validation results indicate that the
performance of ARMAX models is affected by noise level and
mainly by the size of the analysis window. In fact, in many
cases, due to inappropriate window size, unstable transfer
functions may result, leading to erroneous estimates [2], [7].

Scope of the paper is to systematically evaluate the
performance of inertia estimation techniques that are based
only on system measurements. Therefore, methods that
rely on the sliding window method (SWM) as well as
ARMAX-based approaches are considered and compared.
The main contributions of the paper are: a) the performance
of the most common measurement-based inertia estimation
techniques is assessed under different network configurations,
using simulation results and laboratory measurements. b) The
impact of several parameters on the accuracy of the examined
methods is investigated. In particular, the effect of the length
of the analysis window, the noise level, the disturbance
magnitude and location as well as the RES penetration
level on the performance of the methods is quantified
through Monte Carlo (MC) simulations. The conducted
analysis provides useful insights concerning the application
of measurement-based inertia estimation techniques.

II. THEORETICAL BACKGROUND

The frequency response of a power system to a power
imbalance can be modeled considering the swing equation of
an equivalent SG, described as [12], [19]

2H∆
df(t)

dt
= ∆pm(t)−∆pe(t)−D∆f(t). (1)

Here H is the inertia constant in s. f is the frequency in
p.u.; pm and pe are the p.u. mechanical and electrical powers,
respectively. ∆ denotes that the changes (variations) of f ,
df/dt, pm and pe should be used and not the absolute values
[12]. Finally, D is the damping coefficient. The swing equation
can be simplified to contain only variables measured on the
electrical side of the system by exploiting the slow-changing
nature of mechanical power [20]. Indeed, at the beginning
of an event, ∆pm can be considered equal to zero [6], [12].
Thus, (1) can be rewritten as

2H∆
df(t)

dt
= −∆pe(t)−D∆f(t). (2)

By applying the Laplace transform on both sides of (2), the
following transfer function is derived [2], [12]

G(s) =
∆F (s)

∆P (s)
= − 1

2Hs+D
(3)

Here, ∆F (s) and ∆P (s) represent frequency and active power
deviations in the Laplace domain, respectively.

Methods developed in [2] and [12] use (3) to determine the
inertia constant of individual SGs as well as the equivalent
inertia constant, i.e., Hsys, of multi-machine power systems.
The latter is defined as

Hsys =

∑N
i=1HiSi∑N
i=1 Si

. (4)

Here, N is the total number of SGs connected to the grid, Hi

and Si are the inertia constant and the rated power of the i-th
SG, respectively. Hi is directly computed from (3).

In many research papers, the swing equation is further
simplified by neglecting the impact of damping [6], [17].
Indeed, at the onset of an event, i.e., at t0 = 0+, the frequency
deviation is practically zero [17], i.e., ∆f(0+) = 0. In this
case, the swing equation takes the following form

2H∆
df(t)

dt
= −∆pe(t). (5)

In this paper, ARMAX models, that determine inertia via
(3), and methods that utilize the SW concept to derive inertia
constant via (5) are compared. In both cases, required data are
recorded at the connection buses of SGs.

A. Inertia Estimation via ARMAX Modeling

ARMAX model can be mathematically expressed as

y[k] + a1y[k − 1] + ...+ ana
y[k − na] = b1u[k − 1]+

...+ bnb
u[k − nb] + c1e[k − 1] + ...+ cnc

e[k − nc]
(6)

where y[k] is the system response at time instant k; u[k] is
the known input of the system, i.e., a disturbance or a probing
signal, and e[k] is the unknown input of the system, e.g., noise.
Additionally, na, nb and nc are the order of the autoregressive
model, the order of the exogenous input and the order of the
moving average model, respectively. The discrete ARMAX
model transfer function is given by

y[k] =
B(q)

A(q)
u[k] +

C(q)

A(q)
e[k] (7)

where B(q)/A(q) is the deterministic part, describing the
system response to a known input signal. C(q)/A(q)
describes the stochastic part, that represents the impact of
non-measurable effects on the states of the deterministic part.
Polynomials A(q), B(q), and C(q) are defined as

A(q) = 1 + a1q
−1 + · · ·+ ana

q−na

B(q) = b1q
−1 + · · ·+ bnb

q−nb

A(q) = c0 + c1q
−1 + · · ·+ cncq

−nc .

(8)

Here, q−1 is the backward shift operator. Parameters of (8)
can be estimated using a prediction error formulation [2].

ARMAX models can be applied to either ambient or
ringdown data. In the former case, the inertial response
co-exists with additional dynamic responses, caused by
frequency control systems and inter-area oscillations [2], [7],
[21]. Therefore, to derive inertia estimates from ambient
data, high order ARMAX models are generally required
to efficiently approximate the above-mentioned dynamics.



Typical model orders for ambient data analysis range from
2 to 28 [7], [21]. To estimate the parameters of these high
order ARMAX models, an analysis window of several seconds
is required [7], [21]. Inertia estimates are then determined
by computing the step response of the identified ARMAX
models and evaluating their initial slope [7], [21]. The length
of the analysis window and the order of the ARMAX models
depends on the number of power system areas, the adopted
control systems, and the noise level.

Inertial response can be specified more accurately using
ringdown data. In this case, a second order ARMAX model,
i.e., na = nb = nc = 2, can be applied to a short-term
analysis interval, containing data captured only a few cycles
before and after the disturbance [2]. This way the impact of
additional system dynamics, such as frequency control systems
and inter-area oscillations, is minimized and accurate inertia
estimates are derived [2]. Pre- and post-disturbance windows
are presented in Fig. 1. The length of these windows is equal to
B1 and B2, respectively. Assuming that a disturbance occurs
at t = t0, the analysis interval lies on the [t0 −B1, t0 +B2]
time range. To properly initialize the ARMAX model, the
pre-disturbance window must contain at least a number of
samples equal to the order of the ARMAX model. Thus, B1

can be set to 2. B2 should be accurately determined [2].
The deterministic part of a second order ARMAX model in

the s-domain is

G(s) =
∆F (s)

∆P (s)
=
β2s

2 + β1s+ β0
s2 + α1s+ α0

. (9)

G(s) contains the value of the inertia constant but not as
an explicit parameter [7]. A simple way to derive the inertia
constant is to reduce (9) to a first-order transfer function by
identifying and eliminating insignificant states [2], [7]. The
reduced order transfer function can be written as

G(s) =
∆F (s)

∆P (s)
∼=

βr
s+ αr

. (10)

From (3) and (10), the following relationship arise

H = − 1

2βr
. (11)

B. Inertia Estimation using the SWM
This method is based on four SWs and is designed to

estimate inertia using ringdown data [6]. The required SWs,
depicted in Fig. 1, are labeled as P−, P+, R−, R+. In
this notation, P and R denote active power and RoCoF,
respectively. Superscripts (-) and (+) denote SWs containing
pre- and post-disturbance data, respectively.

The SWs act as smoothing filters to eliminate measurement
errors [6]. Each window has a length of A data points. Pre-
and post-disturbance windows are separated by a width W .
Assuming that a disturbance occurs at t = t0, then

P− =
1

A

t0∑
t=t0−A

P (t) (12)

P+ =
1

A

t0+W+A∑
t=t0+W

P (t) (13)
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Fig. 1. Data required for the implementation of the examined methods.
ARMAX-modelling: a) Active power and b) frequency deviation. SWM: c)
Active power and d) RoCoF . Settings are not fine-tuned. Figures are only
for demonstration purposes.

R− =
1

A

t0∑
t=t0−A

df

dt
(t) (14)

R+ =
1

A

t0+W+A∑
t=t0+W

df

dt
(t). (15)

Using the values of P−, P+, R−, and R+, the inertia
constant is determined by linearizing the swing equation of
(5). Specifically, H is computed as

H =
1

2

P− − P+

R+ −R− . (16)

III. SIMULATIONS USING A SYSTEM FREQUENCY
RESPONSE MODEL

In this Section, the performance of the examined methods is
evaluated via simulations using the system frequency response
(SFR) model of [22]. The adopted SFR model constitutes a
low-order dynamic equivalent representation of a large power
system, dominated by reheat steam turbine generators. The
use of the SFR model allows to focus only on power system
frequency dynamics [6], [11], [23] in order to quantify the
impact of several parameters on the accuracy of the examined
methods.

To facilitate the reading, the block structure of the adopted
SFR model is depicted in Fig. 2. In this block, pd is the power
of the disturbance in p.u. A negative value for pd denotes a
sudden increase in the total load of the system; a positive value
denotes a sudden increase in generation. pm is the mechanical
power in p.u., while pa stands for the accelerating power. ∆ω

is the p.u. incremental speed. Km is the mechanical power
gain factor, FH is the fraction of total power generated by the
high pressure turbine, and R is the governor droop constant.
Finally, TR is the reheat time constant expressed in s.
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Fig. 2. Adopted SFR model [22].

A. Impact of Window Length

To quantify the impact of the length of the analysis
window on the performance of the examined methods, the
following procedure is applied: The parameters of the SFR
model are set randomly and a ringdown event is analyzed
by creating a sudden increase in the total system load.
This increase is simulated by setting pd to a negative
value. The resulting dynamic responses are forwarded as
inputs to the examined methods to derive inertia constant
estimates, i.e., Hest. To statistically analyze the performance
of the examined methods, a set of 100 MC simulations is
performed. In all MC simulations, dynamic responses are
generated using a sampling rate equal to 100 samples per
second (sps). In each MC simulation the following upper and
lower limits for the SFR model parameters are considered:
pd = [-0.5, -0.05], H = [3, 6], D = [0, 2], Km = [0.9, 0.95],
FH = [0.2, 0.6], TR = [6, 10], R = [0.05, 0.1].

The impact of the length of the analysis window on the
accuracy of the ARMAX method is quantified iteratively
following the algorithm of Fig. 3a. Initially, B2 is set to 6 and
the parameters of (9) are estimated. Then, (9) is reduced to
(10) by identifying insignificant states and the inertia constant
is computed via (11). In the next iteration, B2 is increased by
1. The procedure terminates when B2 is 350, i.e., when the
length of the post-disturbance window is equal to 3.5 s. In each
iteration, actual inertia constant H , i.e., the inertia constant of
the SFR model, is compared with the inertia estimate provided
by the ARMAX model, using the prediction error PE

PE(%) =
|H −Hest|

H
100% (17)

here Hest denotes the inertia constant estimate.
The impact of W and A on the accuracy of the SWM is

quantified using the algorithm of Fig. 3b. Initially, W is set to
2 and A is set to 1. The inertia estimate, Hest, is computed
using (12) - (16) and compared with the actual inertia constant
using (17). In each iteration, W and A are modified. W varies
from 2 up to 20, assuming a step equal to 2. A varies from 1
to 40, using a step equal to 1.

The impact of B2 on the performance of the ARMAX
method is quantified in Fig. 4. In this figure the limits of
the PE across the 100 MC simulations are presented. 10
instances of the MC simulations are also depicted. As shown,
as B2 increases, PE increases accordingly. This implies that
a relatively narrow window is required for the analysis of
ringdown data. Indeed, in all MC simulations PE is lower
than 5% for windows with length lower than 1.4 s. For
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Fig. 3. a) Algorithm used to evaluate the impact of B2 on the accuracy of
ARMAX-modelling. b) Algorithm used to quantify the impact of W and A
on the performance of the SWM.

higher window lengths, higher PE is observed, indicating
performance degradation.

The impact of A and W on the accuracy of the SWM is
evaluated in Figs. 5, 6a and 6b. In Fig. 5, results for a specific
MC simulation are presented. As shown, PE increases as A
and W increase. Similar remarks are also drawn from Figs.
6a and 6b. In these Figs. the limits of the PE across the 100
MC simulations are presented alongside with 10 representative
MCs. As shown, the fine tuning of A and W is crucial for the
performance of the method, since in case of erroneous settings
PE values higher than 5% are observed.

B. Impact of Noise

The previous analysis reveals that fine tuning of B2, W and
A has a significant impact on the accuracy of the examined
methods. Therefore, in this subsection the fine tuning of these
settings is evaluated under noisy conditions. Specifically, a
ringdown event is generated using the SFR model parameters
provided in the label of Fig. 5. The dynamic responses
are distorted with additive white Gaussian noise (AWGN)
assuming signal to noise ratio (SNR) equal to 30 dB, 20 dB,
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Fig. 4. Impact of B2 on the accuracy of ARMAX modelling.



Fig. 5. Impact of A and W on the performance of the SWM. Results for
one MC simulation (pd=-0.2 p.u., H=4 s, D=1, Km=0.95, FH=0.3, TR=8 s,
R=0.05).
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Fig. 6. Impact of W and A on the performance of the SWM. a) A is equal
to 10, while W varies from 2 to 20. b) W is equal to 2, while A varies from
1 to 40.

and 10 dB [24]. For each SNR level a set of 100 MC is
generated to recreate different instances of noise. For each
MC, algorithms of Fig. 3 are executed and optimal values of
B2, W and A are defined. Here, the term "optimal" denotes
the values of B2, W and A that minimize the PE.

The resulting PE is presented in Fig. 7; the optimal values
of B2, W and A are summarized in Fig. 8. As shown in Fig.
7, the ARMAX method provides better estimates compared
to the SWM. For instance, for SNR=30 dB, the ARMAX
method provides PE lower than 2% in 100% of the examined
cases. The SWM provides the same accuracy only in 59% of
the examined cases. Similar results are also observed for the
cases of the 20 dB and 10 dB. However, it is important to
highlight that the ARMAX method may fail to provide inertia
estimates in highly noisy conditions. Indeed, for SNR=10 dB,
the ARMAX method fails to provide inertia estimates in 7%
of the examined cases. In these cases, due to significant noise,
unstable transfer functions are obtained. Thus, their parameters
cannot be used to derive system inertia.

As shown in Fig. 8a, the optimal value of B2 generally lies
in the range of 6 to 100 samples for SNR=30 dB. However, for
lower SNR values, the optimal value of B2 is highly variable,
indicating that predetermined values for this parameter cannot
be used. Similar remarks can also be drawn for the SWM.
Indeed, for SNR=30 dB, W is always equal to 2, while A
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Fig. 7. Impact of noise on PE. a) ARMAX modelling. NaN denotes that
the method failed to provide an estimate. b) SWM.
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varies from 1 to 20. For lower SNR values both W and A
vary significantly. It is clear that predetermined values of W
and A cannot be used under noisy conditions, since they will
result in significant performance degradation.

C. Application to Ambient Data

In Sections III.A and III.B ringdown data were used to
evaluate the performance of the examined methods. In this
subsection the previous analyzes are repeated using ambient
data. For this purpose, 10 minutes of ambient data are
generated using the SFR model. In particular, pd is excited by
AWGN, filtered by a low-pass filter with a cut-off frequency of
5 Hz [21]. To replicate small active power fluctuations, caused
by the stochastic nature of RESs and power system loads, a
SNR equal to 17 dB is assumed for the AWGN used to excite
the SFR model [25]. To replicate measurement noise, the
resulting dynamic frequency responses are further distorted,
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Fig. 9. a) pd and b) ∆f during a representative ringdown event. c) pd and
d) ∆f during one minute of ambient data.

TABLE I
PE ON AMBIENT DATA, USING ARMAX MODELING

Observation time SNR=30dB SNR=20dB SNR=10dB
30 s 5.61% 6.95% 11.01%

1 min 2.41% 3.82% 8.01%
2 min 2.03% 3.47% 7.74%
5 min 0.76% 2.23% 6.51%
10 min 0.24% 1.71% 6.06%

on a second stage, assuming three levels of AWGN, namely
30 dB, 20 dB, and 10 dB. To better demonstrate differences
between ringdown and ambient data, responses of Fig. 9 are
used. More specifically, in Figs. 9a and 9b, pd and ∆f during
a ringdown event are plotted, respectively. This event was
generated in Section III.B assuming measurement noise with
SNR=20 dB. In Figs. 9c and 9d, pd and ∆f under ambient
excitation are depicted, respectively. Measurement noise with
SNR=20 dB is also considered.

Indicative results for different window lengths and
measurement noise levels are summarized in Table I. Note
that Table I contains results only for ARMAX modeling,
since the SWM cannot be applied to ambient data. In all
cases, a second order ARMAX model is used to ensure
comparable results. As shown, PE decreases as the window
length increases. Therefore, for the analysis of ambient data,
a long-term analysis window is required [7], [21]. Based on
the conducted simulations, an analysis window of at least 5
minutes is proposed.

IV. SIMULATIONS ON A BENCHMARK POWER SYSTEM

The performance of the examined methods is further
tested on the IEEE 9-bus test system, shown in Fig.
10. For this purpose, RMS simulations are carried out in
Digsilent/Powerfactory using the IEEE 9-bus system model
of [26]. Three RESs are also connected to the grid via full
scale power converters. RESs are modelled using the Type 4A
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G1G1
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Fig. 10. Single line diagram of the examined system.

model [27]. Four discrete test cases (TCs) are considered in
order to evaluate the performance of the examined methods
under different penetration levels of RESs. More specifically:

• TC#1: No RESs are considered. The total load demand
is covered by the existing SGs.

• TC#2: 10% of the load demand is covered by RES. For
this purpose, the power of each RES is set to 10% of the
power of the load that is connected to the same bus.

• TC#3: Similar to TC#2. But RES penetration is 20%.
• TC#4: Similar to TC#2. But RES penetration is 30%.
To emulate the decommissioning of SGs, the settings of

G2 and G3 are modified in TC#2, TC#3 and TC#4. For
this purpose, the power of these SGs is determined in each
TC via optimal power flow (OPF) calculations. For each TC
a dedicated OPF is conducted, targeting to minimize total
system losses. Additionally, the inertia constant of these SGs is
reduced proportionally to the corresponding power reduction
(reduction compared to TC#1). The equivalent system inertia
for the four examined TCs is: HTC#1

sys =3.37 s, HTC#2
sys =2.57 s,

HTC#3
sys =2.46 s, and HTC#4

sys =2.34 s.

A. Impact of Disturbance Level

For each TC, frequency events are simulated by applying a
step-up power increase of Load A. In particular, for each TC,
ten ringdown events are considered in total. The disturbance
level, i.e., active power imbalance, for each event is presented
in Fig. 11. In all cases, frequency and active power responses
of all SGs are recorded at a rate of 100 sps.

In all TCs, frequency and active power responses, obtained
during the fourth ringdown event (during a 25 MW increase of
the total system load), are used as training data and forwarded
as inputs to the algorithms of Fig. 3. For each SG, specific
values for B2, W , and A are determined and the individual
inertia constants are estimated. With these estimates, the total
system inertia, i.e., Hest

sys, is computed via (4) and the PE
between Hsys and Hest

sys is calculated for each TC. PE on
training data is summarized in Table II.

The rest of the ringdown events are used as validation data.
The validation procedure is performed as follows: frequency
and active power responses, obtained during each validation
event, are used to determine via (4) the total system inertia.
Values of B2, W , and A are those derived during the training
procedure. For each validation event, the PE between Hsys



TABLE II
PE ON TRAINING AND VALIDATION DATA SETS

ARMAX SWM
Scenario Training Validation Training Validation

TC#1 0.229 % 0.520 % 0.321 % 0.841 %

TC#2 0.196 % 1.128 % 1.453 % 1.996 %

TC#3 0.171 % 0.751 % 2.097 % 1.987 %

TC#4 0.178 % 0.899 % 1.859 % 2.040 %
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Fig. 11. PE concerning total system inertia along the examined ringdown
events. All disturbances are generated by increasing the power of load A.

and Hest
sys is computed via (17). The mean PE on the

validation data set for each TC is summarized in Table II.
Additionally, in Fig. 11 the PE across the examined ringdown
events is illustrated.

As shown, as the disturbance level increases, the PE
of the ARMAX approach tends to decrease. On the other
hand, the PE of the SWM is practically not affected from
the disturbance magnitude. Additionally, as shown in Table
II, both methods provide accurate estimates, while their
performance is practically not affected from RES penetration
level. Nevertheless, ARMAX method provides lower training
and validation errors compared to the SWM.

B. Impact of Disturbance Location

To further evaluate the examined methods, new ringdown
events are generated for each TC by increasing the active
power consumed by Load B. Active power imbalances, used
to generate ringdown data, vary from 4.5 MW up to 45 MW,
assuming a step of 4.5 MW. Thus, 10 events are simulated
for each TC. The resulting dynamic responses are used again
to estimate the total system inertia. However, in this case, the
training procedure is intentionally omitted and optimal values
for B2, W , and A are not defined. On the contrary, the settings
derived in Section IV.A are used. This approach is followed to
investigate the impact of the location of the disturbance on the
optimal values of B2, W , and A, and thus on the robustness
of the examined methods.

Validation results reveal that in 10% of the examined
disturbances, ARMAX modeling results in unstable transfer
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Fig. 12. Experimental setup.

functions, due to inappropriate window size, thus failing to
provide inertia estimates. In the rest of the disturbances, the
ARMAX method provides very accurate estimates, since the
mean PE across the four TCs is only 1.05%. Optimal values
of W and A are not affected significantly by the location of the
disturbance. Thus, SWM provides in all cases inertia estimates,
exhibiting a mean PE across the four TCs equal to 1.68%.

V. APPLICATION TO LABORATORY MEASUREMENTS

In this Section, the performance of the examined methods
is evaluated using measurements acquired from a 50 Hz,
400 V laboratory-scale microgrid (MG). The experimental
setup is depicted in Fig. 12. The MG operates in islanded
mode and consists of three distributed generation (DG)
units, two static load banks (SLB) and an induction motor
(IM). The nominal characteristics of all MG components are
summarized in Fig. 12. In particular, DG1 and DG3 are
SGs. DG2 is a converter interfaced unit. All DGs incorporate
frequency-active power (f -P ) and voltage-reactive power
(V -Q) droop control. Nevertheless, DG3 has the main load
sharing part, due to its higher power capacity. SLB1 and SLB2
are composed of a 64-step and a 256-step variable resistance
and inductance, respectively. Further information concerning
the topology and the control systems can be found in [28].

Two TCs are considered, namely TC#A and TC#B. In TC#A
DG2 is disconnected; in TC#B DG2 is generating 1 kW
at nominal power factor (pf). In both TCs DG1 provides 1
kW/0.75 kVar, SLB1 is 3.5 kW with 0.8 lagging pf, SLB2
is 17 kW with 0.9 lagging pf. The IM is operating at its
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Fig. 13. Laboratory measurements. Recorded a) frequency and b) active power
responses.



nominal power. The MG is subjected to a disturbance by
applying a 50% load increase to the active and reactive power
of SLB1. In both TCs, grid frequency and active power of DG3
are recorded at a data rate of 500 sps. These responses are
presented in Fig. 13 and used to estimate the inertia constant
of DG3, which is equal to 1 s.

Concerning TC#A, the ARMAX modeling and the SWM
result in a PE equal to 6.71% and 3.96%, respectively. Similar
results are also observed for TC#B. Indeed, PE for ARMAX
modeling is 6.45%, while the PE for the SWM is 3.42%.

VI. CONCLUSIONS

In this paper, the performance of two measurement-based
inertia estimation techniques is thoroughly evaluated. Towards
this objective, the impact of several parameters on the accuracy
of the examined methods is investigated and quantified via
MC simulations conducted using an SFR model and the
IEEE 9-bus test system. Additionally, the applicability of the
examined methods is assessed using laboratory measurements.

The conducted analysis reveals that the performance of
both methods is considerably affected by the length of the
analysis window. Therefore, the fine tuning of B2, W , and
A is required. The optimal length of the analysis window
depends on several factors, such as the noise level and
the type of data used, i.e. ambient or ringdown. ARMAX
modelling provides more accurate inertia estimates under
noisy conditions. Additionally, ARMAX models can be
applied to both ambient and ringdown data. Concerning the
former, a long-term analysis window is required, while for
the latter, a short-term interval analysis is more reasonable.
The SWM is not appropriate for ambient data analysis.
The performance of the ARMAX method is affected by the
location of the disturbance, while the SWM is more robust.
The performance of both methods is practically not affected
by the RES penetration level. Experimental results reveal that
both methods can be applied under real-field conditions.

In near future, RESs will provide inertia as ancillary service
to the grid. Thus, future work will be conducted to test the
performance of the examined methods also for such cases. The
impact of switching harmonics, caused from RESs converters,
on the accuracy of the examined methods should also be tested.
Methodologies to determine in real- or close-to-real-time
the optimal length of the analysis window should also be
developed to support online inertia estimation.

REFERENCES

[1] J. C. Smith and C. Clark, “The future’s energy mix: The journey to
integration [guest editorial],” IEEE Power Energy Mag., vol. 17, no. 6,
pp. 19–23, 2019.

[2] L. Lugnani, D. Dotta, C. Lackner, and J. Chow, “Armax-based
method for inertial constant estimation of generation units using
synchrophasors,” Electr. Power Syst. Res., vol. 180, 2020.

[3] E. Orum, M. Kuivaniemi, M. Laasonen, A. I. Bruseth, E. A. Jansson,
A. Danell, K. Elkington, and N. Modig, Future system inertia.
ENTSO-E, Technical Report.

[4] ENTSO-E Technical Group on High Penetration of Power Electronic
Interfaced Power Sources, High penetration of power electronic
interfaced power sources and the potential contribution of grid forming
converters. ENTSO-E, Technical Report.

[5] M. Sun, Y. Feng, P. Wall, A. Azizi, J. Yu, and V. Terzija, “On-line power
system inertia calculation using wide area measurements,” Int. J. Electr.
Power Energy Syst., vol. 109, pp. 325–331, 2019.

[6] P. Wall and V. Terzija, “Simultaneous estimation of the time of
disturbance and inertia in power systems,” IEEE Trans. Power Del.,
vol. 29, no. 4, pp. 2018–2031, 2014.

[7] K. Tuttelberg, J. Kilter, D. Wilson, and K. Uhlen, “Estimation of power
system inertia from ambient wide area measurements,” IEEE Trans.
Power Syst., vol. 33, no. 6, pp. 7249–7257, 2018.

[8] X. Cao, B. Stephen, I. F. Abdulhadi, C. D. Booth, and G. M. Burt,
“Switching markov gaussian models for dynamic power system inertia
estimation,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3394–3403,
2016.

[9] D. P. Chassin, Z. Huang, M. K. Donnelly, C. Hassler, E. Ramirez, and
C. Ray, “Estimation of WECC system inertia using observed frequency
transients,” IEEE Trans. Power Syst., vol. 20, no. 2, pp. 1190–1192,
2005.

[10] F. Allella, E. Chiodo, G. M. Giannuzzi, D. Lauria, and F. Mottola,
“On-Line Estimation Assessment of Power Systems Inertia With High
Penetration of Renewable Generation,” IEEE Access, vol. 8, pp.
62 689–62 697, 2020.

[11] D. Zografos, M. Ghandhari, and R. Eriksson, “Real Time Frequency
Response Assessment Using Regression,” in 2020 IEEE PES Innovative
Smart Grid Technologies Europe (ISGT-Europe), 2020, pp. 399–403.

[12] J. Zhang and H. Xu, “Online identification of power system equivalent
inertia constant,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp.
8098–8107, 2017.

[13] J. Schiffer, P. Aristidou, and R. Ortega, “Online estimation of power
system inertia using dynamic regressor extension and mixing,” IEEE
Trans. Power Syst., vol. 34, no. 6, pp. 4993–5001, 2019.

[14] P. M. Ashton, C. S. Saunders, G. A. Taylor, A. M. Carter, and M. E.
Bradley, “Inertia estimation of the gb power system using synchrophasor
measurements,” IEEE Trans. Power Syst., vol. 30, no. 2, pp. 701–709,
2015.

[15] D. Zografos and M. Ghandhari, “Power system inertia estimation by
approaching load power change after a disturbance,” in 2017 IEEE
Power Energy Society General Meeting, 2017, pp. 1–5.

[16] D. Zografos, M. Ghandhari, and R. Eriksson, “Power system inertia
estimation: Utilization of frequency and voltage responses after a
disturbance,” Electr. Power Syst. Res., vol. 161, pp. 52–60, 2018.

[17] T. Inoue, H. Taniguchi, Y. Ikeguchi, and K. Yoshida, “Estimation of
power system inertia constant and capacity of spinning-reserve support
generators using measured frequency transients,” IEEE Trans. Power
Syst., vol. 12, no. 1, pp. 136–143, 1997.

[18] D. del Giudice and S. Grillo, “Analysis of the Sensitivity of Extended
Kalman Filter-Based Inertia Estimation Method to the Assumed Time
of Disturbance,” Energies, vol. 12, no. 3, 2019.

[19] P. Wall, F. Gonzalez-Longatt, and V. Terzija, “Estimation of generator
inertia available during a disturbance,” in 2012 IEEE Power and Energy
Society General Meeting, 2012.

[20] P. M. Anderson and A. A. Fouad, Power system control and stability.
2nd ed. Piscataway, NJ, USA: IEEE, 2003.

[21] F. Zeng, J. Zhang, G. Chen, Z. Wu, S. Huang, and Y. Liang, “Online
Estimation of Power System Inertia Constant Under Normal Operating
Conditions,” IEEE Access, vol. 8, pp. 101 426–101 436, 2020.

[22] P. M. Anderson and M. Mirheydar, “A low-order system frequency
response model,” IEEE Trans. Power Syst., vol. 5, no. 3, pp. 720–729,
1990.

[23] A. Fernández-Guillamon, A. Vigueras-Rodriguez, and A. Molina-Garcia,
“Analysis of power system inertia estimation in high wind power plant
integration scenarios,” IET Renew. Power Gener., vol. 13, no. 15, pp.
2807–2816, 2019.

[24] IEEE Task Force on Identification of Electromechanical Modes,
Identification of electromechanical modes in power systems. IEEE
Power & Energy Society, 2012, PES-TR15.

[25] V. S. Peric and L. Vanfretti, “Power-System Ambient-Mode Estimation
Considering Spectral Load Properties,” IEEE Trans. Power Syst., vol.
29, no. 3, pp. 1133–1143, 2014.

[26] https://www2.kios.ucy.ac.cy/testsystems/.
[27] IEC Wind Energy Generation Systems – Part 27-1: Electrical

Simulations Models – Generic Models, 2020.
[28] T. A. Papadopoulos, P. N. Papadopoulos, G. K. Papagiannis, P. Crolla,

A. J. Roscoe, and G. M. Burt, “Dynamic performance of a low voltage
microgrid with droop controlled distributed generation,” in 2013 IEEE
Power Energy Society General Meeting, 2013, pp. 1–5.




