
Modelica-based Simulation of Electromagnetic

Transients Using Dynaωo: Current Status and

Perspectives
A. Masoom, A. Guironnet, A. A. Zeghaida, T. Ould-Bachir, and J. Mahseredjian

Abstract—This paper presents the current status, the open

challenges, and perspectives for Modelica-based simulation of

Electromagnetic Transient (EMT) using Dynaωo environment.

The simulation efficiency in native Modelica environments

requires improvements for larger-scale systems, as they have been

primarily developed and used for complex but small problems.

This paper investigates the use of Dynaωo, an open-source hybrid

C++/Modelica tool originally developed for large-scale

electromechanical transient studies, for electromagnetic transient

simulations. It demonstrates that its approach manages to bring

improvements in terms of performances while keeping the

flexibility, accuracy, and robustness of full Modelica tools, but that

there is still room for further improvements.

Keywords: Modelica, Electromagnetic Transient, Equation-

based modeling, Acausal modeling, C++, Declarative modeling,

Dynaωo.

I. INTRODUCTION

OWER system electromagnetic transient (EMT) modeling

contains a set of components that can be described

mathematically by Ordinary Differential Equations (ODE)

along with algebraic equations. Synchronous machines, power

transformers, surge arresters, or power controllers can be

effectively modeled using an evolving set of differential-

algebraic equations (DAEs) containing discrete variables.

Modelica is an object-oriented declarative equation-based

and open-source language to conveniently model the dynamic

behavior of complex physical systems. Modelica is an acausal

language, meaning modeling relies on equations instead of

assignment statements, where the input-output causality is

fixed. As a result, the programmer is not forced to handle the

data flow of the solution. Equations are declarative and express

relations between expressions; therefore, the equality operator

used in the equations defines mathematical equality between

the left and right sides of an expression. Modelica language

makes modeling physical systems easier and more intuitive. In

Modelica, models are described through the implicit DAEs,

either created in an equation-based way for physical parts or

using a block diagram approach for control parts [1]. This

system is then transformed into an explicit ODE form by a

Modelica tool, such as OpenModelica [2] or Dymola [3]; then,

solved using a freely-selected numerical method. Power system

modeling with Modelica allows working at higher abstraction

A. Masoom and J. Mahseredjian are with the Department of Electrical
Engineering, Polytechnique Montréal, Canada (e-mail of corresponding author:

alireza.masoom@polymtl.ca, jean.mahseredjian@polymtl.ca).

T. Ould-Bachir and A. A. Zeghaida are with the Department of Computer and
Software Engineering, Polytechnique Montréal, Canada (e-mail: tarek.ould-

bachir@polymtl.ca, aymen-alaeddine.zeghaida@polymtl.ca).

levels than with classical simulation tools whose codes are

based on imperative languages, e.g. Fortran or C++.

Modelica has begun to gain interest in the power system

community with two European projects: PEGASE [4] and

iTesla [5]. These projects, alongside other national or

international initiatives coming both from the power system and

the Modelica communities, have ended up in the development

of several libraries: iPSL [6], OpenIPSL [7], or PowerGrids [8]

for phasor-domain simulation. Regarding EMT-type

simulations, the first effort in this direction has been done in

[9], where Constant Parameter (CP) and Wideband (WB)

transmission line models have been implemented and validated

against EMTP [10]. The precision obtained with Modelica

models and tools is perfect, but the simulation run-time is not

satisfactory. Modelica has many built-in functions and

constructs covering a vast range of EMT-modeling needs.

Many techniques have been proposed over the years to

accelerate the simulation speed in Modelica simulators such as

using FPGA [11], solver manipulation [12], DAE-mode

compilation, power system specific solvers [13], or efficient

Jacobian calculation. Despite these efforts and large

improvements, the performance of full Modelica simulators

remains a barrier for industrial applications and large-scale

systems.

A hybrid C++/Modelica solution called Dynaωo [14], [15]

was proposed for simulation in the phasor domain to bypass the

limitations encountered with full Modelica tools while ensuring

the advantages of an equation-based approach. Dynaωo is an

open-source simulation package primarily designed by RTE for

short- and long-term stability analysis. It aims at providing a

transparent, flexible, interoperable, and robust simulation tool

that could ease collaboration and cooperation in the power

system community. This method enables to improve the

performances to similar levels to domain-specific simulation

tools for phasor domain simulations [15].

The contribution of this paper is to draw the status of

Modelica-based EMT simulations using Dynaωo, the open

challenges, and the perspectives. It presents the extension

already done to the method and illustrates with different test

cases the results obtained in terms of performances and

accuracy.

A. Guironnet is with the R&D Department, Réseau de Transport d'Electricité
(RTE), Paris, France (e-mail : adrien.guironnet@rte-france.com).

Paper submitted to the International Conference on Power Systems
Transients (IPST2021) in Belo Horizonte, Brazil, June 6-10, 2021.

P

Manuscript

The remainder of this paper is structured as follows:

Section II. presents the approach used in Dynaωo, the different

models and solvers natively available, and the improvements

and remaining challenges associated with EMT simulations.

The results and case studies are presented and discussed in

Section III.

II. A HYBRID C++/MODELICA APPROACH

This section will first introduce Dynaωo’s main principles

and architecture, then present the native models and solvers,

and finally explain the modifications brought for EMT

simulations and the potential next steps.

A. Generic Principles and Architecture

The overall goal of Dynaωo approach is to bypass the

limitations of full native Modelica tools for large-scale

simulations while keeping the advantages provided by the

Modelica approach (i.e. transparency, flexibility,

interoperability, robustness, and accuracy). It can also be

summed up in two main principles that are central to the

approach design and architecture: using Modelica language as

much as possible for modeling of complex elements and

sticking to a strict separation between model and solver sides

while managing to preserve acceptable performances for

industrial use.

To properly understand the design and architecture choices

of Dynaωo, it is necessary to recall some characteristics of both

the Modelica language and native full Modelica tools. Modelica

has been historically developed for complex but rather small

physical problems. As such, the language does not support

vectors, but only tables. Connectivity or graph analysis is

difficult and costly to conduct in a pure Modelica approach.

Backup solutions using external programming languages, such

as C or Fortran, exist but are quite difficult to connect and

integrate into Modelica models. Native generic Modelica tools

do both compiling and simulation at run-time. When going to

large systems, the compile-time (consisting of different steps

such as flattening, sorting, and eventually causalizing the

equations – depending on the compiling mode ODE/DAE)

becomes too costly for large-scale simulations. Besides, one

should also keep in mind that compiling must be redone even if

only parameters are modified. Finally, the generated codes

provided by native Modelica compilers remain less efficient

and less optimized than manually written codes in a classical

programming language. To avoid some of these limitations,

Dynaωo uses a hybrid C++/Modelica approach for modeling

and a unique method enabling to compile before run-time

partial Modelica models.

Fig. 1 depicts the structure of Dynaωo. A model can be either

directly written in C++ or Modelica. In Dynaωo, the Modelica

model of a component is not squared – not as many equations

as variables – and cannot be compiled alone by a Modelica

compiler. The cunning point in Dynaωo is to temporarily create

a square model using fictitious equations for pending

connections (typically currents), to be able to compile the

models and then to remove these fictitious equations from the

model structure, once compiled. It allows compiling models

Modelica Model
Modelica Model B

Modelica Model C

Modelica Model A

Model 3

C++

Model 2

C++

Model 1

C++

Global Model

Solver

(IDA or Modified BE)

Result Graphs

(csv.file)

Sundials

SuiteSparse

Adept

NICSLU

EMT lib.

PowerGrids lib.

job. file

par. file

dyd.file

crv.file

Fig. 1. Dynaωo structure and exchanges between solvers and models.

one by one to end up with pre-compiled libraries that are only

instantiated at run-time. Moreover, each of these libraries can

be used as many times as needed with different parameter

values. Once compiled by the OpenModelica compiler, the

models are post-processed by Python scripts to provide the

same methods and to have a single formalism for both C++ and

Modelica models. The origin of the model is thus completely

transparent for the rest of the tool and the solvers.

Solvers are decoupled from models in Dynaωo: new models

can be introduced without further modifications in the solvers

and new solvers can be tested and used without requiring any

action on existing models. Moreover, it is easy and

straightforward to compare numerical strategies and to observe

and analyze the impacts on the results and performances as the

modeling side is unchanged. Solvers and models only exchange

a finite set of information needed for solving the system. The

modeling part notably exposes the following methods to the

solving part:

1. the residual functions 𝐟(𝑡, 𝑦, 𝑦′) which are the system

equations evaluated at each time step

2. the Jacobian matrix 𝐉(𝑡, 𝑦, 𝑦′) used for the time-step

numerical resolution.

3. the root functions 𝐠(𝑡, 𝑦, 𝑦′) which are used to detect

instants of discrete variable changes or mode changes

(i.e., a change in the form of an equation from 𝑓1 to 𝑓2,

such as a limitation).

4. the mode functions that give the form of an equation at

a time t (between 𝑓1 and 𝑓2, for example).

B. Native Models and Solvers

Dynaωo contains a set of models and solvers, natively

available for any user. The provided models consist of phasor

and simplified models but no EMT model is natively distributed

with the tool.

Regarding solvers, any solver can be integrated, as long as it

contains a few common methods such as initializing the

problem, solving it, or reinitializing it. Currently, two solvers

are included in Dynaωo. The first one is the Backward Euler

integrator with a variable time-step strategy [16], specifically

designed for long-term voltage stability simulation. The

nonlinear algebraic equations resulted from the discretization of

the equations are solved using Krylov Inexact Newton SOLver,

KINSOL [17]. This solver is not accurate for fast transient

simulations.

The second solver is a variable time-step, variable order

DAE system solver called IDA [18]; a part of the SUNDIALS

suite [19]. The integration method in IDA relies on an

approximation of the derivative using the kth order backward

differentiation formula (BDF) method given by the multi-step

formula (1):

∑ 𝛼𝑛,𝑗𝑦𝑛−𝑗 = ℎ𝑛�̇�𝑛
𝑘
𝑗=0 (1)

where 𝑦𝑛 and �̇�𝑛 are the computed approximations to 𝑦(𝑡𝑛)

and �̇�(𝑡𝑛), respectively, and the step size is ℎ𝑛 = 𝑡𝑛 − 𝑡𝑛−1.

The coefficients 𝛼𝑛,𝑗 are uniquely determined by the order k,

and the history of the step sizes. On every step, it chooses the

order k and step size to control local errors according to user

tolerances (relative and absolute): k can, in theory, be chosen

between 1 and 5 but is limited to 1 or 2 in Dynaωo to preserve

the A-stability property. Two different LU factorization

algorithms, i.e. KLU [20] and NICSLU [21] are coupled with

the algebraic solvers. Both have proven [22] efficiency.

Regarding event handling, the IDA has been augmented to

include a root-finding feature while integrating the initial value

problem. The scheme is based on checking for sign changes of

a set of user-defined functions, 𝑔𝑖(𝑡, 𝑦, �̇�), over each time step

taken. This scheme yields a high precision at cost of time [18].

C. Modifications, Open questions, and Remaining

Challenges for EMT Simulations

To run EMT simulations with Dynaωo, it is necessary to do

some modifications in the simulation codes. After adding the

EMT library, it is required to enrich the range of Modelica

structures in the tool: indeed, some keywords such as “delay”

or some Modelica functions were not yet properly handled by

the tool. Once done, a few adjustments have also to be done on

the simulation structure and the numerical solver as well:

default values have to be adapted to EMT-type simulations e.g.,

time step minimal values, strategy to reinitialize the solver after

an event, or output management. These different changes

enable us to compile a large part of the library and at this stage,

no barrier, related to the use and support of the Modelica

language, is identified that could compromise the long-term

development of the approach.

Nevertheless, there are still open issues that will need further

investigation and research to make definitive statements.

III. SIMULATION RESULTS

Three case studies have been used to validate the behavior

of Dynaωo, enriched by the modifications presented in the last

section, in terms of accuracy and performances. The obtained

results and the simulation time are compared with the reference

software EMTP–with the Trapezoidal and Backward Euler

(BE) method–and a native open-source Modelica tool –

OpenModelica. Code generation and simulations were carried

out on a laptop with Intel Core i7-6820HQ 2.7 GHz 4 cores -

Rds

R=5 k

L0=22
L1=15

RLs

R0=2
R1=1 230kVRMSLL

Cs
C=0.5 µF

C1
C=5 µF

C2C=5 µF

L1

L=75 µH

R1

R=30

L2

L=75 µH

R2

R=30
AC1

CB2

CB1

Network equivalent

225ms|1E15s|0

20ms|125ms|0
175ms|1E15s|0

Fig. 2. Test circuit 1; 2-step back-to-back capacitor banks sketched in

OpenModelica.

CPU with HT; 62 GB DDR4 main memory; running on Fedora

29 and using OpenModelica 1.14.1 and Dynaωo 1.2. The

simulations are performed without initialization.

A. Case 1: Capacitor Bank Switching

The schematic for a capacitor bank switching in a 230 kV

substation sketched in OpenModelica using an EMT library is

presented in Fig. 2. This case exhibits both low and high natural

frequencies. It aims at studying how well the solution method

performs for stiff DAE systems.

The two breakers in Fig. 2 are initially open. CB1 is closed

at t=20 ms, which introduces high-frequency transient

oscillations. CB1 is then opened at t=125 ms and recloses at

t=175 ms. The capacitor C2 is energized at t=225 ms. The

simulation interval is 500 ms with a time-step of 10 µs.

Fig. 3.a superimposes the voltage curves at C1 from Dynaωo

and EMTP for the first 300 ms. Close-up views of reclosing of

CB1 and closing of CB2 are given in Fig. 3.b-d. It is observed

that Dynaωo results match perfectly the EMTP during

transients. At each switching, two transient events are

observable: low frequency and high-frequency oscillations. For

example, energizing C1 causes oscillations with frequencies of

27.26 kHz and 340 Hz (see Fig. 3.c) respectively. At the instant

of closing of CB2, the fast transient is 8220 Hz whereas the

slower transient is 246 Hz as observed in Fig. 3.d and Fig. 3.b,

respectively. No numerical instability e.g. numerical

oscillations are identified during the simulation.

TABLE I presents the performances obtained for Dynaωo

and OpenModelica when using the IDA solver with the

following parameters: initial time-step and maximum time-step

is 10 µs, relative and absolute accuracy are 1e-6, and the

maximum order is 2. One should also note that IDA has been

modified in Dynaωo to introduce a minimum step size: its value

is set to 1e-10 s in our case. Results are compared with EMTP

performance obtained with a fixed time-step of 10 µs. The

simulations have been run 5 times and the average computing

time is extracted. It shows that the simulation time in both

Modelica-based tools is similar, which is logical as the solver

properties and the models used are identical. OpenModelica

performs a bit better on the pure solving aspects: one possible

explanation is the handling of the Jacobian calculation; in

Dynaωo, the Jacobian is evaluated using automatic

differentiation while it is directly available in the

OpenModelica environment. Nevertheless, when adding front-

end and back-end times and especially the compilation time,

Dynaωo becomes 1.79 times faster than OpenModelica.

Time (ms)

(b)

Closing CB2Re-closing CB1

(c) (d)

va, vb, vc EMTPDynaꞶo:{ }
V

o
lt

ag
e

(p
u
)

(a)
0 50 100 150 200 250 300

-2

-1

0

1

2 CB1 closed

170 180 190 200 210 220 230 240 250
-2

-1

0

1

2

174 176 178 180 182
-2

0

2

V
o

lt
ag

e
(p

u
)

225 225.2 225.6 226
-1

0

1T=2.941 ms

Fig. 3. (a): Voltage waveforms on C1; Dynaωo solver: IDA, ∆𝑡𝑚𝑎𝑥 = 10 μs,

Tol=1e-6; EMTP solver: Trapezoidal/BE, ∆𝑡 = 10 μs. (b): Zoom-in view of

voltage curves after reclosing of CB1. (c): Low-frequency oscillations of 340

Hz. (d): High-frequency oscillations of 8220 Hz due to energization C2.

TABLE I
CASE STUDY 1: PERFORMANCE COMPARISON

Simulator Dynaωo

OpenModelica

EMTP
Comp. Sim.

Total

(C+S+AP)

CPU-time(s) 2.34 1.59 2.11 4.21 0.5

TABLE II presents the characteristics of the simulations

carried out in Dynaωo and OpenModelica, especially the

number of time steps solved, the number of Jacobian

evaluations, and the number of residual equations: it confirms

that the overall behavior of IDA in OpenModelica and Dynaωo

is the same, even if small differences appear due to the precision

chosen for event detection and the equation simplifications in

both tools.

To further evaluate the possibilities of the simulation tool,

the simulations have been relaunched with different sets of

parameters. Performances and accuracy sensitivity of results for

different tolerances with IDA have been assessed. TABLE III

shows the performance aspects while Fig. 4.a focuses on

accuracy. This figure depicts the high-frequency oscillations of

voltage phase-a on C1 during energizing C2. The number of

time points, 𝑛∆𝑡, for different solvers is compared in Fig. 4.b. It

is observed in the IDA curves, the number of time points varies

depending on the rate of changes on the curve, and tolerance;

e.g. 𝑛∆𝑡, 𝑟𝑒𝑑 > 𝑛∆𝑡, 𝑔𝑟𝑒𝑒𝑛 > 𝑛∆𝑡, 𝑏𝑙𝑢𝑒 and also 𝑛∆𝑡,𝑎 > 𝑛∆𝑡,𝑏 .

The IDA solver with the tolerance of 1e-6 yields the closest

results to EMTP with a time-step of 1 µs whose CPU-time is

3.94 s. Thus, user-defined precision is a pivotal and

determining parameter for selecting the step size.

225 225.1 225.2 225.3 225.4 225.5 225.6
-1

-0.8

-0.6

-0.4

-0.2

0

V
o
lt

ag
e

(p
u

)

fn=8220 Hz

(a)

(b) Time (ms)

EMTP{ h=10 µs, h=1 µs}

IDA Tol.{ 1
-6

, 1-5, 1
-4 }

225.05 225.06 225.07 225.08 225.09

-0.5

-0.4

-0.3

-0.2

-0.1

V
o
lt

ag
e

(p
u

)

nΔt, a=27

nΔt, b=18

nΔt, EMTP,10µs=2

nΔt, EMTP,1µs=20
nΔt, IDA,1e-4=19
nΔt, IDA,1e-5=45
nΔt, IDA,1e-6=82

20 µs

Fig. 4. (a): Voltage waveforms on C1, phase-a at the instant of C2
energization, Dynaωo solver: IDA with different tolerances; EMTP solver:

Trapezoidal/BE, ∆𝑡 =1 and 10 μs. (b): Comparison of the number of time
points within 20 µs.

TABLE II

CASE STUDY 1: IDA BEHAVIOR DURING SIMULATION

Simulator Dynaωo OpenModelica EMTP

No. of time steps 90 818 119 749 50 008

J evaluations 2 963 2 963 -

F evaluations 121 481 135 394 -

TABLE III

PERFORMANCES FOR DIFFERENT SOLVING STRATEGIES

Solver CPU-time (s)
Gain (compared to IDA,

tolerance = 1e-6)

IDA (tol. = 1e-6) 2.34 1

IDA (tol. = 1e-5) 1.43 1.63

IDA (tol. = 1e-4) 1.02 2.29

B. Case 2: Switching of a Parallel Transmission Line

Fig. 5 shows a network equivalent (coupled-RL) feeding a

balanced three-phase PQ load of 500 MW and 100 MVAR at

400 kV through two identical parallel lines.

The breaker BR1 is initially open and closes at t=0 s. TLM1

and TLM2 are constant-parameter (CP) line models. In normal

conditions, the line breakers are closed. L1 represents a shunt

compensator. The load is connected to Bus BOR at t=100 ms.

A phase-a-to ground fault with a resistance of 1 Ω is applied to

the TML2 at t=200 ms. As soon as the fault is detected by the

protection relays (not simulated here), an opening command is

sent to the breakers BRm2 and BRk2 at t=300 ms. Then, the

fault is cleared at t=350 ms and finally, the line breakers are

reclosed at 430 ms. The simulation time and time-step are set

to 500 ms and 5 µs respectively.

This scenario aims at validating the accuracy of the delay

operator developed in Dynaωo and stability of the solver over

discontinuities imposed by several state events.

Fig. 6 depicts the voltage waveforms at the m-end of TLM2.

The black curves represent EMTP results. It is observed that

both curves are in excellent agreement.

Fig. 7.a illustrates the current waveforms passing through the

m-end of TLM2. Fig. 7.b zoom in the transients after

Bus sys

L1
L=7H

+ CP

TLM1

+ CP

TLM2

BRk1

BRk2 BRm2

BRm1

BR2

P=500 MW
Q=100 MVar

BOR

Cs

Network equivalent

RLs

C=0.5 µF

BR1 BR3

vm

EF on phase-a:

200ms|350ms|0

SW
-1s|300ms|0

430ms|1E15s|0

R
R=1

100ms|1E15s|0

AC1
400kVRMSLL

Fig. 5. Test circuit 2; switching of parallel transmission lines (CP model).

disconnecting the line. It shows the impact of traveling waves

in phase-a and repeats nearly at each 2𝜏. The current continues

oscillating and decreasing- due to the resistances of line and

fault-until the SW is opened. Fig. 7.c shows the transients at the

instant of re-energizing TLM2. One can observe that the results

match the EMTP curves fully.

Similarly to the Case 1; TABLE IV reports the performances

obtained for Dynaωo and OpenModelica when using the IDA

solver with the following parameters: initial time-step and

0 100 200 300 400 500
-3

-2

-1

0

1

2

3

V
o
lt

ag
e

(p
u
)

va, vb, vc EMTPDynaꞶo:{ }

Fault duration

Load connected TLM2 disconnected

TLM2 reclosed

Time (ms)(b) (c)

(a)

0 10 20 30
-2

0

2

320 360 400 440

-1

0

1

Fig. 6. (a): Voltage waveforms at the m-end of TLM2; Dynaωo solver: IDA,

∆𝑡𝑚𝑎𝑥 = 5 μs, Tol=1e-6; EMTP solver: Trapezoidal/BE, ∆𝑡 = 5 μs. (b): The
close-up view of the energization of the line. (c): The zoom-in view of voltage
at the m-end of TLM2 when disconnected from both sides.

0 100 200 300 400 500
-4

-2

0

2

4
ia, ib, ic EMTPDynaꞶo:{ }

C
u
rr

en
t
(p

u
)

(b) (c)

(a)

310 320 330 340 350
-1

0

1

430 435 440 445 450
-2

0

2

Time (ms)

Load connected

Fault current TLM2 disconnected

2τ

Fig. 7. (a): Current waveforms at the m-end of TLM2. (b): The zoom-in view
of current at the m-end of TLM2 after disconnecting the line. (c): The zoom-in

view of current at the m-end of TLM2 at the instant of energizing of line.

isurge

R0

R=180

L0

L=0.36 µH

C1
C=55.5 pF

R1

R=117

L1

L=42 µH

ZnO1

Zn
o ZnO2

Zn
o

10kA, 8/20 µs

i

Fig. 8. Test circuit 3; modeling of an Ohio-Brass ZnO Arrester for a 330 kV
Network, MCOV=209 kV, d=1.8 m, n=1.

maximum time-step is 5 µs, relative and absolute accuracy are

1e-6 and the maximum order is 2. The same network is

simulated with EMTP with the time-step of 5 µs. One can see

that Dynaωo presents an overall better performance of

simulations compared to OpenModelica. In this case, the use of

a variable time-step solver and the number of Jacobian

evaluations, 16,042, are the most penalizing points. It is noted

that 𝑛∆𝑡, 𝐷𝑦𝑛𝑎Ꞷ𝑜 = 209,871 and 𝑛∆𝑡, 𝐸𝑀𝑇𝑃 = 100,010.

TABLE IV
CASE STUDY 2: PERFORMANCE COMPARISON

Simulator Dynaωo
OpenModelica

EMTP
Comp. Sim. Total (C+S+AP)

CPU-time (s) 18.74 5.31 13.6 19.46 1.6

C. Case 3: Nonlinear Circuit of Surge Arrester

This case study aims to examine the behavior of Dynaωo for

the simulation of nonlinear components during very fast

transients. The solution of nonlinear systems is accomplished

with Newton iterations in Dynaωo and EMTP solvers.

Fig. 8 shows the frequency-dependent model proposed by

the IEEE W.G. 3.4.11[23] for surge arrester modeling. The

model represents the arrester as two highly nonlinear resistors,

ZnO1 and ZnO2, separated by an R-L filter. For slow front

surges, the R-L filter is negligible; thus, ZnO1 and ZnO2 are

effectively connected in parallel. For fast-front surges, the

impedance of this filter becomes more important and causes a

current distribution between the two nonlinear branches.

EMT modeling of surge arrester is complicated owing to the

exponential segment nonlinearity. Arrester current, 𝑖𝑘𝑚 is

related to the voltage, 𝑣𝑘𝑚 , on fitting with exponential

segments defined by:

𝑖𝑘𝑚 = 𝑝𝑗 (
𝑣𝑘𝑚

𝑉𝑟𝑒𝑓
)

𝑞𝑗

 (2)

where 𝑗 is the segment number starting at the voltage 𝑉𝑚𝑖𝑛𝑗
,

multiplier 𝑝𝑗 and exponent 𝑞𝑗 are coefficients defined for

each 𝑉𝑚𝑖𝑛𝑗
 and 𝑉𝑟𝑒𝑓 is the arrester reference voltage. The

first segment is assumed linear. The lightning current is

modeled by a function given by:

𝑖(𝑡) = 𝑖𝑚[𝑒𝛼𝑡 − 𝑒𝛽𝑡] (3)

The current source generates a 10 kA, 8/20 µs lightning surge.

Simulation is run for 300 µs with ∆𝑡𝑚𝑎𝑥 = 10 𝑛𝑠, 𝑇𝑜𝑙 =

10−6 in Dynaωo and ∆𝑡 = 10 𝑛𝑠 in EMTP. Fig. 9 illustrates

the voltage and current waveforms of ZnO2 compared with

EMTP. The graphs are fully superimposed. Fig. 10 shows the

solution points on the non-linear characteristic curve of ZnO2.

The solution points are not superimposed but are on the same

slope. The solutions always remain on the actual nonlinear

0 50 100 150 200 250 300
0

200

400

600

0

2

4

6

8

10

Time (µs)

R
es

id
u

al
 V

o
lt

ag
e

(k
V

)

D
is

ch
ar

g
e

C
u

rr
en

t
(k

A
)

vZnO2 EMTPi ZnO2IDA{ }

10kA, 8/20 µs

Fig. 9. Residual voltage and discharge current curves in ZnO2. Dynaωo

solver: IDA, ∆𝑡𝑚𝑎𝑥 = 10𝑛𝑠, Tol=1e-6; EMTP: Trapezoidal/BE, ∆𝑡 = 10𝑛𝑠.

DynaꞶo EMTP Vmin,j

Discharge Current (kA)
0 2 4 6 8 10

0

200

400

600

R
es

id
u

al
 V

o
lt

ag
e

(k
V

)

0.996 0.998 1 1.002 1.004

300

400

500

600

700
800

DynaꞶo EMTP

Vmin,2

Fig. 10. Voltage vs. current curve of ZnO2; Zoom-in view: comparison of
solution points in the nonlinear segment 2.

segments, no overshooting is observed. There are no numerical

oscillations and instability. The simulation time for different

simulators is presented in TABLE V. IDA solves the system

with the total number of 31 790 solution points while in a fixed-

step solver, e.g. Trapezoidal/BE 𝑛∆𝑡 = 30,019.

TABLE V

CASE STUDY 3: PERFORMANCE COMPARISON

Simulator Dynaωo
OpenModelica

EMTP
Comp. Sim. Total (C+S+AP)

CPU-time (s) 0.19 0.02 0.15 0.17 0.17

IV. CONCLUSIONS

Modelica is a powerful modeling language for power system

simulation based on describing the models by implicit DAEs.

This paper contributed a hybrid approach to EMT simulations

using Modelica and C++. The new approach contributes to

improving the run-time of EMT-type simulation in Modelica.

The method is based on modern concepts of programming

such as declarative, equation-based, object-oriented paradigms,

where all unified in Modelica. The improved approach has been

validated in terms of accuracy and solution speed using EMTP.

The results show that the obtained performance is better in

comparison with pure Modelica tools, e.g. OpenModelica. The

obtained results for all three cases also confirm the numerical

stability of IDA for stiff systems, particularly including

components with nonlinear characteristics.

The advantages of Dynaωo are not in numerical performance

when compared to EMTP, but in high-level modeling

capabilities. It is shown, however, that performance

improvements are possible and further research is being

conducted in this aspect.

As future work, the Dynaωo library and structures will be

extended to cover other EMT-type models, e.g. WB model,

synchronous machine, and control systems.

V. REFERENCES

[1] P. Fritzson, Principles of object-oriented modeling and simulation with

Modelica 3.3: a cyber-physical approach. John Wiley & Sons, 2014.

[2] P. Fritzson et al., “The OpenModelica Integrated Environment for
Modeling, Simulation, and Model-Based Development “, Modeling,

Identification and Control, vol. 41, no. 4, pp. 241–295, 2020.

[3] Dymola, Dynamic Modeling Laboratory. [Online]. Available:
http://www.3ds.com

[4] PEGASE: Pan European Grid Advanced Simulation and state Estimation,

[Online]. Available: https://cordis.europa.eu/project/id/211407
[5] iTesla: Innovative Tools for Electrical System Security within Large Area,

[Online]. Available: https://cordis.europa.eu/project/id/283012

[6] L. Vanfretti T. Rabuzin, M. Baudette, and M. Murad, “iTesla Power
Systems Library (iPSL): A Modelica library for phasor time-domain

simulations”, SoftwareX, 18 May 2016.

[7] M. Baudette, M. Castro, T. Rabuzin, J. Lavenius, T. Bogodorova, L.
Vanfretti, OpenIPSL: Open-Instance Power System Library — Update

1.5 to “iTesla Power Systems Library (iPSL): A Modelica library for
phasor time-domain simulations”, SoftwareX, vol. 7, January–June 2018,

pp. 34-36.

[8] A. Bartolini, F. Casella, A. Guironnet. “Towards Pan-European Power
Grid Modelling in Modelica: Design Principles and a Prototype for a

Reference Power System Library”. In Proc. 2019 International Modelica

Conf., Regensburg, Germany, March 4–6, 2019, 2019 Feb 1 (No. 157).
Linköping University Electronic Press.

[9] A. Masoom, T. Ould-Bachir, J. Mahseredjian, A. Guironnet, and N.

Ding, “Simulation of electromagnetic transients with Modelica, accuracy
and performance assessment for transmission line models,” Electric

Power Systems Research, vol. 189, p. 106799, 2020.

[10] J. Mahseredjian, S. Dennetière, L. Dubé, B. Khodabakhchian and L.
Gérin-Lajoie, "On a new approach for the simulation of transients in

power systems," Electric Power Systems Research, vol. 77, no. 11, pp.

1514-1520, 2007.
[11] H. Lundkvist, and A. Yngve. "Accelerated Simulation of Modelica

Models Using an FPGA-Based Approach." Master thesis, Dept. of

Electrical Engineering, Linköping University, 2018.
[12] P. Gibert, P. Panciatici, R. Losseau, A. Guironnet, D. Tromeur-Dervout

and J. Erhel, "Speedup of EMT simulations by using an integration

scheme enriched with a predictive Fourier coefficients estimator," In
Proc. 2018 IEEE PES Innovative Smart Grid Technologies Conf. Europe

(ISGT-Europe), Sarajevo, 2018, pp. 1-6.

[13] W. Braun, F. Casella and B. Bachmann, “Solving Large-scale Modelica

models: New Approaches and Experimental Results using

OpenModelica,” in Proc. 2017 International Modelica Conference,

Prague, Czech Republic, May 15-15, 2017.

[14] Dynaωo, open-source simulator for power systems, [Online]. Available:

https://dynawo.github.io/.
[15] A. Guironnet, M. Saugier, S. Petitrenaud, F. Xavier, and P. Panciatici,

“Towards an Open-Source Solution using Modelica for Time-Domain

Simulation of Power Systems,” in Proc. 2018 IEEE PES Innovative Smart
Grid Technologies Conf. Europe (ISGT-Europe), Sarajevo, 2018.

[16] D. Fabozzi and T. Van Cutsem, "Simplified time-domain simulation of

detailed long-term dynamic models," in Proc. 2009 IEEE Power &
Energy Society General Meeting, Calgary, AB, 2009, pp. 1-8.

[17] A. G. Taylor, A. C. Hindmarsh, “User documentation for KINSOL, a

nonlinear solver for sequential and parallel computers.” Lawrence
Livermore National Lab., CA (United States); 1998 Jul 1.

[18] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.

Shumaker, and C. S. Woodward, “Sundials: Suite of nonlinear and
differential/algebraic equation solvers,” ACM Trans. on Mathematical

Software, vol. 31, no. 3, pp. 363–396, 2005.

[19] SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation
Solvers. [Online]. Available: https://computing.llnl.gov/projects/sundials.

[20] T. A. Davis and E. Palamadai Natarajan, “Algorithm 907: KLU, A Direct

Sparse Solver for Circuit Simulation Problems,” ACM Trans. on

Mathematical Software, vol. 37, no. 3, pp. 36:1–36:17, Sep. 2010.

[21] Chen, X., Wang, Y., & Yang, H. “NICSLU: An adaptive sparse matrix

solver for parallel circuit simulation,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 32(2), 261-274:2013.

[22] L. Razik, L. Schumacher, A. Monti, A. Guironnet and G. Bureau, "A

comparative analysis of LU decomposition methods for power system
simulations," in 2019 IEEE Milan PowerTech, Milan, Italy, pp. 1-6.

[23] IEEE Working Group 3.4.11, "Modeling of metal oxide surge

arresters," IEEE Trans. Power Delivery, vol. 7, no. 1, pp. 302-309, Jan.
1992.

