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Review and Comparison of Frequency-Domain
Curve-Fitting Techniques: Vector Fitting,
Frequency-partitioning Fitting, Matrix Pencil
Method and Loewner Matrix

B. Salarieh, H. M. J. De Silva

Abstract—It is a well-known practice to approximate the
frequency-domain response of an element or a subsystem
with rational functions for electromagnetic transient (EMT)
simulations of power systems. There are a variety of curve-fitting
methods developed over time that offer different levels of
accuracy, speed, and complexity. In some cases, the order
of rational function may get very large to meet specified
error criteria. Model order reduction (MOR) methods can
be used to decrease the order of the function without a
considerable deterioration of the approximation error. This paper
presents a thorough review and comparison of the most popular
curve-fitting methods, namely, the Vector Fitting (VF) method
along with its later developments, the Frequency-partitioning
Fitting (FpF) methods, Matrix Pencil Method (MPM) and
Loewner Matrix (LM) fitting technique. First, the fundamental
theories of each one are briefly reviewed. Then, their accuracy
and required order are compared together through three case
studies. Lastly, the application of two different MOR methods to
the resulted rational functions is investigated.

Keywords—Frequency Dependent Network Equivalent,
Matrix Pencil Method, Loewner Matrix, Vector Fitting,
Frequency-partitioning Fitting, Model Order Reduction.

I. INTRODUCTION

HE electromagnetic transient
Tsystems requires accurate modeling of system
components,  including their = wideband  frequency
characteristics. Once the frequency-domain behavior seen
from the terminals is known, the modeling is based on fitting
a rational function to the frequency-domain characteristics,
which can be in the form of admittance (Y), impedance
(Z), or scattering (S) parameters. This way, an efficient
time-domain simulation is possible using the recursive
convolution [1]. There are several applications for rational
fitting in time-domain studies, such as wideband modeling
of frequency-dependent network equivalents (FDNE) [2], [3],
high-frequency transformer modeling [4], and modeling of
transmission lines [5]. The Vector Fitting (VF) technique
[6], is robust and widely applied in EMT studies. There
were enhancements of VF proposed later, known as Relaxed
Vector Fitting (RVF) [7] and Modal Vector Fitting (MVF)
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[8]. Another approach is the Frequency-partitioning Fitting
(FpF) [9]-[11] that overcomes the ill-conditioned equations
occurring on wideband responses by subdividing the frequency
range of interest into several partitions and applying rational
fitting to each subrange. Alternative techniques were proposed
later, such as Matrix Pencil Method (MPM) [12] and Loewner
Matrix [13]. These techniques have advantages such as being
non-iterative, and not requiring an initial pole set. Once the
rational function approximation is obtained in the forms of
poles and residues, there are two postprocessing steps that
perturb the model parameters. The first one is due to the
passivity requirement of rational models to guarantee a stable
time-domain simulation [14]. Moreover, the large number
of components in a power system requires reducing the
order of state-space model of the components for an efficient
time-domain simulation, while maintaining the accuracy of
the original model.

In this paper, following a complete review of VF, FpF,
MPM, and LM, these techniques are compared together
in regard to the fitting order and accuracy through three
case studies. Furthermore, the application of two different
MOR methods to the models obtained by these techniques is
investigated. Since non of the mentioned techniques guarantee
a stable model, the passivity analysis is not covered in this

paper.

II. REVIEW OF CURVE-FITTING TECHNIQUES

The purpose of curve-fitting techniques is to approximate
the frequency response of a linear time invariant (LTI) system,
F(s) with a rational function of the following form

+ D+ sE (1

N
R,
F(s) =
(5) nZ::l po—
where s = jw, and N is the number of poles including
the real and complex-conjugate poles. Identification of (1) is
called rational fitting and different methods of calculating its
parameters are described as follows.

A. Vector Fitting (VF)

Vector Fitting (VF) relies on introducing a set of initial
poles [6]. An unknown auxiliary function o(s) is introduced
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that results in an augmented linear problem of the following
form

N R N 7
n n
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n=1

o(s)

which is solved to find the zeros of o(s). The new poles of
F(s) are equal to the zeros of o(s) and are calculated as the
eigenvalues of the following matrix

H=A-bc" (3)

where A is a diagonal matrix containing the starting poles
Pn, b is a column vector of ones, and ¢l is a row vector
containing the residues #,. This procedure, known as the pole
identification step, is applied in an iterative manner where
the new poles replace the previous ones, and it converges
after a few iterations. Finally, the residues R,,, D and E are
calculated by solving (2) with known poles and o(s) = 1.

In the above procedure, a lot of computation effort is wasted
on the calculation of residues R,, in the pole identification
step, which are discarded in the later steps [15]. It was shown
that applying the QR decomposition to (2) results in a set
of equations that only depend on 7,. This leads to a faster
pole identification step. Also in the residue identification step,
the symmetry of F(s) can be utilized to only solve for the
residues of the upper (or lower) triangle of the matrix. These
improvements lead to a fast implemenation of VF known as
Fast Vector Fitting (FVF). Two developments of the outlined
VF technique were proposed later:

1) Fast Relaxed Vector Fitting (FRVF): It was realized that
the asymptotic requirement of o(s) approaching unity at high
frequencies, impairs the pole relocation ability of VF and
makes it dependent on the specification of the initial poles
[7]. To improve the convergence of VF, o(s) is replaced with

N .
T A
o(s) = +d 4
(s) ; po—
where d is a real number and results in addition of one column
in the least-squares problem given by (2). There is also one
row added to avoid the null solution
N
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where N, is the number of frequency samples.

2) Fast Modal Vector Fitting (FMVF): With the application
of VF, some properties of a system may be approximated
with higher accuracy than others. As an example, when
fitting the elements of an admittance matrix Y that has both
large and small elements, the elements of higher magnitude
are fitted with more accuracy than the small elements,
depending on the error criterion. The resulting model does not
necessarily provide a good fit for the impedance Z = Y !
matrix. To have an accurate model with arbitrary terminal
conditions, Modal Vector Fitting (MVF) is introduced, where
the focus is on accurate representation of eigenvalues (modes)
instead of matrix elements [8]. Let’s consider a multiport

system characterized by its admittance matrix Y. First, we
diagonalize this matrix by a transformation matrix T and it is
approximated by a rational model Y 4

Y =TAT 'Y, (6)
For each eigenpair (\;,t;) we get
Yoat; = Aty (7)

where i = 1,...,n and n is the number of modes. Combining
(7) with VF leads to MVF, where for the pole identification
step we solve

WU(S)ti = m <( Z - amD + sE)tl> (8)

m=1
with ¢ = 1,...,n. Finally, the residues are obtained in the
same manner as VF by solving (8) with o(s) = 1. A fast
implementation of MVF was later proposed in [16] known as
Fast Modal Vector Fitting (FMVF) by utilizing the symmetry
of the input matrix and QR decomposition, as described earlier
in this paper.

B. Frequency-partitioning Fitting (FpF)
If the partial fraction expansion (1) is written in compact
form (assuming D = E = 0), we have
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When the frequency range of F(s) becomes wide, the s”
terms in the least-squares problem take a wide range of values
whose ratio exceed the machine arithmetic accuracy [17].
This leads to ill-conditioned overdetermined equations. The
ill-conditioning issue happens when some columns of A are
linearly dependent. To overcome the numerical ill-conditioning
problem, the frequency range of interest is partitioned into
several frequency subranges, and rational fitting is applied to
each section for the pole identification step. Then, the residues
are identified by solving a standard least-squares problem
and considering the entire frequency range [11]. Different
methods can be used to divide the entire frequency range into
subranges, and the most common ones are: i) considering each
decade as one subrange (DE), ii) dividing in a way to a have
specific number of resonant peaks in each subrange (RP), iii)
the so-called Binary method, where the frequency range is
recursively divided in two subranges until all subsections reach
a specified accuracy [18]. In all these methods, the boundary
between consecutive subranges is forced to coincide with the
valleys of the frequency response. When the subranges are
identified, there are three approaches to perform the rational
fitting as follows:

1) Method of Silveira: First, one of the above mentioned
frequency partitioning approaches is applied to the frequency
response. After partitioning the frequency range of interest into
small sections, 1, Qo, ..., Qyy, starting with the first partition
1, a constrained ¢ minimization is performed on F(sq,)
to compute a local approximation L (s) [9]. The poles and
residues of the first local approximation L (s) are examined
and the unstable poles are discarded, resulting in H;(s) as
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Fig. 1: Application of Frequency-partitioning Fitting algorithm
of Silveira to a frequency response F(s). H;(s) is the stable
fitted function to the frequency points of the first section 2;.

the stable approximation of the first section. At this point,
F(s)—H;(s) contains the higher-frequency error information
and is fitted in the next step, considering the frequency points
of the second section {2o. If the stable approximation on the
second section is Hs(s), then F(s) = Hj(s) + Ha(s) on
Q1 U Qq. This procedure is repeated until the data in the last
frequency section ), is fitted. Figure 1 illustrates the FpF
method of Silveira.

2) Method of Campello: In the same way as the FpF
method of Silveira, any of the frequency partitioning
approaches can be used with the method of Campello,
although the RP approach was used in their work [10]. The
proposed method by Campello er al. consists of two main
steps following the identification of the frequency partitions.
The first step is to apply VF to the frequency-domain data
in each partition to find the poles. Then, the identified poles
are stored and used to calculate the corresponding residues,
considering the whole frequency range.

3) Method of Noda: The FpF method of Noda first applies
the pole identification step to the whole frequency range.
If the specified accuracy is not reached, then the frequency
range is divided in two sections using the Binary partitioning
method, and pole identification is applied to each subrange.
This process continues until all the subranges are fitted
accurately. The pole identification of the algorithm applied
to each subrange is as follows [11], [19]:

i) Frequency Response of Matrix Trace: the trace of F(s)

P

f(s) = trace(F(s)) =3 fuls) (10)
i=1

is calculated and used to identify the poles, since the trace of

a transfer function is known to contain information of all the

poles. In (10), p is the number of ports.

ii) Formulation of Linear Least-Squares Equation: the
frequency response of f(s) is fitted with rational function
of the form (1) and is brought into a linear overdetermined
equation

Az = b. (11)

A higher accuracy can be obtained if the condition number
of A is improved. To this aim, singular value decomposition
(SVD) is applied to A and only the dominant rows in (11) are
used to obtain the solution [20].

iii) Adaptive Weighting: in an iterative process, the error
between the fitted and actual frequency-domain data is applied

iii

as weighting factors to (11) [21]. In each step, a heavier
weighting is applied on frequency samples where the fitted
function exhibits a larger error. For the kth frequency sample
and depending on the specified error criterion, we have

er(z) = f(sk) — f(5k, ) (12)
or if relative-error is considered
ek(x) _ f(sk) - f(Sk,,.T) (13)

£ (se)]

where f(sj,x) is the identified rational function and z is
the solution to (11). The weighting function in iteration step
number m is defined as

wy = " | e(am D) |
and at the initial step we have w,(co) = 1. Equation (11) can
be written in the following form after applying the weighting
factor

(14)

A("L)!E(m) o b(m) (15)

iv) Column Scaling: A(™ might be badly scaled in (15).
The condition number of A(™ can be improved by scaling its
columns to an Euclidean norm of unity [22].

v) QR decomposition: In this step, the least squares problem
in (15) is solved by applying QR decomposition [23].

vi) Iteration Step Adjustment: the QR decomposition
procedure is iterated until it converges. At step (m), the
best step for updating the solution is identified as a linear
interpolation between the solution of steps (m-1) and (m) and
it replaces the solution of step (m). It is worth noting that
two improvements to the FpF method of Noda were proposed
in [20]. First, an upper-limit frequency is identified above
which the frequency samples are very small and those data
points are removed from the pole identification step. Also,
an enhancement to the adaptive weighting procedure, called
practical effective weighting, was proposed for frequency
responses that contain regions of very small magnitude.
However, as the frequency responses considered in the
examples of this paper do not contain such regions, these two
steps are not considered in this paper.

When the poles are identified in all the subranges, the
residue identification step is applied, which results in a
linear equation of the same form as (11). Column scaling is
applied in this step and the residues are calculated using QR
decomposition.

C. Loewner Matrix (LM)-Based Fitting Technique

The goal of the Loewner Matrix method is to obtain the
state-space of a model that matches the frequency response of
interest and it is in the following form [13], [24]:

Ex(t) = Ax(t) + Bu(t) (16)
y(t) = Cx(t) + Du(t) + Y°°u(t)
where u(t) and y(t) are the input and output quantities,
respectively, the matrices E;A € R™™ B € R™*P,
C € RP*™ and D, Y™ € RP*P define the LTI system, and
m is the model order. The first step in the LM method is that
the frequency-domain data F(s) is appended with the complex



conjugates at the negative frequencies, resulting in 2N, points,
and the data points are divided in two groups, referred to as
the left and right data sets as follows:

{sk:F(se)} = {i, F(A)}, {ps, F (i) }

where k = 1,...,2N,, 1,5 = 1,..., Ny and s, A; and p; are
complex frequencies. Two possible approaches for splitting the
data are Vector Format Tangential Interpolation (VFTI) [25]
and Matrix Format Tangential Interpolation (MFTI) [26]. In
the next step, the Loewner IL and shifted Loewner ¢IL. matrices
are calculated as follows:

A7)

o M Lo, (18)
[U]Lj,z’] = w
where 4,7 = 1,..., Ny and ®; and €2; are defined as
LjF(/J,j) = ‘I’j (19)
F(A)R; =Q;

where R; and L; are the tangential direction matrices for
the right and left data sets, respectively, and the details of
their calculation can be found in [13]. Furthermore, two other
matrices IF' and W are calculated as

{IF = [0]..07..0% |7

2
W = [Q1...0%..Qn.]. 20

The above calculated matrices are complex and they need to
be transformed to real matrices to obtain a real macromodel.
To this aim, a similarity transformation is applied leading to
L., oL,, F,. and W, [25]. The final step of the LM algorithm
is to extract the macromodel. The regular part of the matrix
pencil zIL,. — oL, is extracted using SVD decomposition:

zlL, — oL, = AXU” 21

where = can be any value from {\;} U {p;} except the
eigenvalues of the matrix pencil. Considering the m dominant
singular values in (21) and storing the first m columns of A and
¥ in Ar and Vg, respectively, the time-domain macromodel
is extracted as follows:

E=—A4LUp

A= 7ARO'LT\I/R (22)
B = AT,

C=W,Vpg.

Note that the matrices £ and Y *° are unknown at this stage
and their contribution is embedded inside the above matrices.
The procedure proposed in [13] is used in this paper to extract
D and Y.

D. Matrix Pencil Method (MPM)

The Matrix Pencil Method (MPM) fitting technique tries to
formulate a frequency-domain signal by a sum of exponentials
in the first step [12]:

y(f) =) Rie (23)

i=1
where y is each element of the frequency response F, f is
the frequency, R; and S; are complex-valued coefficients and

M 1is the order of approximation. To do so, y is sampled at
frequency points of the form kF; where k = 0, ..., Ny — 1 and
a data matrix Y is formed as follows:

Yo Y1 . yr
Y1 Y2 Yr+1
Y] = . ) . (24)
YN,—L—-1 YN,—L YN, -1

where yr, = y(kFs) and L is referred to as the pencil
parameter, usually defined as N,/2. Next, singular value
decomposition (SVD) is applied to Y as

Y = USV*. 25)

The model order is obtained by taking the m dominant singular
values. Then, the m dominant vectors of V are stored in V.
Matrices Y7 and Y5 are constructed as follows:
{1@ =SV 06)
Y, = UL 1,*
where V] is obtained with the last row of V' deleted, V3 is
obtained with the first row of V' deleted, and X’ contains
the m columns of ¥ corresponding to the m dominant
singular values. The coefficients S; in (23) are obtained by
solving for the eigenvalues of the pencil matrix Y7 — AYa.
Once m and coefficients S; are known, the coefficients
R, are found from solving a least-squares problem [I12].
Knowing the representation of the frequency-domain response
as a sum of exponentials, one can apply the closed-form
inverse Fourier proposed in [27] to obtain the time-domain
representation. As a final step, the same procedure applied
to the frequency-domain sample points is applied to the
time-domain sample points to model the time-domain function
as a sum of exponentials

K
y(t) = Re%l. (27)
j=1

This exponential representation of y(¢) finally results in
rational form of (1). The above described procedure can be
applied to each element of the matrix function F(s). However,
to obtain a common set of poles for all the elements, the trace
of the matrix is used as the input to the pole identification step.
Once the poles are known, the whole matrix is used to find
the residues R, D and E coefficients [28]. The nondominant
poles with positive real parts could appear when using MPM,
and they should be either removed or shifted to the left side of
the imaginary axis without affecting the fitting accuracy [29].

III. REVIEW OF MODEL ORDER REDUCTION TECHNIQUES

A high number of poles is needed in some instances to
have an accurate fitting. As a result, there is a probability of
over-fitting and passivity violations [30]. This imposes greater
time and memory requirement for time-domain simulations.
Model Order Reduction (MOR) techniques can be used to
obtain a reduced-order model of the system, while preserving
the fitting error below a threshold. The MOR methods are
either Krylov based or truncation based [31]. Two popular



truncation based methods are Modal Truncation (MT) and
Balanced Truncation (BT), which are considered in this paper
and explained as follows.

A. Modal Truncation (MT)

In the Modal Truncation (MT) method,
residues that satisfy

the poles and

|rn|
|Re(pn)|
for a small enough tolerance tol, are considered as

non-dominant and they can be removed from the model
without exceeding an error bound [31].

< tol (28)

B. Balanced Truncation (BT)

One of the well studied model reduction schemes is
Balanced Truncation (BT) [32]-[34]. There are several
balancing related model reduction methods proposed in
the literature, such as, Lyapunov balancing [32], stochastic
balancing [35], bounded real balancing [36], positive real
balancing [35] and frequency weighted balancing [32]. In
this paper, we consider the Lyapunov balancing technique,
since it has an important property that the stability of the
system is preserved in the reduced-order model [37]. The
pole-residue form (1) can be written in the state-space form
in the time-domain as follows [1]

{x = Ax + Bu ' (29)
y=Cx+ Du+ Eu

where x and y are the input and output quantities,
respectively. The Lyapunov balancing method is related to
the controllability and observability Gramians & and 2 that
are symmetric and positive definite solutions of the following
Lyapunov equations [31]

(30)

AP + PAT = —BBT
AT2+ A2 =-CTC

Using these Gramians, one can define the Hankel singular
values of system (29) which characterize the dominance of
state variables. The Hankel singular values o; are defined as
the positive square roots of the eigenvalues of the product of
the Gramians & 2. A reduced-order system can be computed
by truncating the states corresponding to the small Hankel
singular values in the following steps.

i) Compute the Cholesky factors R and L of the Gramians
% =RRT and 2 = LTL.

ii) Computer the singular value decomposition (SVD) of
matrix LR

€2y

LR=[U: U] Fol EOJ Wj

where ¥=diag(o, ..., 0¢) and Xo=diag(cey1, ..., On)-

iii) Assuming that the Hankel singular values are
ordered decreasingly, compute the projection matrices W =
LTU s Y% and T = RV 5!

iv) Finally, the reduced-order system is obtained as follows:

A, =WTAT
B,=WTB (32)
C,=CT

IV. NUMERICAL EXAMPLES

In this section, the performance of the curve-fitting
techniques are compared together considering three different
case studies. Two error metrics are used to assess the accuracy
of fitting, one is based on the RMS error eryms, and the other
one is the relative error crgp calculated as follows

Fk N SN k) — F ()2
ERMS —

N N2 (33)

(Sk)l

oy ey Je |f2] Sk
R = | D030

X 1001 /(NyN?)

k=1i=1 j=1 |f ij Sk

(34)
where f;;(sx) and fii'(sy) are the i7" element of the actual
and fitted frequency response matrices at k" frequency sample,
respectively. Ny is the number of frequency samples, and N,
is the number of rows (or columns) of the matrices (N, = 3
in this example). The general fitting procedure is that after
considering a starting order of fitting, the order is increased
until the error criterion is met, which is either based on erpys
or ergL. Each technique is applied twice, one time based on
erMs and the second time based on eggr. No weighting factors
are considered with the fitting techniques in this paper.

A. Case Study 1: Three-Port Electrical Circuit

As the first study, we consider an arbitrary three-port
electrical circuit which is taken from [38]. The three-port
admittance of the system in the frequency range of 1 Hz to
0.03 MHz is considered as shown in Fig. 2. Table I shows
the required number of poles for each fitting technique to
meet the specified error criterion. It can be seen that the least
number of poles are obtained with FVF, FRVF, FMVF, and
FpF-Noda. The methods of Silveira and Campello have their
best performance with the DE partitioning method in this case
and need 21 poles, which is a 24% increase in regard to
the 17 poles needed by FVF, FRVE, FMVF, and FpF-Noda.
The LM and MPM methods do not achieve a good tradeoff
between accuracy and model order. Following the application
of MOR, as shown in Table II, the number of poles needed
by all the methods, except LM and MPM, are close to each
other and show less difference. The FpF methods of Silveira
and Campello are more affected by MOR compared to other
methods, since they represent the frequency-domain function
as a sum of local approximation and introduce redundant
poles.

B. Case Study 2: IEEE 30-Bus System

Let us consider the IEEE 30-bus system consisted of
loads, capacitor banks, and transmission lines. This system
is implemented in the commercial software PSCAD/EMTDC
[39]. The three-port admittance of the system seen from bus
10 is considered in this paper using the interface to harmonic
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Fig. 2: The magnitude of actual frequency-domain admittance
of the electrical circuit taken from [38] in the frequency range
of 1 Hz to 0.03 MHz.

TABLE I: Comparison of the number of required poles with
different curve-fitting methods for case study 1, without the
application of MOR and with egps = 1 X 1072 or erpL =
1 x 1072 as the error target.

Curve-fitting Method # Poles, erms # Poles, ergL
FVF 17 17
FRVF 17 17
FMVF 17 17
FpF-Silveira—DE 20 24
FpF-Silveira—RP 23 27
FpF-Campello-DE 21 25
FpF-Campello-RP 24 26
FpF-Noda 17 17
LM 34 46
MPM 42 54

TABLE II: Comparison of the number of required poles
with different curve-fitting methods for case study 1, with
the application of MOR and with egpys = 1 X 1073 or
ereL = 1 x 1072 as the error target.

# Poles, erMms # Poles, eRrgL
MOR Method
Fitting Method MT D MT e
FVF 16 17 17 17
FRVF 16 17 17 17
FMVF 16 17 17 17
FpF-Silveira—DE 16 18 17 24
FpF-Silveira—RP 19 18 25 24
FpF-Campello-DE 16 17 23 22
FpF-Campello-RP 18 21 19 20
FpF-Noda 16 17 17 17
LM 30 32 42 46
MPM 40 42 50 50
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) — g Actual Y(2,1)
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r--"""'-'-
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Fig. 3: The magnitude of actual frequency-domain admittance
of the IEEE 30-bus system seen from bus 10 in the frequency
range of 1 Hz to 0.1 MHz.

impedance solution of PSCAD. Figure 3 shows the magnitude
and phase angle of first column of Y, which are Y(1,1),
Y(2,1), and Y(3,1).

vi

TABLE III: Comparison of the number of required poles with
curve-fitting methods for case study 2, without the application
of MOR and with egms = 1 x 1073 or egpr. = 1 x 1072 as
the error target.

Curve-fitting Method # Poles, erms # Poles, ergL

FVF 230 1800
FRVF 48 170
FMVF 39 189
FpF-Silveira-DE 50 162
FpF-Silveira—RP 39 196
FpF-Campello-DE 34 185
FpF-Campello-RP 38 136
FpF-Noda 95 216

LM 268 1800

MPM 310 1800

First, we consider the admittance in the frequency range
of 1 Hz to 0.1 MHz, with N, = 2000 logarithmic frequency
samples and without the application of MOR methods. Table
IIT shows the required number of poles for each technique,
when the error criterion is defined as egms = 1 x 1073 and
ere = 1 x 1072, The fitting order is preferred to be as
low as possible to reduce the transient simulation time. The
method of Campello is seen to be the most accurate method
and provides the least number of poles to meet both error
criteria. When the RMS error is considered as the target, the
FpF method of Campello applied with the DE partitioning
method provides the least number of poles, while this method
with RP partitioning is the best one in the case of relative error
criterion. The FMVF and the FpF method of Silveira with the
RP method of partitioning also need a relatively low number
of poles. On the contrary, it is observed that the FpF method of
Noda, FVF, LM and MPM need a high number of poles. The
FVF, LM and MPM could not meet the relative error criterion
even with 1800 poles. It is important to note that the accuracy
of each method and order of fitting is highly dependent on
the error criterion being defined. In this case, the magnitude
of admittance varies in a wide range, which can be the reason
that reaching a high accuracy in the whole frequency range,
as defined in the definition of relative error, needs more poles
than having accurate results based on RMS error.

Now, we concern the application of MOR methods to the
fitting results. Table IV shows the reduced order for each fitting
method using MT or BT as the MOR method and based on
the same set of error criteria previously defined. It can be seen
that MT method of order reduction is more effective than the
BT in this example. A considerable reduction of the order
of the system (upto 41.05% for FpF-Noda fitting method)
is achieved using MT, which increases the performance of
transient simulations. The results of this section highlights
the importance of applying model order reduction prior to
using the rational function approximation in time domain
simulations. After applying MOR, the FVF, LM, MPM and
FpF-Noda still need the most number of poles for an accurate
fitting. In the case of ergr, the number of poles needed for
other methods are very close, with a difference of less than
7%. The most accurate methods after applying MOR are
FMVEF, FRVF, FpF-Campello-DE and FpF-Campello-RP for
the RMS error and FpF-Silveira-DE, FpF-Campello-RP, FRVF
and FpF-Campello-DE for the relative error.



TABLE IV: Comparison of the number of required poles with
curve-fitting methods for case study 2, with the application of
MOR and with egms = 1 x 1073 or egp. = 1 x 1072 as the
error target.

TABLE V: Comparison of the number of required poles with
curve-fitting methods for case study 3, without the application
of MOR and with egms = 1 x 1073 or egpr. = 1 x 1072 as
the error target.

—— Actuial Y(L,1)
—— Actual Y(2,1)
s Actuial ¥(3,1)
e Actual Y(4,1
w— Actual Y(5,1]
e Actual Y(6,1

Magnitude

10° 10* 10% 10%
Frequency (Hz)

Fig. 4: The magnitude of actual frequency-domain admittance
of the IEEE 118-bus system seen from busses 44 and 45 in
the frequency range of 1 Hz to 0.01 MHz.

C. Case Study 3: IEEE 118-Bus System

In this section, the IEEE 118-bus system is considered
and the six-port admittance seen from busses 44 and 45 is
fitted with different techniques. Figure 4 shows the magnitude
and phase angle of the first column of the actual 6 x 6
admittance matrix. Table V shows the number of required
poles for an accurate fitting based on the RMS error. There is
a considerable difference in the fitting results of DE and RP
partitioning methods. The least number of poles is obtained
with the methods of Campello and Silveira, when RP is
applied. The FpF method of Noda and FRVF are the next
accurate ones. The FVF, LM and MPM methods were not able
to reach the specified error target as the order was increased
until 900. In general, many more poles are needed to meet the
relative error criterion than the RMS error.

Applying the MT method of MOR is shown to be more
effective than the BT for this case. When the relative error
is concerned, there is a tendency for the partitioning methods
of Silveira, Campello, Noda and FRVF to result in very close
number of poles for an accurate fitting. On the other hand,
the methods of Silveira-RP, FRVF and Campello-RP require
less number of poles for the accuracy in the RMS error. The
method of Noda is fairly improved compared to the previous
case study.

V. CONCLUSIONS

A review and numerical comparison of some
commonly-used curve-fitting methods was presented in
this paper. This includes Fast Vector Fitting (FVF), Fast

# Poles, erms # Poles, ergL Curve-fitting Method # Poles, erms # Poles, ergL

MOR Method FVF 900 900
Fitting Method MT D MT e FRVF 89 304
FVF 138 230 1560 | 1710 FMVF 460 331
FRVF 30 48 108 170 FpF-Silveira—DE 382 803
FMVF 25 39 111 189 FpF-Silveira—RP 49 148
FpF-Silveira—DE 42 48 105 153 FpF-Campello-DE 803 913
FpF-Silveira—RP 35 39 116 190 FpF-Campello-RP 47 149
FpF-Campello-DE 32 33 108 176 FpF-Noda 73 181
FpF-Campello-RP 34 35 105 132 LM 900 900
FpF-Noda 56 87 187 210 MPM 900 900

LM 166 260 1680 | 1740

MPM 194 282 1708 | 1800

TABLE VI: Comparison of the number of required poles with
curve-fitting methods for case study 3, with the application of
MOR and with egms = 1 x 1073 or eggr, = 1 x 1072 as the
error target.

# Poles, erMms # Poles, eRrgL
MOR Method

Fitting Method MT | MT [
FVF 144 900 200 900

FRVF 38 86 122 284
FMVF 267 460 331 331
FpF-Silveira—DE 92 331 135 756
FpF-Silveira—RP 34 49 134 139
FpF-Campello-DE 103 723 133 719
FpF-Campello-RP 45 47 133 149
FpF-Noda 41 71 142 175
LM 214 900 264 900

MPM 288 900 320 900

Relaxed Vector Fitting (FRVF), Fast Modal Vector Fitting
(FMVF), three different Frequency-partitioning methods
(Silveira, Campello, Noda), each partitioned with three
different partitioning procedures (resonance, decade, binary),
Loewner Matrix (LM) and Matrix Pencil Method (MPM).
The application of Model Order Reduction (MOR) techniques
to the rational approximation model obtained by these
curve-fitting algorithms was also investigated. The accuracy
target of rational approximation was defined either based
on RMS error or relative error. It was shown through three
numerical examples that the order of approximation of
curve-fitting techniques is highly dependent on the considered
error criterion. For the first case study that needed a low
order of fitting to meet the error criterion (17 poles), the
FVE, FRVF, FMVF, and FpF-Noda were the most accurate
ones, following with the FpF methods of Campello and
Silveira, applied with DE partitioning (24 poles). For the
other two case studies that needed a larger number of poles,
the FpF methods of Campello and Silveira were the most
accurate ones (on the extreme case, needed one tenth of
poles needed with FVF, FpF-Noda, LM and MPM), prior
to the application of MOR. Also, the method of Noda,
FVE, LM and MPM required the highest order of fitting.
Comparing the resonance and decade partitioning procedures,
their performance depends on the FpF method and the
error criterion, but RP was generally more accurate. Further
research and numerical examples are needed to reach a
general conclusion on the effect of the number of decades
or resonant peaks in each partition with the partitioning



methods. The Modal Truncation (MT) method of order
reduction was more effective than the Lyapunov Balanced
Truncation (BT) method in these examples. Applying MT
resulted in a considerable reduction of the order of system
without exceeding the defined maximum error. Furthermore,
when the relative error criterion was set as the target, there
was a close agreement on the order of fitting between
curve-fitting algorithms. The results presented in this paper
can be used to obtain a better intuition on the accuracy of
curve-fitting algorithms and model order reduction methods
and their application based on the frequency response under
study.
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