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Abstract—This paper presents the current status, the open 

challenges, and perspectives for Modelica-based simulation of 

Electromagnetic Transient (EMT) using Dynaωo environment. 

The simulation efficiency in native Modelica environments 

requires improvements for larger-scale systems, as they have been 

primarily developed and used for complex but small problems. 

This paper investigates the use of Dynaωo, an open-source hybrid 

C++/Modelica tool originally developed for large-scale 

electromechanical transient studies, for electromagnetic transient 

simulations. It demonstrates that its approach manages to bring 

improvements in terms of performances while keeping the 

flexibility, accuracy, and robustness of full Modelica tools, but that 

there is still room for further improvements. 

Keywords: Modelica, Electromagnetic Transient, Equation-

based modeling, Acausal modeling, C++, Declarative modeling, 

Dynaωo.  

I. INTRODUCTION 

OWER system electromagnetic transient (EMT) modeling 

contains a set of components that can be described 

mathematically by Ordinary Differential Equations (ODE) 

along with algebraic equations. Synchronous machines, power 

transformers, surge arresters, or power controllers can be 

effectively modeled using an evolving set of differential-

algebraic equations (DAEs) containing discrete variables. 

Modelica is an object-oriented declarative equation-based 

and open-source language to conveniently model the dynamic 

behavior of complex physical systems. Modelica is an acausal 

language, meaning modeling relies on equations instead of 

assignment statements, where the input-output causality is 

fixed. As a result, the programmer is not forced to handle the 

data flow of the solution. Equations are declarative and express 

relations between expressions; therefore, the equality operator 

used in the equations defines mathematical equality between 

the left and right sides of an expression. Modelica language 

makes modeling physical systems easier and more intuitive. In 

Modelica, models are described through the implicit DAEs, 

either created in an equation-based way for physical parts or 

using a block diagram approach for control parts [1]. This 

system is then transformed into an explicit ODE form by a 

Modelica tool, such as OpenModelica [2] or Dymola [3]; then, 

solved using a freely-selected numerical method. Power system 

modeling with Modelica allows working at higher abstraction 
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levels than with classical simulation tools whose codes are 

based on imperative languages, e.g. Fortran or C++.  

Modelica has begun to gain interest in the power system 

community with two European projects: PEGASE [4] and 

iTesla [5]. These projects, alongside other national or 

international initiatives coming both from the power system and 

the Modelica communities, have ended up in the development 

of several libraries: iPSL [6], OpenIPSL [7], or PowerGrids [8] 

for phasor-domain simulation. Regarding EMT-type 

simulations, the first effort in this direction has been done in 

[9], where Constant Parameter (CP) and Wideband (WB) 

transmission line models have been implemented and validated 

against EMTP [10]. The precision obtained with Modelica 

models and tools is perfect, but the simulation run-time is not 

satisfactory. Modelica has many built-in functions and 

constructs covering a vast range of EMT-modeling needs. 

Many techniques have been proposed over the years to 

accelerate the simulation speed in Modelica simulators such as 

using FPGA [11], solver manipulation [12], DAE-mode 

compilation, power system specific solvers [13], or efficient 

Jacobian calculation. Despite these efforts and large 

improvements, the performance of full Modelica simulators 

remains a barrier for industrial applications and large-scale 

systems.  

A hybrid C++/Modelica solution called Dynaωo [14], [15] 

was proposed for simulation in the phasor domain to bypass the 

limitations encountered with full Modelica tools while ensuring 

the advantages of an equation-based approach. Dynaωo is an 

open-source simulation package primarily designed by RTE for 

short- and long-term stability analysis. It aims at providing a 

transparent, flexible, interoperable, and robust simulation tool 

that could ease collaboration and cooperation in the power 

system community. This method enables to improve the 

performances to similar levels to domain-specific simulation 

tools for phasor domain simulations [15].  

The contribution of this paper is to draw the status of 

Modelica-based EMT simulations using Dynaωo, the open 

challenges, and the perspectives. It presents the extension 

already done to the method and illustrates with different test 

cases the results obtained in terms of performances and 

accuracy.  
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The remainder of this paper is structured as follows: 

Section II. presents the approach used in Dynaωo, the different 

models and solvers natively available, and the improvements 

and remaining challenges associated with EMT simulations. 

The results and case studies are presented and discussed in 

Section III.   

II. A HYBRID C++/MODELICA APPROACH 

This section will first introduce Dynaωo’s main principles 

and architecture, then present the native models and solvers, 

and finally explain the modifications brought for EMT 

simulations and the potential next steps. 

A.  Generic Principles and Architecture 

The overall goal of Dynaωo approach is to bypass the 

limitations of full native Modelica tools for large-scale 

simulations while keeping the advantages provided by the 

Modelica approach (i.e. transparency, flexibility, 

interoperability, robustness, and accuracy). It can also be 

summed up in two main principles that are central to the 

approach design and architecture: using Modelica language as 

much as possible for modeling of complex elements and 

sticking to a strict separation between model and solver sides 

while managing to preserve acceptable performances for 

industrial use. 

To properly understand the design and architecture choices 

of Dynaωo, it is necessary to recall some characteristics of both 

the Modelica language and native full Modelica tools. Modelica 

has been historically developed for complex but rather small 

physical problems. As such, the language does not support 

vectors, but only tables. Connectivity or graph analysis is 

difficult and costly to conduct in a pure Modelica approach. 

Backup solutions using external programming languages, such 

as C or Fortran, exist but are quite difficult to connect and 

integrate into Modelica models. Native generic Modelica tools 

do both compiling and simulation at run-time. When going to 

large systems, the compile-time (consisting of different steps 

such as flattening, sorting, and eventually causalizing the 

equations – depending on the compiling mode ODE/DAE) 

becomes too costly for large-scale simulations. Besides, one 

should also keep in mind that compiling must be redone even if 

only parameters are modified. Finally, the generated codes 

provided by native Modelica compilers remain less efficient 

and less optimized than manually written codes in a classical 

programming language. To avoid some of these limitations, 

Dynaωo uses a hybrid C++/Modelica approach for modeling 

and a unique method enabling to compile before run-time 

partial Modelica models.  

Fig. 1 depicts the structure of Dynaωo. A model can be either 

directly written in C++ or Modelica. In Dynaωo, the Modelica 

model of a component is not squared – not as many equations 

as variables – and cannot be compiled alone by a Modelica 

compiler. The cunning point in Dynaωo is to temporarily create 

a square model using fictitious equations for pending 

connections (typically currents), to be able to compile the 

models and then to remove these fictitious equations from the 

model structure, once compiled. It allows compiling models 
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Fig. 1.  Dynaωo structure and exchanges between solvers and models. 
 

one by one to end up with pre-compiled libraries that are only 

instantiated at run-time. Moreover, each of these libraries can 

be used as many times as needed with different parameter 

values. Once compiled by the OpenModelica compiler, the 

models are post-processed by Python scripts to provide the 

same methods and to have a single formalism for both C++ and 

Modelica models. The origin of the model is thus completely 

transparent for the rest of the tool and the solvers. 

Solvers are decoupled from models in Dynaωo: new models 

can be introduced without further modifications in the solvers 

and new solvers can be tested and used without requiring any 

action on existing models. Moreover, it is easy and 

straightforward to compare numerical strategies and to observe 

and analyze the impacts on the results and performances as the 

modeling side is unchanged. Solvers and models only exchange 

a finite set of information needed for solving the system. The 

modeling part notably exposes the following methods to the 

solving part: 

1. the residual functions 𝐟(𝑡, 𝑦, 𝑦′) which are the system 

equations evaluated at each time step 

2. the Jacobian matrix 𝐉(𝑡, 𝑦, 𝑦′) used for the time-step 

numerical resolution. 

3. the root functions 𝐠(𝑡, 𝑦, 𝑦′) which are used to detect 

instants of discrete variable changes or mode changes 

(i.e., a change in the form of an equation from 𝑓1 to 𝑓2, 

such as a limitation).  

4. the mode functions that give the form of an equation at 

a time t (between 𝑓1 and 𝑓2, for example). 

B.  Native Models and Solvers 

Dynaωo contains a set of models and solvers, natively 

available for any user. The provided models consist of phasor 

and simplified models but no EMT model is natively distributed 

with the tool.  

Regarding solvers, any solver can be integrated, as long as it 

contains a few common methods such as initializing the 

problem, solving it, or reinitializing it. Currently, two solvers 



are included in Dynaωo. The first one is the Backward Euler 

integrator with a variable time-step strategy [16], specifically 

designed for long-term voltage stability simulation. The 

nonlinear algebraic equations resulted from the discretization of 

the equations are solved using Krylov Inexact Newton SOLver, 

KINSOL [17]. This solver is not accurate for fast transient 

simulations. 

The second solver is a variable time-step, variable order 

DAE system solver called IDA [18]; a part of the SUNDIALS 

suite [19]. The integration method in IDA relies on an 

approximation of the derivative using the kth order backward 

differentiation formula (BDF) method given by the multi-step 

formula (1): 

∑ 𝛼𝑛,𝑗𝑦𝑛−𝑗 = ℎ𝑛�̇�𝑛
𝑘
𝑗=0  (1) 

where 𝑦𝑛  and �̇�𝑛  are the computed approximations to 𝑦(𝑡𝑛) 

and �̇�(𝑡𝑛), respectively, and the step size is ℎ𝑛 = 𝑡𝑛 − 𝑡𝑛−1. 

The coefficients 𝛼𝑛,𝑗 are uniquely determined by the order k, 

and the history of the step sizes. On every step, it chooses the 

order k and step size to control local errors according to user 

tolerances (relative and absolute): k can, in theory, be chosen 

between 1 and 5 but is limited to 1 or 2 in Dynaωo to preserve 

the A-stability property. Two different LU factorization 

algorithms, i.e. KLU [20] and NICSLU [21] are coupled with 

the algebraic solvers. Both have proven [22] efficiency. 

Regarding event handling, the IDA has been augmented to 

include a root-finding feature while integrating the initial value 

problem. The scheme is based on checking for sign changes of 

a set of user-defined functions, 𝑔𝑖(𝑡, 𝑦, �̇�), over each time step 

taken. This scheme yields a high precision at cost of time [18].  

C.  Modifications, Open questions, and Remaining 

Challenges for EMT Simulations 

To run EMT simulations with Dynaωo, it is necessary to do 

some modifications in the simulation codes. After adding the 

EMT library, it is required to enrich the range of Modelica 

structures in the tool: indeed, some keywords such as “delay” 

or some Modelica functions were not yet properly handled by 

the tool. Once done, a few adjustments have also to be done on 

the simulation structure and the numerical solver as well: 

default values have to be adapted to EMT-type simulations e.g., 

time step minimal values, strategy to reinitialize the solver after 

an event, or output management. These different changes 

enable us to compile a large part of the library and at this stage, 

no barrier, related to the use and support of the Modelica 

language, is identified that could compromise the long-term 

development of the approach. 

Nevertheless, there are still open issues that will need further 

investigation and research to make definitive statements.  

III. SIMULATION RESULTS  

Three case studies have been used to validate the behavior 

of Dynaωo, enriched by the modifications presented in the last 

section, in terms of accuracy and performances. The obtained 

results and the simulation time are compared with the reference 

software EMTP–with the Trapezoidal and Backward Euler 

(BE) method–and a native open-source Modelica tool – 

OpenModelica. Code generation and simulations were carried 

out on a laptop with Intel Core i7-6820HQ 2.7 GHz 4 cores -
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Fig. 2.  Test circuit 1; 2-step back-to-back capacitor banks sketched in 

OpenModelica. 
 

CPU with HT; 62 GB DDR4 main memory; running on Fedora 

29 and using OpenModelica 1.14.1 and Dynaωo 1.2. The 

simulations are performed without initialization. 

A.  Case 1: Capacitor Bank Switching 

The schematic for a capacitor bank switching in a 230 kV 

substation sketched in OpenModelica using an EMT library is 

presented in Fig. 2. This case exhibits both low and high natural 

frequencies. It aims at studying how well the solution method 

performs for stiff DAE systems.  

The two breakers in Fig. 2 are initially open. CB1 is closed 

at t=20 ms, which introduces high-frequency transient 

oscillations. CB1 is then opened at t=125 ms and recloses at 

t=175 ms. The capacitor C2 is energized at t=225 ms. The 

simulation interval is 500 ms with a time-step of 10 µs.   

Fig. 3.a superimposes the voltage curves at C1 from Dynaωo 

and EMTP for the first 300 ms. Close-up views of reclosing of 

CB1 and closing of CB2 are given in Fig. 3.b-d. It is observed 

that Dynaωo results match perfectly the EMTP during 

transients. At each switching, two transient events are 

observable: low frequency and high-frequency oscillations. For 

example, energizing C1 causes oscillations with frequencies of 

27.26 kHz and 340 Hz (see Fig. 3.c) respectively. At the instant 

of closing of CB2, the fast transient is 8220 Hz whereas the 

slower transient is 246 Hz as observed in Fig. 3.d and Fig. 3.b, 

respectively. No numerical instability e.g. numerical 

oscillations are identified during the simulation. 

TABLE I presents the performances obtained for Dynaωo 

and OpenModelica when using the IDA solver with the 

following parameters: initial time-step and maximum time-step 

is 10 µs, relative and absolute accuracy are 1e-6, and the 

maximum order is 2. One should also note that IDA has been 

modified in Dynaωo to introduce a minimum step size: its value 

is set to 1e-10 s in our case. Results are compared with EMTP 

performance obtained with a fixed time-step of 10 µs. The 

simulations have been run 5 times and the average computing 

time is extracted. It shows that the simulation time in both 

Modelica-based tools is similar, which is logical as the solver 

properties and the models used are identical. OpenModelica 

performs a bit better on the pure solving aspects: one possible 

explanation is the handling of the Jacobian calculation; in 

Dynaωo, the Jacobian is evaluated using automatic 

differentiation while it is directly available in the 

OpenModelica environment. Nevertheless, when adding front-

end and back-end times and especially the compilation time, 



Dynaωo becomes 1.79 times faster than OpenModelica.  
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Fig. 3.  (a): Voltage waveforms on C1; Dynaωo solver: IDA, ∆𝑡𝑚𝑎𝑥 = 10 μs, 

Tol=1e-6; EMTP solver: Trapezoidal/BE, ∆𝑡 = 10 μs. (b): Zoom-in view of 

voltage curves after reclosing of CB1. (c): Low-frequency oscillations of 340 

Hz. (d): High-frequency oscillations of 8220 Hz due to energization C2. 
 

TABLE I   
CASE STUDY 1: PERFORMANCE COMPARISON  

Simulator Dynaωo 

OpenModelica 

EMTP 
Comp. Sim. 

Total 

(C+S+AP) 

CPU-time(s) 2.34 1.59 2.11 4.21 0.5 
 

TABLE II presents the characteristics of the simulations 

carried out in Dynaωo and OpenModelica, especially the 

number of time steps solved, the number of Jacobian 

evaluations, and the number of residual equations: it confirms 

that the overall behavior of IDA in OpenModelica and Dynaωo 

is the same, even if small differences appear due to the precision  

chosen for event detection and the equation simplifications in 

both tools. 

To further evaluate the possibilities of the simulation tool, 

the simulations have been relaunched with different sets of 

parameters. Performances and accuracy sensitivity of results for 

different tolerances with IDA have been assessed. TABLE III 

shows the performance aspects while Fig. 4.a focuses on 

accuracy. This figure depicts the high-frequency oscillations of 

voltage phase-a on C1 during energizing C2. The number of 

time points, 𝑛∆𝑡, for different solvers is compared in Fig. 4.b. It 

is observed in the IDA curves, the number of time points varies 

depending on the rate of changes on the curve, and tolerance; 

e.g. 𝑛∆𝑡,   𝑟𝑒𝑑 > 𝑛∆𝑡,   𝑔𝑟𝑒𝑒𝑛 > 𝑛∆𝑡,   𝑏𝑙𝑢𝑒  and also 𝑛∆𝑡,𝑎 > 𝑛∆𝑡,𝑏 . 

The IDA solver with the tolerance of 1e-6 yields the closest 

results to EMTP with a time-step of 1 µs whose CPU-time is 

3.94 s. Thus, user-defined precision is a pivotal and 

determining parameter for selecting the step size.  
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Fig. 4.  (a): Voltage waveforms on C1, phase-a at the instant of C2 
energization, Dynaωo solver: IDA with different tolerances; EMTP solver: 

Trapezoidal/BE, ∆𝑡 =1 and 10 μs. (b): Comparison of the number of time 
points within 20 µs. 
 

TABLE II 

CASE STUDY 1: IDA BEHAVIOR DURING SIMULATION 

Simulator Dynaωo OpenModelica EMTP 

No. of time steps 90 818  119 749 50 008 

J evaluations 2 963 2 963 - 

F evaluations 121 481 135 394 - 
 

TABLE III 

PERFORMANCES FOR DIFFERENT SOLVING STRATEGIES 

Solver CPU-time (s) 
Gain (compared to IDA, 

tolerance = 1e-6) 

IDA (tol. = 1e-6) 2.34 1 

IDA (tol. = 1e-5) 1.43 1.63 

IDA (tol. = 1e-4) 1.02 2.29 

B.  Case 2: Switching of a Parallel Transmission Line 

Fig. 5 shows a network equivalent (coupled-RL) feeding a 

balanced three-phase PQ load of 500 MW and 100 MVAR at 

400 kV through two identical parallel lines. 

The breaker BR1 is initially open and closes at t=0 s. TLM1 

and TLM2 are constant-parameter (CP) line models. In normal 

conditions, the line breakers are closed. L1 represents a shunt 

compensator. The load is connected to Bus BOR at t=100 ms. 

A phase-a-to ground fault with a resistance of 1 Ω is applied to 

the TML2 at t=200 ms. As soon as the fault is detected by the 

protection relays (not simulated here), an opening command is 

sent to the breakers BRm2 and BRk2 at t=300 ms. Then, the 

fault is cleared at t=350 ms and finally, the line breakers are 

reclosed at 430 ms. The simulation time and time-step are set 

to 500 ms and 5 µs respectively.  

This scenario aims at validating the accuracy of the delay 

operator developed in Dynaωo and stability of the solver over 

discontinuities imposed by several state events.   

Fig. 6 depicts the voltage waveforms at the m-end of TLM2. 

The black curves represent EMTP results. It is observed that 

both curves are in excellent agreement.  



Fig. 7.a illustrates the current waveforms passing through the  

m-end of TLM2. Fig. 7.b zoom in the transients after 
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Fig. 5.  Test circuit 2; switching of parallel transmission lines (CP model). 
 

disconnecting the line. It shows the impact of traveling waves 

in phase-a and repeats nearly at each 2𝜏. The current continues 

oscillating and decreasing- due to the resistances of line and 

fault-until the SW is opened. Fig. 7.c shows the transients at the 

instant of re-energizing TLM2. One can observe that the results 

match the EMTP curves fully. 

Similarly to the Case 1; TABLE IV reports the performances 

obtained for Dynaωo and OpenModelica when using the IDA 

solver with the following parameters:  initial  time-step and  
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Fig. 6.  (a): Voltage waveforms at the m-end of TLM2; Dynaωo solver: IDA, 
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Fig. 7.  (a): Current waveforms at the m-end of TLM2. (b): The zoom-in view 
of current at the m-end of TLM2 after disconnecting the line. (c): The zoom-in 

view of current at the m-end of TLM2 at the instant of energizing of line. 
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Fig. 8.  Test circuit 3; modeling of an Ohio-Brass ZnO Arrester for a 330 kV 
Network, MCOV=209 kV, d=1.8 m, n=1.  
 

maximum time-step is 5 µs, relative and absolute accuracy are 

1e-6 and the maximum order is 2. The same network is 

simulated with EMTP with the time-step of 5 µs. One can see 

that Dynaωo presents an overall better performance of 

simulations compared to OpenModelica. In this case, the use of 

a variable time-step solver and the number of Jacobian 

evaluations, 16,042, are the most penalizing points. It is noted 

that 𝑛∆𝑡,   𝐷𝑦𝑛𝑎Ꞷ𝑜 = 209,871 and 𝑛∆𝑡,   𝐸𝑀𝑇𝑃 = 100,010. 
 

TABLE IV 
CASE STUDY 2: PERFORMANCE COMPARISON  

Simulator Dynaωo 
OpenModelica 

EMTP 
Comp. Sim. Total (C+S+AP) 

CPU-time (s) 18.74  5.31 13.6 19.46 1.6 

C.  Case 3: Nonlinear Circuit of Surge Arrester  

This case study aims to examine the behavior of Dynaωo for 

the simulation of nonlinear components during very fast 

transients. The solution of nonlinear systems is accomplished 

with Newton iterations in Dynaωo and EMTP solvers. 

Fig. 8 shows the frequency-dependent model proposed by 

the IEEE W.G. 3.4.11[23] for surge arrester modeling. The 

model represents the arrester as two highly nonlinear resistors, 

ZnO1 and ZnO2, separated by an R-L filter. For slow front 

surges, the R-L filter is negligible; thus, ZnO1 and ZnO2 are 

effectively connected in parallel. For fast-front surges, the 

impedance of this filter becomes more important and causes a 

current distribution between the two nonlinear branches. 

EMT modeling of surge arrester is complicated owing to the 



exponential segment nonlinearity. Arrester current, 𝑖𝑘𝑚  is 

related to the voltage, 𝑣𝑘𝑚 , on fitting with exponential 

segments defined by: 

𝑖𝑘𝑚 = 𝑝𝑗 (
𝑣𝑘𝑚

𝑉𝑟𝑒𝑓
)

𝑞𝑗

 (2) 

where 𝑗 is the segment number starting at the voltage 𝑉𝑚𝑖𝑛𝑗
, 

multiplier 𝑝𝑗  and exponent 𝑞𝑗  are coefficients defined for 

each 𝑉𝑚𝑖𝑛𝑗
 and 𝑉𝑟𝑒𝑓  is the arrester reference voltage. The 

first segment is assumed linear. The lightning current is 

modeled by a function given by: 

𝑖(𝑡) = 𝑖𝑚[𝑒𝛼𝑡 − 𝑒𝛽𝑡] (3) 

The current source generates a 10 kA, 8/20 µs lightning surge.  

Simulation is run for 300 µs with ∆𝑡𝑚𝑎𝑥 = 10 𝑛𝑠, 𝑇𝑜𝑙 =

10−6 in Dynaωo and ∆𝑡 = 10 𝑛𝑠 in EMTP. Fig. 9 illustrates 

the voltage and current waveforms of ZnO2 compared with 

EMTP. The graphs are fully superimposed. Fig. 10 shows the 

solution points on the non-linear characteristic curve of ZnO2. 

The solution points are not superimposed but are on the same 

slope. The solutions always remain on the actual nonlinear 
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Fig. 9.  Residual voltage and discharge current curves in ZnO2. Dynaωo 

solver: IDA, ∆𝑡𝑚𝑎𝑥 = 10𝑛𝑠, Tol=1e-6; EMTP: Trapezoidal/BE, ∆𝑡 = 10𝑛𝑠. 
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Fig. 10.  Voltage vs. current curve of ZnO2; Zoom-in view: comparison of 
solution points in the nonlinear segment 2. 
 

segments, no overshooting is observed. There are no numerical 

oscillations and instability. The simulation time for different 

simulators is presented in TABLE V. IDA solves the system 

with the total number of 31 790 solution points while in a fixed-

step solver, e.g. Trapezoidal/BE 𝑛∆𝑡 = 30,019.  
 

TABLE V 

CASE STUDY 3: PERFORMANCE COMPARISON  

Simulator Dynaωo 
OpenModelica 

EMTP 
Comp. Sim. Total (C+S+AP) 

CPU-time (s) 0.19  0.02 0.15 0.17 0.17 

IV. CONCLUSIONS 

Modelica is a powerful modeling language for power system 

simulation based on describing the models by implicit DAEs. 

This paper contributed a hybrid approach to EMT simulations 

using Modelica and C++. The new approach contributes to 

improving the run-time of EMT-type simulation in Modelica. 

The method is based on modern concepts of programming 

such as declarative, equation-based, object-oriented paradigms, 

where all unified in Modelica. The improved approach has been 

validated in terms of accuracy and solution speed using EMTP. 

The results show that the obtained performance is better in 

comparison with pure Modelica tools, e.g. OpenModelica. The 

obtained results for all three cases also confirm the numerical 

stability of IDA for stiff systems, particularly including 

components with nonlinear characteristics. 

The advantages of Dynaωo are not in numerical performance 

when compared to EMTP, but in high-level modeling 

capabilities. It is shown, however, that performance 

improvements are possible and further research is being 

conducted in this aspect. 

As future work, the Dynaωo library and structures will be 

extended to cover other EMT-type models, e.g. WB model, 

synchronous machine, and control systems. 
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