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Abstract—This paper presents a power transformer differential
protection scheme based on support vector machines (SVM)
combined with high-frequency features extracted with the
real-time boundary stationary wavelet transform (RT-BSWT).
SVM models are derived with synthetic data, considering a
wide variety of events, such as inter-turn faults, external faults
during CT saturation, and evolving external-to-internal faults. A
comparative performance assessment is carried out considering
accuracy and other reliability indices, as well as operating time,
and good results were achieved. The simplicity of the presented
SVM-based relay, without hard-to-derive parameters, built on the
classical differential protection framework, highlights potential
aspects towards real-life implementation.
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I. INTRODUCTION

D IFFERENTIAL protection has been commonly employed
as the primary protection for power transformers, which

are vital components to power system operation and control.
Therefore, accurate event detection and fast fault clearance
are of utmost importance. However, even though being
able to correctly distinguish external from internal faults to
the protection zone, delimited by the current transformers
(CT), traditional differential protection might be unable to
discriminate internal faults from inrush currents, which arise
as an effect of power transformer energizations [1].

Harmonic restraint and blocking algorithms have been
commercially available to enhance traditional phasor-based
differential protection. Nonetheless, these techniques might
fail to operate when inrush currents present low harmonic
content on one or two phases [2]. Furthermore, these
algorithms also present an inherent delay due to the phasor
estimation.

Current transformer saturation also plays a significant role in
affecting transformer differential protection reliability. Due to
its unpredictable nature, CT saturation might incur in misread
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differential currents that cause the relay to malfunction [3].
Also, evolving external-to-internal faults, i.e., faults that occur
during another fault in the same circuit, possibly involving
different phases [4], can cause unexpected behavior during CT
saturation and are problems to be dealt with by the protection
scheme. Furthermore, CIGRE technical brochure [5] presents
that most of the significant failures in power transformers have
as main contributors failures in the windings.

Many modern digital signal processing techniques and
data-driven-based protection schemes have been proposed
in the literature in order to overcome the aforementioned
problems and limitations [6]–[12]. For instance, [13]
proposed the real-time boundary stationary wavelet transform
(RT-BSWT) to detect faults and other disturbances. However,
this method can only perform the detection, with no
possibility to identify a fault. Based on the wavelet-based
signal processing in [13], [6]–[8] proposed the traditional
phase differential function (87T) and the negative sequence
differential function (87Q) to protect power transformers
using high-frequency information obtained with the RT-BSWT
instead of using low-frequency information obtained with
Fourier-based phasor estimation. Therefore, [6]–[8] developed
a way to identify internal faults from other disturbances.
Despite the RT-BSWT signal processing being strongly
sensible to detect faults in [6]–[8], the protection based on
thresholds applied in these wavelet signals is susceptible to
noise and does not provide an event classification. Also,
this method presented a delay of more than a half-cycle for
accurate external-to-internal evolving fault detection. In [9]
and [10], deep learning-based power transformer differential
protection methods were proposed, with good results reported.
However, deep learning algorithms are not so easily embedded
in hardware, thus potentially halting real-life implementations.
[11] and [12] presented interesting approaches for power
transformer differential protection based on random forest
and support vector machine (SVM) algorithms, respectively,
and likewise, promising results were reported. However, these
last two works employed a cycle and a half-cycle vector
lengths, respectively, to be used as input features to their
data-driven models, making their methods slower or similar to
phasor-based methods when comparing relay operating time.

This work presents an SVM-based power transformer
differential protection scheme. The proposed protection is
powered with the operating and restraining wavelet coefficients
energies, which are obtained in accordance with [8]. If one
of these differential energies exceed a respective threshold, a
disturbance detector enables a first SVM classifier in order to
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classify the type of event as an external fault, internal fault
or transformer energization. If the event is an internal fault, a
tripping command is emitted; if the event is an external fault,
a second SVM classifier is enabled to distinguish between
possible CT saturations or external-to-internal evolving faults.

The SVM models were trained using the LIBSVM [14] with
synthetic data of fault records of an electric power system
simulated in MATLAB/Simulink environment. A wide variety
of events were simulated, such as: internal turn-to-turn and
turn-to-earth faults, external faults with CT saturation, as well
as evolving external-to-internal faults.

A comparative performance assessment with conventional
methods, including the phase differential function 87T with
harmonic restraint and harmonic blocking units, the negative
sequence differential function 87Q, and the restricted earth
fault (REF) function, is performed, regarding reliability indices
and operating time, and the presented protection scheme
has shown to be faster and more reliable than conventional
methods, and also faster than other methods presented in the
literature. In addition, the proposed method was implemented
in hardware to show its feasibility in practical applications.

II. SVM THEORY

The support vector machine is a binary supervised learning
algorithm based on the statistical learning theory [15]. Its
main goal is, upon training, to construct a decision surface,
called hyperplane, in a fashion to maximize the margin
between positive and negative samples [15]. This hyperplane
is delimited by the support vectors, which are the training
examples closest to the optimal hyperplane. With the help of
the support vectors, by solving an optimization problem, it is
possible to set up a maximized separation margin.

The SVM performs separation of nonlinearly separable data
by adopting the kernel functions, which map the data into
higher-dimensional spaces, where it is possible to perform
linear pattern separation. In the case of using non-linearly
separable data, the trained SVM classifier can be written as:

f(x) =
l∑

i=1

αiy
(i)
s K(x(i)

s , x) + b, (1)

where l is the number of support vectors; x(i)
s , y

(i)
s and

αi are the i-th support vector, its associated label, and
weight, respectively; x is the data observation to be classified;
K(x(i)s , x) is the kernel function; and b is a bias [16]. The
decision function, for a given unclassified feature vector
x, uses the sign of the classifier in (1) to perform data
classification.

One key point of SVM algorithms is their offline
parameterization, which requires expert knowledge, since
different combinations of parameters might yield different
results for a given dataset, making it essential to find the
best parameters. This is typically solved by employing a
grid search, which consists of testing a different range
of hyperparameters and evaluating their performance. The
concerning hyperparameters may vary depending on the
chosen kernel, yet, one that is always present is the
regularization parameter C. For instance, the choice of the

radial-basis function (RBF) as kernel function leads to an
additional parameter to be derived in the grid search, called
γ. Moreover, since the SVM is essentially a binary classifier,
some techniques are needed so the SVM algorithms can deal
with problems with more than two classes. Among these
methods, some of the most popular are the one-versus-all
and the one-versus-one approaches [17]. In this paper, for the
problems regarding more than two classes, the one-versus-all
approach was adopted.

III. SVM-BASED DIFFERENTIAL PROTECTION RELAY

Fig. 1 depicts the flowchart of the proposed differential
protection. This protection algorithm is designed to run at
every sampling time k. Details about each of the processing
blocks presented in Fig. 1 are addressed in this section.
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Fig. 1. Proposed SVM-based power transformer differential protection.

A. Differential Wavelet Coefficients Energies
Preprocessing (Block 1)

Fig. 1 illustrates the data processing of the presented
SVM-based protection algorithm. The data processing
comprises several stages: currents measurement, performing
of RT-BSWT, phase and magnitude adjustments, and
computation of differential wavelet coefficients and differential
energies. Data processing is needed to obtain the differential
boundary wavelet coefficients energies, which were initially
introduced by [6], and will be used as inputs for the subsequent
algorithm analytics. The steps are described as follows:

1) Current Measurement: Initially, the relay acquires
current samples from the CT secondary currents employing
anti-aliasing filters and AD converters. This procedure yields
the time-discrete secondary currents iHϕ = {iHA, iHB , iHC}
and iXϕ = {iXA, iXB , iXC}, where H and X stand for
the transformer primary and secondary windings, respectively,
whereas ϕ corresponds to phases A, B, C, and also negative



sequence Q, which is computed from previously-stored current
samples as follows [6]:

iHQ(k) =
1

3

[
iHA(k) + iHB

(
k − fs

3f

)
+ iHC

(
k − 2fs

3f

)]
,

(2)

iXQ(k) =
1

3

[
iXA(k) + iXB

(
k − fs

3f

)
+ iXC

(
k − 2fs

3f

)]
,

(3)
where k is the current sampling; fs

3f and 2fs
3f ∈ N correspond

to delays of 120ž and 240ž, respectively; fs is the sampling
frequency; f is the fundamental frequency. Although it uses
delayed samples, this computation also includes actual current
samples from phase A. Therefore, in the occurrence of a fault,
the negative sequence has relevant information of this fault
already in the first post-fault samples. The instantaneous values
of the currents are used to perform the RT-BSWT.

2) RT-BSWT: The differential protection algorithm aims to
distinguish events in a power transformer by first extracting
high-frequency components of fault-induced transients. This
extraction is performed using the RT-BSWT, which is
a time-frequency decomposition method, where a discrete
signal is decomposed into scaling and/or wavelet coefficients,
obtained by using low-pass (scaling filter, s) and high-pass
(wavelet filter, h) filters, respectively. Since the objective
in this paper is to extract high-frequency information, only
the wavelet decomposition is accounted for. The RT-BSWT
wavelet components are computed through the inner product
of the wavelet filter h of L coefficients, and with L samples
of the current signal i as follows [13]:

w(l, k) =
1√
2

L−1∑
n=0

h(n)i(k − L+ n+ 1 + l), (4)

where 0 ≤ l < L;∆k ≥ L is the length of a sliding
window; L is the number of wavelet coefficients computed
at each sampling time; k ≥ ∆k − 1 is the current sampling;
i(k+m) = i(k−∆k+m) with m ∈ N (periodized signal in
∆k samples).

3) Phase/Magnitude Adjustments: The magnitude, phase,
and zero-sequence adjustments, needed due to the CTs
configuration, are performed on the wavelet coefficients
according to [7].

4) Differential Wavelet Coefficients: The differential
wavelet coefficients are given by [8]:

wiopϕ(0, k) =
1

2
(w′

iHϕ
(0, k) + w′

iXϕ
(0, k)), (5)

wiopϕ(l ̸= 0, k) = w′
iHϕ

(l, k) + w′
iXϕ

(l, k), (6)

wiresϕ(l, k) = w′
iHϕ

(l, k)− w′
iXϕ

(l, k), (7)

where 0 ≤ l < L and w′
i = {w′

iHϕ
, w′

iXϕ
} are the wavelet

coefficients computed with (4).
5) Differential Energies: The differential boundary wavelet

coefficients energies Ew
diff = {Ew

iopϕ
, Ew

iresϕ
} are calculated

from the respective differential wavelet coefficients wdiff =
{wiopϕ , wiresϕ}, as follows [8]:

Ew
diff (k) = Ewa

diff (k) + Ewb
diff (k), (8)

in which the terms Ewa
diff and Ewb

diff are computed as [13]:

Ewa
diff (k) =

L−1∑
l=1

w2
diff (l, k), (9)

Ewb
diff (k) =

k∑
n=k−∆k+L

w2
diff (0, n). (10)

B. Disturbance Detection (Block 2)

Any transient event, such as transformer energizations,
external or internal faults, can be detected when [6], [13]:{

Ew
diff (k − 1) ≤ Ediff ,

Ew
diff (k) > Ediff .

(11)

When both inequalities in (11) are valid, the current sampling
k is recorded as kd = k, where kd is the sample in which
a disturbance is detected; Ediff = {Eopϕ, Eresϕ} are the
adaptive energy thresholds, estimated by [6]:

Ediff =
3

k2 − k1 + 1

k2∑
n=k1

Ew
diff (n), (12)

where [k1/fs k2/fs] is a time range of two cycles; k2 and k1
are last and first samples of the adaptive threshold sliding
window.

C. SVM-based Disturbance Classification (Block 3)

Immediately after a disturbance is detected by block 2,
the SVM-based disturbance classification block is enabled
and loaded with the differential wavelet coefficients energy
samples. For convenience, this block will hereafter be
referred to as SVM 1. After the disturbance detection,
the block accumulates four post-disturbance samples from
the differential energies Ew

diff , to form a signature vector
composed of 32 features (4 post-disturbance samples for
operating and restraining energies, from phases A, B, C,
and negative sequence Q). The post-fault window with four
differential energies samples is illustrated in Fig. 2(b). This
vector is then normalized with minimum and maximum values
for each feature obtained during the training stage, discussed
in detail in Section IV-A.

The now normalized feature vector is ready to be used as
input for the SVM model, which classifies the disturbance as
an external fault (EF), internal fault (IF), or energization (EN).
If an energization is classified, a warning signal is generated; if
an internal fault is detected, a trip signal is issued to open the
circuit breakers; if an external fault is identified, the evolving
external-to-internal identification block is enabled.

Fig. 2 illustrates an internal turn-to-turn fault, being detected
at kd, and thus enabling SVM 1. After accumulating the first
four post-disturbance differential energies samples, at sample
kd+3, it identifies the event as an internal fault, issuing a trip
signal, as shown in Fig. 2(a). However, the fault is only cleared
after the circuit-breaker opening time delay. In this paper, in
the simulation environment, the adopted circuit-breaker time
delay is approximately two cycles. Therefore, two cycles after
the trip signal is issued, and when the currents go to zero,
the circuit breakers open to clear the fault. The opening of
the breakers results in transients, as shown in Fig. 2(b), which



could make the protection algorithm detect a disturbance and
perform a false classification of event. In order to avoid this
problem, the SVM 1 classification is temporarily blocked after
the trip signal is issued.

iAop iAres

10
-5

10
0

D
if

fe
re

nt
ia

l E
ne

rg
ie

s

0 1 2 3 4 5 6 7 
Cycles

-2

0

2

C
ur

re
nt

 (A
)

0

1

Trip Logic Signal

10
-3

Circuit breaker 
opening

iHA iXA Trip

(a)

(b)

Fig. 2. Turn-to-turn internal fault involving 2% of the wye winding of phase
A: (a) high and low sides currents, iHA and iXA, respectivelly, as well as the
trip logic signal; (b) operating and restraining wavelet coefficients energies of
phase A

D. SVM-based evolving external-to-internal Fault
Identification (Block 4)

For the sake of clarity, likewise previously stated for SVM
1, this processing block will be referred to as SVM 2.
Accordingly, following the flowchart depicted in Fig. 1, in
the occurrence of an external fault classification by SVM 1,
this block is enabled.

After the fault detection, at sample kd, the algorithm waits
for 1/2 of a cycle to begin gathering samples to build a
half-cycle length feature vector. The need for 1/2 of a cycle is
so because it is usually when the first effects of CT saturation
begin to appear. This feature vector is formed by a sliding
window of half a cycle length, which slides at steps of 1/8 of
a cycle, up to 2 cycles after the first event detection at kd, and
performs a classification about the external fault at each of
these steps. Differently from SVM 1, which has a signature
vector composed of operating and restraining energies from
phases A, B, C, and negative sequence Q, SVM 2 does not take
negative sequence into account, since its high sensitivity could
make the SVM underperform when distinguishing events with
CT saturation from events with evolving external-to-internal
fault. Therefore, SVM 2 uses feature vectors composed of 768
features (128 samples for half-cycle window length, of phases
A, B, and C). The sliding window procedure is illustrated
in Fig. 3. Accordingly, based on the output of SVM 2, if
an ordinary external fault, with or without CT saturation,
is detected, a warning signal is issued. Alternatively, if an
external-to-internal evolving fault is detected, a trip signal is
issued to open the circuit breakers, as depicted in Fig. 1.

Fig. 3 illustrates an external double-line-to-ground (DLG)
fault between phases B and C (BCG fault) on the high voltage
side, with the occurrence of saturation of the CT of the fault
side. Firstly, the external fault is detected by SVM 1, as shown
in Fig. 3(b). Then, the presented algorithm waits for 1/2 of a
cycle to gather samples up to a half-cycle length and perform
a classification. This window slides until two cycles after
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the first disturbance detection. As portrayed in Fig. 3(a), no
trip was issued by SVM 2, even in the occurrence of severe
CT saturation, and its implications regarding the increase of
operating and restraining energy levels, illustrated in Fig 3(b).

Besides external faults with CT saturation, SVM 2 can
also detect and classify, if they occur inside its sliding
windows, evolving external-to-internal faults, i.e., internal
faults which take place during external faults. An evolving
external-to-internal fault is illustrated in Fig. 4, whereas an
external single-line-to-ground (SLG) fault on phase A (AG
fault), correctly classified by SVM 1, evolves to a turn-to-earth
fault on phase A of the wye winding, as depicted in Fig. 4(a).
Upon the inception of the fault, the algorithm has some
delay in classifying the event. This delay is due to the
sliding windows, which yields a maximal delay, from the
fault inception time, of 1/8 of a cycle (≈ 2.1 ms) to perform
an event diagnosis. This delay, likewise the identification of
the evolving external-to-internal fault and its resulting trip
signal, is depicted in Fig. 4. As previously stated for SVM 1,
issuing a trip signal prevents the SVM blocks from performing
classifications.
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IV. CASE STUDY

The proposed SVM-based differential protection was
assessed using the MATLAB/Simulink platform. Fig. 5
illustrates a single line diagram of the test system, which
consists of a 100 MVA rated power transformer, with its
primary and secondary windings connected to two Thevenin
equivalents, represented by S1 and S2, respectively, and their
corresponding impedances, ZS1 and ZS2. Details about the
system parameters can be found in the appendix of this paper.
Data were acquired with SNR = 65 dB and at a sampling
frequency of 15360 Hz, i.e., 256 samples per cycle in a 60 Hz
system. According to [13], this sampling frequency is ideal
for methods based on fault-induced transients. The employed
mother wavelet was the Daubechies with four coefficients
(db(4)).

S2
T1

CTCTCBS1 11 2 CB2ZS1 ZS2

kV kV

SVM-based 
differential relay

Fig. 5. Electrical system single line diagram

The following databases, comprising a wide variety of
events, including critical internal faults, external faults with
CT saturation, and external-to-internal evolving faults, were
generated to provide data for the training and assessment of
the SVM models:

• Database 1 (external faults): AG, BG, CG, AB, BC,
CA, ABG, BCG, CAG, and ABC faults, on high and
low voltage sides of the transformer, with varying
fault inception angle θf = {0, 15, ..., 165, 180}
electrical degrees, and fault resistance Rf =
{0.1, 1, 5, 10, 20, 50, 100} Ω (1820 records).

• Database 2 (internal faults): AG, BG, CG, AB, BC, CA,
ABG, BCG, CAG, and ABC faults, on sides of both
high and low voltage windings of the transformer, while
varying fault inception angle θf = {0, 15, ..., 165, 180}
, and fault resistance Rf = {0.1, 1, 5, 10, 20, 50, 100} Ω
(1820 records).

• Database 3 (critical internal faults):
1) turn-to-turn and turn-to-earth faults on the phases

A, B, and C wye windings. With varying percentage
of turns affected by the fault e = {1, 2, 3, ..., 98}%
(588 records).

2) turn-to-turn and turn-to-earth faults on the delta
side between phases A-to-B, B-to-C, and C-to-A
windings. With varying percentage of turns affected
by the fault e = {1, 2, 3, ..., 98}% (588 records).

• Database 4 (transformer energizations): switching
performed on the high voltage side (230 kV), with
the secondary terminal opened, and varying the
high-voltage circuit breaker closing time at angles of θs
= {0, 1, 2, ..., 179, 180} , considering the presence and
the absence of residual flux in each assessed angle (362
records).

• Database 5 (external faults with CT saturation): same
as database 1, but with forced CT saturation due to
burden load resistance of Rb = 15Ω, as well as a
purposely change in CT magnetizing curves to smaller
tapes (200-5 A). Only the CT of the faulted side was
designed for saturation, whereas the other CT held the
standard non-saturation parameters (1820 records).

• Database 6 (external fault + evolving external-to-internal
faults): AG, BG, CG, AB, BC, CA, ABG, BCG, CAG,
and ABC external faults on the high and low voltage
sides of the transformer, evolving to turn-to-turn and
turn-to-earth faults on the windings of both sides, applied
to phases A, B and C. Variation of a percentage of turns
affected by the fault with e = {5, 35, 65, 95}%, similarly
to what is done in database 3 (800 records). The internal
faults take place between a cycle and a cycle and a half
after the external fault inception time, at randomized fault
inception angles.
A. SVM Models Training

Data-driven classification methods need previous training.
In this subsection, the dataset description and partitioning
are presented, and the training and test process is further
described. The datasets used to train and test the SVM models
are described as follows:

1) SVM 1 Dataset: the dataset in which SVM 1 is trained
and tested is composed of the records from databases
1, 2, 3, and 4, which refer to external faults, internal
faults, critical internal faults, and energization events,
respectively.

2) SVM 2 Dataset: the dataset used to train and test SVM
2 is composed of the records from databases 1, 5, and
6, which refer to external faults, external faults with
CT saturation, and evolving external-to-internal faults,
respectively.

The datasets are formed by gathering the signature vectors,
associated with their respective event labels, from the various
records. These datasets are then split randomly into an 80%
and 20% proportion to form the training and test sets,
respectively. Although this split is performed randomly, the
proportions of each type of event, regarding the total of cases
in the respective dataset, holds for divided training and test
sets. For instance, if the energization records represent 7% of
the total records of the dataset used for SVM 1, the training
and test set obtained from splitting this dataset should keep the
same 7% proportions of energization records in the training
and test sets.

Since SVM 1 has a fixed window used as input, and SVM
2 employs a sliding window, their training and assessment
differ a little. For the SVM 2 dataset, since one simulated
case represents eight observations (due to the sliding window
process, which slides eight times), this might yield a large
dataset, which could slow down the training process without
bringing relevant information to the model. Therefore, an
evaluation of the size of the training set versus the test
set’s overall accuracy was performed. After 60% of the total
size of SVM2’s training set, no accuracy improvements were
identified. Thus, SVM 2 was trained with only 60% of its total
training set.



Once the training and test sets are ready, feature scaling is
performed on both sets using min-max normalization, taking
into account only the minimum and maximum values of the
features from the training set. After the feature scaling, optimal
SVM parameters are found by performing a grid search
associated with 10-fold cross-validation. SVM 1 was modeled
using a radial basis function (RBF) kernel, which requires
an associated γ parameter, in addition to the regularization
hyperparameter C, which are both defined using the grid
search. Since SVM 2 is based on a considerable energy
window length, meaning many features, it was modeled
with a linear kernel, since there was no need to map the
signature vectors into higher dimensions to provide accurate
classification. Moreover, using a linear kernel also ensures
faster training and classification time. The preprocessing steps
were performed using MATLAB, and the SVM models were
trained using the LIBSVM [14].

As the best parameters are found, the SVM models are
validated against new, unseen data from the test sets. Their
performance during this stage is presented in the remainder of
this section.

B. SVM 1 Performance Assessment
After training and parameter tuning, the performance of

SVM 1 was assessed individually considering a test set of
20% of its total dataset, and the confusion matrix in Fig. 6
was obtained. The evaluated test set consists of 363 external
fault cases, 599 internal fault cases, and 72 transformer
energization cases. To tackle this three classes problem, the
one-versus-all algorithm was adopted, with three SVM models,
each one associated with a respective class of event. The C
and γ parameters were the same for the three models, with
values of 500 and 100, respectively. Furthermore, 10-fold
cross-validation was performed during the training stage to
avoid overfitting the SVM models. SVM 1 successfully
classified all of the tested cases, presenting an accuracy of
100%. Therefore, no false trips were issued, all the internal
faults were properly identified, including turn-to-turn and
turn-to-earth faults, even when only a low percentage of turns
were involved in the fault.
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Fig. 6. SVM 1 confusion matrix, obtained from the respective test set

C. SVM 2 Performance Assessment
The performance of SVM 2 was assessed with its respective

test set, which is composed of records of 182 ordinary

external faults, 182 external faults with CT saturation, and 160
evolving external-to-internal faults, whereas each record yields
8 feature vectors, represented as observations in the dataset.
The performance of SVM 2 against its test set is presented
in Fig. 7, with an overall accuracy of 98.7% in distinguishing
external faults, with and without CT saturation, from evolving
external-to-internal faults which evolved from external faults.
However, in a few cases of severe CT saturation, external faults
were mistakenly classified as internal faults, resulting in false
trips. Conversely, only 1.3% of the observations regarding
external faults were misclassified as internal faults, whereas
no external-to-internal evolving faults were misclassified as
external faults.
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Fig. 7. SVM 2 confusion matrix, obtained from the respective test set

D. Protection Scheme Overall Performance

A further evaluation of the presented confusion matrices
is performed employing the protection metrics proposed in
[18]. These metrics are: accuracy, which stands for the
overall accuracy of the confusion matrix; dependability,
which represents the ability of the protection algorithm
to detect and isolate faults; security portrays the method’s
capability to detect faults and not perform false trips
selectively; safety is associated with the ability to classify
faulty conditions correctly as faults; and lastly, sensibility
is related to the protection scheme proneness to perform
false trips. A comparison regarding these protection metrics
and the operating time of SVM 1, SVM 2, and a
conventional algorithm is presented in Table I. The
used traditional phasor-based power transformer differential
protection algorithm includes [19]: the phase differential
function 87T with harmonic restraint and harmonic blocking
units, the negative sequence differential function 87Q, and the
REF function. The same test sets were used to evaluate both
the proposed and the conventional protection schemes

Test results presented in Table I demonstrate the overall
reliability of the proposed protection scheme, especially SVM
1, which presents a 100% success rate in all four evaluated
metrics. Likewise, SVM 2 also has a good performance
on the assessed metrics, including 100% dependability and
safety percentages. However, it fails a little on security
and sensibility indices, i.e., it presents some false trips,
mainly due to severe CT saturation during some external
faults. Conversely, the conventional protection presented no
false trips; however, it performed poorly when dealing with



TABLE I
PROTECTION SCHEME METRICS

Metric
Test Set 1 Test Set 2

SVM 1 Conventional
protection SVM 2 Conventional

protection

Dependability 100% 95.5% 100% 63,1%

Security 100% 100% 98.11% 100%

Safety 100% 90.1% 100% 86,1%

Sensibility 100% 100% 95.88% 100%

Operating
time

260 µs
(fixed)

19.3 ms 2.1 ms
(maximal)

18.6 ms
(average) (average)

σ = 4.5 ms σ = 1.5 ms

critical internal faults involving low percentages of turns,
presenting a bad performance in dependability and safety
indices, for both tested datasets. Therefore, it is shown that
the presented SVM-based differential protection outperforms
the conventional one on almost all of the evaluated metrics.

Besides the efficiency in performing the correct distinction
of events, another fundamental metric of power systems
protection is the operation speed for rapid fault clearance.
Thus, the conventional protection’s operating time regarding
both test sets is presented in Table I. An average operating
time of 19.3 ms, with a standard deviation σ of 4.5 ms, was
obtained with the same test set of SVM 1; whereas to deal with
evolving external-to-internal faults, it presented an average
operating time of 18.6 ms, with a standard deviation σ of
1.5 ms. Furthermore, since the presented protection algorithm
takes into account, for the first event classification, i.e., SVM 1,
four post-fault samples, for a 60 Hz system and a sampling rate
of 15360 Hz, this means a classification time of approximately
260 µs. Additionally, considering the sliding window step of
32 samples from SVM 2, for the aforementioned sampling
rate, this yields a maximal operating time of 2.1 ms for
accurate external-to-internal evolving fault identification. This
last result is quite promising since it presents an improvement
for accurate external-to-internal evolving fault detection as
compared with [7], which had an average operating time delay
of 10 ms for identifying this type of event. It also demonstrates
the presented method to be faster than other data-driven-based
methods presented in the literature, since [9]–[12] needed a
time delay of 4.12 ms, 9.7 ms, 20 ms, and 10 ms, respectively,
to perform classification of similar events.

The other aforementioned protection metrics are not brought
to comparison with the performances presented in [9]–[12]
since it is difficult to replicate both the protection methods,
as well as the databases presented in these papers. Therefore,
the most coherent metric to evaluate among all these papers
is the operating time needed for the event classification.

E. Hardware Implementation

According to Fig. 1, the proposed protection method can
be divided into two parts: the wavelet-based preprocessing
algorithm and SVM-based algorithms. Only the wavelet-based
preprocessing method needs to run in each sampling time,
i.e., the computational burden in a hardware implementation
must be less than 65 µs to run in the real-time by considering

fs = 15360 Hz. Conversely, the SVM blocks, which are
time-consuming algorithms, run only when a disturbance
is detected. In a hardware implementation, however, its
computational burden can take more than one sampling time.

The wavelet-based preprocessing of the proposed protection
requires only 730 floating-point operations (FLOPs) per
sampling time. This method was based on [6], which
used the floating-point DSP TMS230F28335 to demonstrate
its real-time implementation feasibility. The computational
burden, per sampling, of all boundary wavelet coefficients
energy variables, was about 11.12 µs, which is less than 65
µs. FLOPs are considered to be addition and multiplication
operations. Memory management is not considered.

SVM 1 classification requires about 73728 FLOPs, 768
square root, and 768 exponential operations to perform
the event classification. Therefore, the computational burden
is much higher than that required by the wavelet-based
preprocessing method. However, currently, there are powerful
DSPs able to perform millions of FLOPs per second
(MFLOPS). For instance, the DSP TMS320C6748 performs
up to 2746 MFLOPS [20], i.e., 2746 FLOPs per µs or about
178,490 FLOPs in 65 µs. In addition, the computational
burden of SVM 1 can be partitioned in several sampling
times without compromising the protection operation time.
For instance, the DSP TMS320C6748 would provide about
356,980 FLOPs to compute the SVM 1 in two sampling times
(130 µs), which would be enough for this purpose.

SVM 2 uses a linear kernel, i.e., it involves no square
root nor exponential operations. However, it uses large feature
vectors, requiring about 751, 593 FLOPs to perform the
classification only when requested. Therefore, the real-time
implementation of SVM 2 would be possible in about five
sampling times (325 µs) by using the DSP TMS320C6748
because 892,450 FLOPs would be enough for this purpose.

To further validate the feasibility of hardware
implementation of the proposed protection scheme, the
method was implemented in the NI sbRIO 9637 board, which
has a built-in real-time processor. Even though this board
is not designed to run high time-consuming digital signal
processing and machine learning algorithms, it is a dedicated
hardware that runs a real-time operating system. Therefore,
this limited DSP could perform the event classification of
SVM 1 in approximately 3 ms, which is still a good operating
time for protection purposes since the conventional method
can operate in about one cycle (≈16 ms).

V. CONCLUSIONS

This paper presented a novel data-driven power transformer
differential protection based on SVMs. The proposed
protection algorithm employs the RT-BSWT to extract
high-frequency components of the current signals and uses
this transient information as inputs to the SVM algorithm
to perform event classification. When an internal fault is
identified, a trip is issued to protect the power transformer.
After a thorough assessment of the proposed method, the main
contributions of this paper can be summarized as follows:

• The SVM-based protection method presented 100% of
success rate in distinguishing external faults, internal



faults, and energization events. The relay operating time
in a hardware implementation is from a few hundred µs
to a few ms, depending on the used DSP.

• External transformer faults followed by a CT saturation
or an internal fault (evolving external-to-internal faults)
are challenging cases. However, the method presented a
98.7% accuracy in distinguishing external faults with and
without CT saturation from evolving external-to-internal
faults. The proposed relay is able to perform this event
distinction with an operating time of up to 2.6 ms.

• The proposed SVM-based protection scheme
outperformed the conventional one in dealing with
critical turn-to-turn internal faults and presented the
fastest operating time.

• Part of the presented data-driven protection scheme was
implemented in the NI sbRIO 9637 board. Although this
board is not designed to run high time-consuming digital
signal processing and machine learning algorithms, it was
able to run the necessary preprocessing and SVM 1,
issuing a trip signal in about 3 ms, which is faster than
conventional protection and other existing data-driven
power transformers protection schemes.

The promising results, combined with the demonstrated
feasibility of hardware implementation of the SVMs, as
well as the RT-BSWT, make the proposed protection a
good possibility for enhancing power transformer differential
protection. However, to increase robustness of the proposed
method, more types of event should be evaluated in the future,
such as transformer energization with presence of an internal
fault, sympathetic inrush, and overexcitation conditions.

VI. APPENDIX
The modeling of the power transformer evaluated in this

paper is based on the system presented in [6]. The power
transformer has a rated power of 100 MVA, a voltage ratio
of 230:69, and a YNd1 configuration. The impedances related
to the primary and secondary winding are Zp=2.04 + j12.54
Ω and Zs=1.44 + j38.04 Ω, respectively. The impedances
related to the Thevenin equivalents of the transmission system,
illustrated in Fig. 5 and named as ZS1 and ZS2, are presented
in Table II.

TABLE II
THEVENIN EQUIVALENT IMPEDANCES OF THE TRANSMISSION SYSTEM

Thevenin
Z0 Z1equivalent

ZS1 16.07 + j25.04 Ω 12.05 + j18.78 Ω

ZS2 5.52 + j8.61 Ω 4.02 + j6.26 Ω

TABLE III
NONLINEAR CHARACTERISTICS OF THE MAGNETIZING

BRANCH OF THE USED TRANSFORMERS

T1 CT1 (800-5 A) CT2 (1200-5 A) Sat. CT (200-5 A)

i(A) Φ(Wb) i(A) Φ(Wb) i(A) Φ(Wb) i(A) Φ(Wb)
0.144 498.137 0.052 0.112 0.054 0.338 0.283 0.038
0.478 523.044 0.075 0.225 0.132 1.606 0.376 0.079
1.211 547.951 0.135 0.450 0.175 1.876 0.655 0.188
2.540 572.858 0.165 1.125 0.189 2.251 1.095 0.338
6.446 579.085 0.301 1.501 0.341 2.626 1.620 0.379
8.954 585.312 0.555 1.688 0.561 2.926 6.512 0.386

15.595 591.538 0.687 1.876 0.976 3.001 43.852 0.390
20.396 597.765 44.856 2.251 9.440 3.477 449.60 0.394
35.461 603.992 - - - - - -

The nonlinear characteristics of the power transformer T1
and the current transformers CT1 and CT2 are shown in Table
III as current versus flux (i,Φ) points of the transformer
magnetizing curves. The current versus flux (i,Φ) points of
the magnetizing curve of the CT used to force CT saturation
is also presented in Table III with the name of Sat. CT.
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