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Abstract—In this paper, Vance’s closed-form approximation 

for the ground admittance of a single underground cable is 

extended to represent three-phase underground cable systems. 

The proposed methodology considers Sunde’s expression for the 

ground-return impedance calculation. The accuracy of the 

proposed extension is investigated taking as reference the 

generalized formulas of Xue et al. considering frequency-

dependent soil parameters according to the Alipio-Visacro model. 

It is shown that the agreement between the approximate and 

generalized formulations is improved as the frequency increases. 

More importantly, it is shown that both methodologies lead to 

transient waveforms in good agreement for different types of 

excitation, different values of soil resistivity, and usual 

underground cable system configurations. 
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I.  INTRODUCTION 

HE application of underground cables in electrical power 

systems requires an accurate representation of cable 

parameters considering the influence of a finitely-conducting 

ground. Much attention has been given to the ground-return 

impedance calculation [1], but recent studies show that the 

ground admittance plays a significant role in the transient 

analysis of underground cable systems in case of high-

resistivity soils and high-frequency phenomena [1]-[5]. 

Early efforts to derive correction terms to account for the 

effect of a finitely conducting ground on underground cables 

are reported in [6]-[8]. More recently, Papadopoulos et al. [3], 

Magalhães et al. [9], and Xue et al. [10] proposed expressions 

for calculating the ground impedance and admittance of 

underground cables, each derived under different 

approximations. However, their application requires the 

evaluation of infinite integrals that may present singularities 

and/or slow convergence. To overcome this problem, 

logarithmic approximations for the ground admittance and 

impedance of underground cables were proposed in [11]. 

However, these approximate expressions were derived 

assuming the air-ground interface as the reference point for 

calculating the cable voltages, which limits their application. 
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The above difficulties may explain why the ground admittance 

is completely neglected in popular electromagnetic transient 

(EMT) simulation tools, which restricts the application of such 

tools to the simulation of low-frequency transients in cable 

systems buried in low-resistivity soils. 

An alternative to the solution of the complex integrals 

required for calculating the ground admittance of a single 

underground cable is the use of Vance’s expression 𝑌𝑔 ≈

𝛾𝑔
2𝑍𝑔

−1  [8], where 𝑌𝑔  is the ground admittance, 𝑍𝑔  is the 

ground-return impedance, and 𝛾𝑔 is the propagation constant 

of the soil. This expression was later recommended in [12] and 

[1] for including the ground admittance in the modeling of a 

single overhead wire or a single underground cable, 

respectively. In [4], it was used in the simulation of lightning 

overvoltages on an underground conductor considering or not 

the presence of an insulating layer, leading to a relatively good 

agreement with a rigorous full-wave model based on the finite-

difference time-domain (FDTD) method. In [13], this 

simplified expression was used to investigate the influence of 

frequency-dependent soil parameters on transient voltages on 

an underground cable. In none of the cases, however, it was 

investigated whether Vance’s expression could be used to 

simulate transients on multiconductor cable systems. 

In this paper, an extension of Vance’s formula is proposed 

to calculate the ground admittance of trefoil, vertical and flat 

three-phase cable systems considering different types of 

excitations and different values of soil resistivity. The validity 

of the proposed extension is investigated taking as reference 

results obtained with the generalized ground-return impedance 

and ground admittance formulations derived by Xue et al. [10] 

considering frequency-dependent soil parameters using Alipio-

Visacro model [14]. 

This paper is organized as follows. Section II presents 

modeling details. Frequency- and time-domain analyses are 

presented in Sections III and IV, respectively. A discussion is 

presented in Section V, followed by conclusions in Section VI. 
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II.  MODELING 

A.  System Geometry 

The flat, vertical and trefoil cable systems investigated in 

this paper are shown in Fig. 1 [15]. In order to focus on the 

effect of the ground admittance on the resulting transients, each 

cable was modeled as a single insulated conductor with the 

characteristics shown in Fig. 1(a). The inclusion of a detailed 

internal cable representation is straightforward and can be 

performed as indicated in [16]. The cable insulation has 

permittivity 𝜀𝑖𝑛 = 𝜀𝑟𝑖𝑛𝜀0, where 𝜀𝑟𝑖𝑛 is the dielectric constant 

of the insulating layer. The burial depth is h and the cable has a 

total length ℓ. The radius of the inner conductor is a and its 

resistivity is 𝜌𝑐. The thickness of insulation is defined in terms 

of the outer radius b. The consideration of the frequency-

dependent nature of the soil electrical parameters, which is 

important for a more rigorous assessment of transient 

overvoltages, is determined according to the causal model 

proposed by Alipio and Visacro [14]. The model equations are  

𝜎𝑔 = 𝜎0 + 𝜎0 × ℎ(𝜎0) (
𝑓

1 MHz
)

𝜁

 (1) 

𝜀𝑔 = 𝜀∞
′ +

tan(𝜋𝜁/2) × 10−3

2𝜋(1 MHz)𝜁
𝜎0 × ℎ(𝜎0)𝑓

𝜁−1 (2) 

where 𝜎𝑔 is the soil conductivity in mS/m, 𝜎0 = 1/𝜌0 is the 

DC conductivity in mS/m, 𝜌0 is the DC soil resistivity, 𝜀𝑔 is 

the soil permittivity, 𝜀∞
′  is the soil permittivity at higher 

frequencies, and 𝑓  is the frequency in Hz. The following 

parameters are used to obtain mean results for the frequency 

variation of 𝜎𝑔  and 𝜀𝑔 [14]: 𝜁 = 0.54 , 𝜀∞
′ = 12𝜀0  and 

ℎ(𝜎0) = 1.26 × 𝜎0
−0.73, where 𝜀0 is the vacuum permittivity. 

The per-unit-length impedance 𝒁  and admittance 𝒀 

matrices of an underground cable system are given by 

𝒁 = 𝒁𝒊 + 𝒁𝒆 + 𝒁𝒈 (3) 

𝒀 = (𝒀𝒆
−1 + 𝒀𝒈

−1)
−1

. (4) 

The impedance given by (3) is the sum of the internal 

impedance 𝒁𝒊 due to the magnetic field within the conductor, 

the external impedance 𝒁𝒆 = 𝑗𝜔𝑳 due to the magnetic field 

within the insulation, and the ground-return impedance 𝒁𝒈 

due to the magnetic field penetrating in the soil [4]. The 

admittance given by (4) depends on the external admittance 

𝒀𝒆 = 𝑗𝜔𝑪 due to the electric field in the insulation, and the 

ground admittance 𝒀𝒈 due to the electric field in the soil [4]. 

The elements of the internal impedance matrix of the 

conductor are given by [17] 

𝑍𝑖𝑖𝑖
=

𝜌𝑐𝑚

2𝜋𝑎

𝐼0(𝑚𝑎)

𝐼1(𝑚𝑎)
 (5) 

where 𝐼0(. ) and 𝐼1(. ) are modified Bessel functions of first 

kind and m is calculated as 𝑚 = √𝑗𝜔𝜇0/𝜌𝑐. 

The elements of the per-unit-length inductance and 

capacitance matrices due to the insulation are given by [17] 

𝐿𝑖𝑖 =
𝜇0

2𝜋
𝑙𝑛 (

𝑏

𝑎
) (6) 

𝐶𝑖𝑖 =
2𝜋𝜀𝑖𝑛

𝑙𝑛 (
𝑏
𝑎
)
 . (7) 

B.  Ground-Return Impedance  

In order to calculate the ground-return impedance, the 

following equation proposed by Sunde [18] for a system of 

underground cables is considered 

𝑍𝑔𝑖𝑗
=

𝑗𝜔𝜇0

2𝜋

[
 
 
 

𝐾0(𝛾𝑔𝑑𝑖𝑗) − 𝐾0(2𝛾𝑔𝐷𝑖𝑗)

+ 2∫
𝑒

−(ℎ𝑖+ℎ𝑗)√𝜆2+𝛾𝑔
2

𝜆 + √𝜆2 + 𝛾𝑔
2

∞

0

cos (𝜆𝑥𝑖𝑗)𝑑𝜆

]
 
 
 

 

(8) 

where 𝐾0(. )  and 𝐾1(. )  are modified Bessel functions of 

second kind, ℎ𝑖 and ℎ𝑗 are the depth of cables i and j, 𝑥𝑖𝑗  is 

the horizontal distance between cables i and j, 𝑑𝑖𝑗 =

√𝑥𝑖𝑗
2 + (ℎ𝑖 − ℎ𝑗)

2
, 𝐷𝑖𝑗 = √𝑥𝑖𝑗

2 + (ℎ𝑖 + ℎ𝑗)
2

, and 𝛾𝑔 =

√𝑗𝜔𝜇0[𝜎𝑔 + 𝑗𝜔𝜀𝑔]. For determining the self-elements of 𝒁𝒈, 

𝑑𝑖𝑗  and 𝑥𝑖𝑗  are replaced by the external cable radius, 𝑏, and 

ℎ𝑖 = ℎ𝑗 = ℎ. 
 

 
(a) Underground cable cross-section. 

 

(b) Flat configuration. 

 

 

(c) Vertical configuration. (d) Trefoil configuration. 

Fig. 1. Underground cable systems with a=2.34 cm, b=3.85 cm, 𝜌𝑐=1,7×10-8 

Ωm and 𝜀𝑟𝑖𝑛 =3.5: (a) underground cable cross-section, (b) flat, (c) vertical 
and (d) trefoil configurations. 

C.  Ground Admittance 

In this paper, it is proposed to extend Vance’s approximation 

[8] to simulate the configurations shown in Fig. 1. For this, it is 

assumed that the ground admittance can be calculated as 

𝒀𝒈 = 𝜸𝒈
2𝒁𝒈

−1, (9) 

where 

𝜸𝒈
2 = 𝒁𝒈𝒀𝒈 ≈ [

𝛾𝑔
2 0 0

0 𝛾𝑔
2 0

0 0 𝛾𝑔
2

]. (10) 

It can be observed that (9) and (10) assume independent 

wave propagation in the ground considering the intrinsic 

propagation constant of this medium. The validity of this 

assumption is investigated in the next sections. 

Conductor of radius and resistivity 

Insulation thickness and permittivity 

Air: 

Soil: 

Air: 

Soil: 
Air: 

Soil: 



III.  ANALYSIS OF THE PROPOSED METHODOLOGY IN 

FREQUENCY-DOMAIN 

In this section, the validity of the proposed methodology is 

investigated in the frequency domain. For this, the integral 

equations proposed by Xue et al. [10] to calculate the ground-

return impedance and the ground admittance, reproduced in the 

Appendix, are taken as reference. This choice is due to the 

generalized nature of these equations, which are based on the 

rigorous quasi-TEM solution of Maxwell’s equations applied to 

the problem of a multiconductor underground cable system. 

Furthermore, the soil conductivity and permittivity are treated 

as frequency-dependent according to (1) and (2) [14]. 

Two sets of analyses are performed. The first compares the 

self-elements of matrix 𝒁𝒈𝒀𝒈  obtained with the integral 

equations of Xue et al. [10] with their approximate 

representation 𝜸𝒈
𝟐  in (10). The second analysis calculates the 

ratio between the self and mutual elements of 𝒁𝒈𝒀𝒈 in order 

to investigate whether the off-diagonal elements of this matrix 

could eventually be neglected as in (10). Two different soil 

resistivities are considered, namely 200 Ωm and 2000 Ωm. For 

the flat configuration shown in Fig. 1(b), different horizontal 

distances between the cables were assumed (12 cm and 30 cm) 

to assess the generality of the simplified approach (10). 

However, in this paper only the results obtained for the flat 

configuration with 30-cm separation are shown. 

The results obtained for the flat configuration are shown in 

Figs. 2 and 3. Figs. 4 and 5 illustrate the results for the vertical 

configuration and, finally, Figs. 6 and 7 show the results 

obtained for the trefoil configuration. It is observed in Figs. 2, 

4, and 6 that the self-elements of 𝒁𝒈𝒀𝒈  obtained with the 

integral equations of Xue et al. [10] approach 𝛾𝑔
2  as the 

frequency increases, regardless of soil resistivity and cable 

configuration. In this case, the calculated ratios are close to 

unity, demonstrating the validity of Vance’s approach in high 

frequencies. Ratios larger than unity are possibly related to 

numerical artifacts in the solution of the infinite integrals of Xue 

et al.’s and to the fact that these equations are valid up to 10 

MHz due to the quasi-TEM assumption adopted in [10]. In the 

low-frequency range, larger deviations are observed. However, 

the ratios are always greater than 0.77 for the trefoil 

configuration, while for the flat and vertical configurations the 

ratios are not lower than 0.85 and 0.81, respectively. 

Regarding the ratio between the self and mutual elements of 

𝒁𝒈𝒀𝒈 calculated with Xue et al.’s expressions, it is seen in Fig. 

7 that it is greater than 7 in the whole frequency range for the 

trefoil configuration, regardless of soil resistivity. Furthermore, 

the ratio increases with increasing frequency. For the flat and 

vertical configurations (see Figs. 3 and 5), the ratio is greater 

than 5 in the low-frequency range, reaching values greater than 

10 in the high-frequency range. 

  
(a) 200 Ωm. (b) 2000 Ωm. 

 
Fig. 2. Underground cable system in flat formation, h=1.5 m and xij=0.3 m. 

Ratio between self-elements of 𝒁𝒈𝒀𝒈 obtained by Xue et al. [10] and 𝛾𝑔
2 for 

different soil resistivities: 200 Ωm (a) and 2000 Ωm (b). 
 

  
(a) 200 Ωm. (b) 2000 Ωm. 

 
Fig. 3. Underground cable system in flat formation, h=1.5 m and xij=0.3 m. 

Ratio between self and mutual elements of 𝒁𝒈𝒀𝒈 obtained by Xue et al. [10] 

for different soil resistivities: 200 Ωm (a) and 2000 Ωm (b). 
 

  
(a) 200 Ωm. (b) 2000 Ωm. 

 
Fig. 4. Underground cable system in vertical formation, h=1.5 m and hij=0.3 m. 

Ratio between self-elements of 𝒁𝒈𝒀𝒈 obtained by Xue et al. [10] and 𝛾𝑔
2 for 

different soil resistivities: 200 Ωm (a) and 2000 Ωm (b). 
 

  
(a) 200 Ωm. (b) 2000 Ωm. 

 
Fig. 5. Underground cable system in vertical formation, h=1.5 m and hij=0.3 m. 

Ratio between self and mutual elements of 𝒁𝒈𝒀𝒈 obtained by Xue et al. [10] 

for different soil resistivities: 200 Ωm (a) and 2000 Ωm (b). 
 

Overall, a better agreement is observed between the 

simplified formula (10) and Xue et al.’s expressions as the 

frequency increases. This is a favorable result because the 

influence of the ground admittance is more pronounced at high 

frequencies [10]. Conversely, although the observed 

differences are larger for low frequencies, the influence of the 

ground admittance is usually negligible in this range. This can 



be observed in Fig. 8, which illustrates the ratio |𝑌𝑒|/|𝑌𝑔| for 

a single underground cable considering soil resistivities of 200 

Ωm and 2000 Ωm. In the calculations, Xue et al.’s integral 

equations were considered. It can be seen that |𝑌𝑒|/|𝑌𝑔| ≪ 1 

in the low-frequency range. Since the per-unit-length shunt 

admittance is given by 𝑌 = 𝑌𝑒𝑌𝑔/(𝑌𝑒 + 𝑌𝑔) = 𝑌𝑒/(𝑌𝑒/𝑌𝑔 +

1), it can be concluded that 𝑌 ≈ 𝑌𝑒 at low frequencies. This 

confirms that the ground admittance has a negligible influence 

in the low-frequency range. On the other hand, with increasing 

frequency the ratio |𝑌𝑒|/|𝑌𝑔| increases and the influence of the 

ground admittance become comparatively more significant. 

To conclude, according to the results presented in this 

section the deviations between the approximate formula and the 

rigorous formulation of Xue et al. increase with increasing soil 

resistivity. However, the observed differences are not very 

significant in the considered frequency range. This indicates 

that despite its simple nature, the proposed extension of 

Vance’s formula to calculate the ground admittance of three-

phase underground cables seems promising. This is confirmed 

by the time-domain analysis presented in the next section. 
 

  
(a) 200 Ωm. (b) 2000 Ωm. 

 
Fig. 6. Underground cable system in trefoil formation, h=1 m. Ratio between 

self-elements of 𝒁𝒈𝒀𝒈 obtained by Xue et al. [10] and 𝛾𝑔
2 for different soil 

resistivities: 200 Ωm (a) and 2000 Ωm (b). 
 

  
(a) 200 Ωm. (b) 2000 Ωm. 

 
Fig. 7. Underground cable system in trefoil formation, h=1 m. Ratio between 

self and mutual elements of 𝒁𝒈𝒀𝒈 obtained by Xue et al. [10] for different soil 

resistivities: 200 Ωm (a) and 2000 Ωm (b). 
 

 

 
Fig. 8. Ratio between the admittance of the insulation (𝑌𝑒 ) and the ground 

admittance (𝑌𝑔) of an underground cable with h=1.5 m, for soil resistivities of 

200 Ωm and 2000 Ωm and 𝑌𝑔 obtained by Xue et al. [10]. 

IV.  TRANSIENT RESPONSES 

The transient response of the underground cable systems 

shown in Fig. 1 is calculated in this paper using a technique 

based on the nodal admittance matrix 𝒀𝒏, given by [17]: 

𝒀𝒏

= [
𝒀𝒄(𝟏 + 𝑨2)(𝟏 − 𝑨2)−1 −2𝒀𝒄𝑨(𝟏 − 𝑨2)−1

−2𝒀𝒄𝑨(𝟏 − 𝑨2)−1 𝒀𝒄(𝟏 + 𝑨2)(𝟏 − 𝑨2)−1] 
(11) 

where 𝟏  is the identity matrix, 𝒀𝒄  is the characteristic 

admittance matrix, and 𝑨  is the propagation matrix, all of 

order 3×3. Matrices 𝒀𝒄 and 𝑨 are calculated as follows: 

𝒀𝒄 = 𝒁−1√𝒁𝒀 (12) 

𝑨 = 𝐞𝐱 𝐩(−ℓ√𝒁𝒀). (13) 

The nodal admittance matrix is a two-port model obtained 

from the exact frequency-domain solution of telegrapher’s 

equations. All the calculations are performed in the frequency 

domain and the time domain response is obtained using the 

numerical Laplace transform [19]. 

A.  Transient Voltage Responses 

Fig. 9 illustrates the configuration considered for the 

transient simulations. A unit-step voltage is applied at the 

sending end of phase A (node 1) of an underground cable 

system with length of 100 m considering the geometries shown 

in Fig. 1. The sending end of phase B (node 2) was grounded 

through a 10-Ω resistor and the sending end of phase C (node 

3) was left open. The voltages are calculated at the receiving 

ends of phases A and C (nodes 4 and 6, respectively) assuming 

a no-load condition. Calculations were performed considering 

the extension of Vance’s formula to multiconductor cables 

systems as indicated in (9) and (10). As before, the generalized 

formulations of ground impedance and admittance derived by 

Xue et al. [10] are used as reference and frequency-dependent 

soil parameters are considered using Alipio-Visacro model 

[14]. Two different values of soil resistivity are considered, 

namely 200 Ωm and 2000 Ωm. The results are shown in Figs. 

10-12 considering the configurations of Fig. 1. 
 

 
Fig. 9. Transient simulation. 
 

It can be seen in Figs. 10-12 that the simplified approach 

proposed in this paper leads to voltage and current waveforms 

in very good agreement with the formulations derived by Xue 

et al. [10]. For the soil resistivity of 200 Ωm, the agreement 

between the different formulations is excellent in all cases. This 

result is expected because for low-resistivity soils the effect of 

the ground admittance is less significant [20]. For the 2000-Ωm 

soil, minor deviations are observed in the first microseconds of 

the transient voltages and currents. At later times, when low 

frequencies are dominant, the agreement is excellent. 

V

V
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(a) Horizontal configuration (h=1.5 m and xij=0.30 m). 

  
(b) Vertical configuration (h=1.5 m and hij=0.3 m). 

  
(c) Trefoil configuration (h=1 m). 

 
Fig. 10. Voltages at the receiving end of phase A (node 4) for the application of 
a unit-step voltage at phase A considering 200 Ωm (left) and 2000 Ωm (right) 

soils for (a) horizontal, (b) vertical, and (c) trefoil configurations. 
 

  
(a) Horizontal configuration (h=1.5 m and xij=0.30 m). 

  
(b) Vertical configuration (h=1.5 m and hij=0.3 m). 

  
(c) Trefoil configuration (h=1 m). 

 
Fig. 11. Voltages at the receiving end of phase C (node 6) for the application of 

a unit-step voltage at phase A considering 200 Ωm (left) and 2000 Ωm (right) 

soils for (a) horizontal, (b) vertical, and (c) trefoil configurations. 
 

  
(a) Horizontal configuration (h=1.5 m and xij=0.30 m). 

  
(b) Vertical configuration (h=1.5 m and hij=0.3 m). 

  
(c) Trefoil configuration (h=1 m). 

 
Fig. 12. Currents at the sending end of phase B (node 2) for the application of 

a unit-step voltage at phase A considering 200 Ωm (left) and 2000 Ωm (right) 
soils for (a) horizontal, (b) vertical, and (c) trefoil configurations. 
 

An interesting result is that although the proposed 

approximation improves as the frequency increases, the 

observed deviations are greater exactly in the first 

microseconds. Although seemingly contradictory, this happens 

because the early-time transient response presents the fastest 

variations and, therefore, excites the range of frequencies where 

the ground admittance has a greater influence. In this case, any 

deviation between the approximated formula and Xue et al.’s 

equations becomes more visible in the transient voltage and 

current waveforms. Conversely, the larger errors associated 

with the proposed approximation in the low-frequency range do 

not lead to deviations in the late time transient response because 

in this frequency range the influence of the ground admittance 

is negligible, as discussed in Section III. 

In any case, the observed deviations can be considered 

negligible in all investigated cases. This is a promising result 

because the simplified formula (9) avoids the solution of 

infinite integrals for the calculation of the ground admittance, 

as required in Xue et al.’s equations [10]. The calculation can 

be simplified even further if Sunde’s integral equation (8) is 

replaced by a closed-form approximation (e.g., [2] or [21]). 

B.  Zero-Sequence Switching Transients 

Fig. 13 illustrates the configuration used to investigate the 

response of the underground cable systems to a zero-sequence 

switching test. The cables were assumed to be 10-km long, and 

this time an AC cosine voltage source with 1 p.u. magnitude 

and 60 Hz frequency is applied simultaneously at the sending 

end of phases A, B and C, with the receiving ends open. The 

voltages are calculated at the receiving end of phase A (node 4). 

Fig. 14 shows the obtained results. Once again, a good 

agreement is observed between the waveforms calculated with 

the simplified approach and those obtained with the formulas of 

Xue et al. [10]. 

C.  Positive-Sequence Switching Transients 

In order to complement the time-domain analysis, Fig. 15 

illustrates the configuration used to investigate the response of 

the underground cable systems to a positive-sequence switching 

test. Once again, the cables were assumed to be 10-km long, an 

AC positive sequence cosine voltage source with 1 p.u. 

magnitude and 60 Hz frequency is applied to the three phases 

at the sending ends. The receiving end of phase B (node 5) was 

grounded, while the receiving ends of the remaining cables 

were left open. The voltages and currents are calculated at the 

receiving ends of phases A and B (nodes 4 and 5, respectively). 

The obtained results are shown in Figs. 16 and 17. Once again, 

the simplified approach leads to results in good agreement with 

those obtained with the formulas of Xue et al. [10]. 
 

 
Fig. 13.  Zero-sequence switching test. 
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(a) Horizontal configuration (h=1.5 m and xij=0.30 m). 

  
(b) Vertical configuration (h=1.5 m and hij=0.3 m). 

  
(c) Trefoil configuration (h=1 m). 

 
Fig. 14. Voltages at the receiving end of phase A (node 4) for the simultaneously 
application of an AC cosine voltage source at the sending end of phases A, B 

and C considering 200 Ωm (left) and 2000 Ωm (right) soils for (a) horizontal, 

(b) vertical, and (c) trefoil configurations. 
 

 
Fig. 15.  Positive-sequence switching test. 
 

  
(a) Horizontal configuration (h=1.5 m and xij=0.30 m). 

  
(b) Vertical configuration (h=1.5 m and hij=0.3 m). 

  
(c) Trefoil configuration (h=1 m). 

 
Fig. 16. Voltages at the receiving end of phase A (node 4) for the application of 

an AC cosine voltage source at the sending end of phases A, B and C 
considering 200 Ωm (left) and 2000 Ωm (right) soils for (a) horizontal, (b) 

vertical, and (c) trefoil configurations. 
 

  
(a) Flat - 200 Ωm. 

  
(b) Vertical configuration (h=1.5 m and hij=0.3 m). 

  
(c) Trefoil configuration (h=1 m). 

 
Fig. 17. Currents at the receiving end of phase B (node 5) for the application of 

an AC cosine voltage source at the sending end of phases A, B and C 

considering 200 Ωm (left) and 2000 Ωm (right) soils for (a) horizontal, (b) 
vertical, and, (c) trefoil configurations. 

D.  Lightning Transients 

Fig. 18 illustrates the configuration considered for lightning 

transient simulations. A lightning impulse voltage waveform 

that represents the effect of a typical negative downward 

lightning current measured at Mount San Salvatore, 

Switzerland, was considered. This choice is based on the fact 

that subsequent strokes have higher frequency content 

compared to first stroke currents [22], [23], which is preferred 

for enhancing the influence of the ground admittance on the 

results. The impulse voltage waveform was obtained summing 

two Heidler’s functions, defined in (14) and (15), where 𝑉0𝑘 

controls the amplitude, 𝜏1𝑘 is the front-time constant, 𝜏2𝑘 is 

the decay-time constant, 𝜂𝑘 is the amplitude correction factor, 

and 𝑛𝑘  is an exponent controlling the steepness of the 

waveform. The parameters of the two Heidler’s functions are 

summarized in Table I, considering a normalized amplitude of 

1 V [24]. 

𝑣(𝑡) = ∑(𝑉0𝑘/𝑛𝑘)

2

𝑘=1

exp(−𝑡/𝜏2𝑘){(𝑡/𝜏1𝑘)
𝑛𝑘

/[1 + (𝑡/𝜏1𝑘)
𝑛𝑘]} 

(14) 

𝜂𝑘 = exp[−(𝜏1𝑘/𝜏2𝑘)(𝑛𝑘𝑡2𝑘/𝜏1𝑘)
1/𝑛𝑘]. (15) 

 

TABLE I 

PARAMETERS USED IN THE HEIDLER FUNCTIONS 

𝒌 𝑽𝟎𝒌 (V) 𝒏𝒌 𝝉𝟏𝒌 (µs) 𝝉𝟐𝒌 (µs) 

1 0.94 2 0.25 2.5 

2 0.57 2 2.1 230 
 

The impulse voltage characterized by (14) and (15) is 

applied at the sending end of phase A (node 1) of an 

underground cable system with length of 100 m considering the 

geometries shown in Fig. 1. As in Section IV-A, the sending 

end of phase B (node 2) was grounded through a 10-Ω resistor 

and the sending end of phase C (node 3) was left open. The 

voltages are calculated at the receiving ends of phases A and C 

(nodes 4 and 6, respectively) assuming a no-load condition. The 

results are shown in Figs. 19-21 considering the configurations 

of Fig. 1 and the same methodology adopted in Section IV-A. 
 

 
Fig. 18. Lightning simulation. 
 

Similarly to the results presented in Section IV-A, the 

simplified approach proposed in this paper leads to voltage and 

V
A

V

V
A



current waveforms in very good agreement with the 

formulations derived by Xue et al. [10] also for lightning 

transients, as shown in Figs. 19-21. The minor deviations 

observed for the 2000-Ωm soil can be also considered 

negligible in all investigated cases, whereas for the soil 

resistivity of 200 Ωm the agreement between the different 

formulations is excellent in all cases. 

In fact, comparing the time-domain results obtained with 

both methodologies, it is noted that the differences observed in 

the frequency-domain analysis of Section III have little 

influence on the calculation of transients, becoming slightly 

more relevant with the increase of the soil resistivity. Although 

not shown in this paper, the analyses were extended to high-

resistivity soils up to 5000 Ωm. Similar to the results obtained 

for the 2000-Ωm soil, only minor deviations were observed 

between the transient waveforms obtained with both tested 

formulations. 
 

  
(a) Horizontal configuration (h=1.5 m and xij=0.30 m). 

  
(b) Vertical configuration (h=1.5 m and hij=0.3 m). 

  
(c) Trefoil configuration (h=1 m). 

 
Fig. 19. Voltages at the receiving end of phase A (node 4) for the application of 
an impulse voltage at phase A considering 200 Ωm (left) and 2000 Ωm (right) 

soils for (a) horizontal, (b) vertical, and (c) trefoil configurations. 
 

  
(a) Horizontal configuration (h=1.5 m and xij=0.30 m). 

  
(b) Vertical configuration (h=1.5 m and hij=0.3 m). 

  
(c) Trefoil configuration (h=1 m). 

 
Fig. 20. Voltages at the receiving end of phase C (node 6) for the application of 

an impulse voltage at phase A considering 200 Ωm (left) and 2000 Ωm (right) 

soils for (a) horizontal, (b) vertical, and (c) trefoil configurations. 
 

  
(a) Horizontal configuration (h=1.5 m and xij=0.30 m). 

  
(b) Vertical configuration (h=1.5 m and hij=0.3 m). 

  
(c) Trefoil configuration (h=1 m). 

 
Fig. 21. Currents at the sending end of phase B (node 2) for the application of 
an impulse voltage at phase A considering 200 Ωm (left) and 2000 Ωm (right) 

soils for (a) horizontal, (b) vertical, and (c) trefoil configurations. 

V.  ON THE CHOICE OF EXPRESSIONS TO CALCULATE THE 

GROUND PARAMETERS OF UNDERGROUND CABLE SYSTEMS 

The advantages and disadvantages of the proposed approach 

compared with the generalized formulations of Xue et al. [10] 

are discussed in this section. Generally speaking, Xue et al.’s 

expressions [10] are recommended for the transient analysis of 

multiconductor underground cable systems if greater accuracy 

is the foremost concern. However, their expressions are not 

easily implemented due to the need of solving a number of 

Sommerfeld’s integrals (see the Appendix). In view of this, the 

approach proposed in this paper, based on the extension of 

Vance’s closed-form approximation, can be used with 

sufficient accuracy but with a much simpler and much more 

efficient implementation. The proposed methodology can be 

further simplified if closed-form approximations of Sunde’s 

integral equation as proposed by Saad et al. [21] and Theethayi 

[2] are used. Based on these comments, it is possible to claim 

that the investigated methodologies are not concurrent, but 

complementary and can be adopted according to the required 

accuracy to analyze the transient response of multiconductor 

underground cable systems. 

VI.  CONCLUSION 

An assumption based on the extension of Vance’s closed-

form approximation [8] to calculate the ground admittance of 

typical three-phase underground cable systems is proposed in 

this paper. It is shown, considering frequency-dependent soil 

parameters according to the Alipio-Visacro model [14], that the 

proposed formula leads to good agreement with the 

formulations derived by Xue et al. [10], especially in the high-

frequency range. Both switching and lightning transient 

simulations considering typical three-phase underground cable 

system configurations, different values of soil resistivity, and 

different types of excitation demonstrate that the proposed 

approach is able to lead to voltage and current waveforms in 

good agreement with the rigorous model used as reference. It is 

concluded that Vance’s simplified expression can be used for 



the calculation of the ground admittance of typical three-phase 

underground cable configurations without significant loss of 

accuracy, and with greater efficiency than the integral equations 

required for a more rigorous analysis of the problem. 

APPENDIX 

The generalized formulations of Xue et al. to calculate the 

ground-return impedance and ground admittance for 

underground cables are given by [10] 

𝑍𝑔𝑖𝑗
=

𝑗𝜔𝜇0

2𝜋
[𝐾0(𝑗𝑘𝑒𝑑𝑖𝑗) − 𝐾0(𝑗𝑘𝑒𝐷𝑖𝑗) + 2∆4

𝑄𝑇

− 2𝑘𝑒
2∆6

𝑄𝑇
] 

(A.1) 

𝑌𝑔𝑖𝑗
= 𝑗𝜔𝑃𝑒𝑖𝑗

−1 (A.2) 

𝑃𝑒𝑖𝑗 =
𝑗𝜔

2𝜋(𝜎1 + 𝑗𝜔𝜀1)
[𝐾0(𝑗𝑘𝑒𝑑𝑖𝑗) − 𝐾0(𝑗𝑘𝑒𝐷𝑖𝑗)

+ 2∆5
𝑄𝑇

− 2𝑘𝑒
2∆6

𝑄𝑇
] 

(A.3) 

∆4
𝑄𝑇

= ∫ [
𝑒−(ℎ𝑖+ℎ𝑗)𝑢1

𝑢0 + 𝑢1
]

∞

0

𝜆2

𝑢1
2 cos (𝜆𝑥𝑖𝑗)𝑑𝜆 (A.4) 

∆5
𝑄𝑇

= ∫ [
𝑒−(ℎ𝑖+ℎ𝑗)𝑢1

𝑢0 + 𝑘𝑎
2𝑘𝑒

−2𝑢1

]
∞

0

𝜆2

𝑢1
2 cos (𝜆𝑥𝑖𝑗)𝑑𝜆 (A.5) 

∆6
𝑄𝑇

= ∫ [
𝑒−(ℎ𝑖+ℎ𝑗)𝑢1

𝑢0 + 𝑢1
]

∞

0

1

𝑢1
2 cos (𝜆𝑥𝑖𝑗)𝑑𝜆 (A.6) 

𝑢0 = √𝜆2 − 𝑘𝑎
2, 𝑢1 = √𝜆2 − 𝑘𝑒

2 (A.7) 

where 𝐾0(. )  and 𝐾1(. )  are modified Bessel functions of 

second kind, ℎ𝑖 and ℎ𝑗 are the depth of cables i and j, 𝑥𝑖𝑗  is 

the horizontal distance between cables i and j, 𝑑𝑖𝑗 =

√𝑥𝑖𝑗
2 + (ℎ𝑖 − ℎ𝑗)

2
, 𝐷𝑖𝑗 = √𝑥𝑖𝑗

2 + (ℎ𝑖 + ℎ𝑗)
2

, 𝑘𝑎 = 𝜔√𝜇0𝜀0 

and 𝑘𝑒 = √−𝑗𝜔𝜇1[𝜎1 + 𝑗𝜔𝜀1] . For determining the self-

elements of 𝒁𝒈  and 𝒀𝒈 , 𝑑𝑖𝑗  and 𝑥𝑖𝑗  are replaced by the 

external cable radius, 𝑏, and ℎ𝑖 = ℎ𝑗 = ℎ. 
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