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Abstract—In order to mitigate the Gibbs oscillation, a very 

simple and effective linear mid-point interpolation method is 

proposed. The relationship between proposed linear mid-point 

interpolation in time domain and window function in numerical 

inverse Fourier transform is also investigated in this paper. It is 

proved that the linear mid-point interpolation in time domain is 

equivalent to the cosine window function defined as         

    
 

 

 

    
 , where      is the maximum angular frequency 

used in the transform. Furthermore, the cosine window function 

and sinc window function (also known as sigma-factor) show the 

similar characteristic. A weighting order n, which is originally 

defined as the power to which the window function is raised, can 

also be applied to the interpolation method when n is an integer. 

The nth-time interpolation is equivalent to applying the window 

function            
  in frequency domain.  
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I.  INTRODUCTION 

ibbs phenomenon describes the large overshoot and 

oscillations of the Fourier series at the jump 

discontinuity, which was first discovered by Henry Wilbraham 

in 1848 [1]. It was widely believed the oscillation was due to 

the flaws of the device when re-synthesize the Fourier series. 

In 1899, Gibbs published a description of the overshoot at the 

point of discontinuity in [2]. In 1906, a mathematical analysis 

was given by Maxime Bocher [3]. It’s found out that the 

overshoot does not die out with the increase of the Fourier 

terms, but the span can be shortened, while the height of the 

overshoot remains the same. 

In order to alleviate the oscillation, various methods were 

used, including Fejér summation [4] or Riesz summation [5], 

sigma-approximation [6], discrete wavelet transform 

with Haar basis functions [7],etc. In this paper, a very simple, 

easy-to-use, after computation method is proposed to 

effectively mitigate Gibbs oscillation. 

In Section II, the cause of the Gibbs phenomenon and the 

sinc window approach have been reviewed. In Section III, the 

linear mid-point interpolation method is introduced; the proof 

of the equivalence of the linear mid-point interpolation 

method and cosine window is given; the effect on Gibbs 

oscillation suppression is compared with sinc window method. 

In Section IV, the weighting order is applied to linear mid-

point interpolation method. In Section V, the proposed 

approach is used in the switching surge simulation. The 

findings are concluded and summarized in Section VI. 

II.  GIBBS PHENOMENON AND SINC WINDOW 

 

To get the time domain response, inverse Fourier transform 

can be applied to the frequency domain functions [8], [9], 
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where       is the frequency domain function to be 

evaluated. When (1) is evaluated numerically, the integration 

range [0,  ] must be substituted by a finite range [0,     ] 

with sufficiently large      as in (2). 

     
 

 
     
    

 

           (2) 

When the frequency domain function is numerically 

evaluated, the integration range is abruptly chopped at a 

certain frequency     . As a result, the original signal      
can be seen to be multiplied by a “brick-wall” window 

function     . From the signal processing view, the window 

function      can be seen as an ideal low-pass/high-cut 

filter. The window function      is defined in (3) and is 

illustrated in Fig. 1. 
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Fig. 1.  Window function G(ω) 

This ideal rectangular window function      in the 

G 
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frequency domain corresponds to the sinc function      (also 

called the "sampling function") in the time domain.      is 

defined in (4) and is illustrated in Fig. 2. 

               

         
          

     
 

                     

(4) 

where     denotes inverse Fourier transform. With 

                              , the sinc function in 

the time domain is as shown in Fig. 2. 

 
Fig. 2.  Sinc function in time domain 

The product in frequency domain          is equal to 

convolution in the time domain          . The oscillations 

of the sinc function      causes the ripples in the output 

result. Imagine      is a step function which jumps from 0 to 

1 at t = 0 sec, then the convolution of           results in 

the overshoot whose magnitude is thus exactly the integral of 

the (left) tail.  

Because the ripples are caused by the oscillations of the 

sinc function     , and the frequency of the oscillations of 

sinc function is determined by the upper limit of the frequency 

range during integration, which can be seen as equal to      

as in Fig. 2. If the output time step is equal to or larger than 

      , then the ripples may not be observed. The same case 

of a step function is calculated with different time steps, and 

the results are shown in Fig. 3. The upper limit of the 

integration         
   , the timestep    for the blue curve 

is smaller than        while the timestep for the red curve is 

equal to       . It’s obvious that if the timestep    
      , there may be unnecessary to suppress Gibbs 

oscillation. 

It’s also noticeable from Fig. 3 that the red curve with a 

larger timestep also loses some accuracy. Therefore, in all 

transmission line simulations in the following chapters, the 

timestep used is no larger than 
 

  
 of one cycle of the 

oscillation, e.g.     
 

  
         . Then the Gibbs 

oscillation suppression approach is a necessity in the 

simulation if the discontinuity is involved. 

 

Fig. 3.  Calculated results with different time steps 

The well-known method to eliminate Gibbs phenomenon is 

that      is weighted with a less abrupt window function 

 sinc    derived by S. J. Day, N. Mullineux and J. R. Reed 

[6] with the following equation. (Note that this sinc window 

 sinc    is in frequency domain, while the sinc window 

function      in (4) is in time domain.) 

max

max

sinc

max

sin

, 0
( )

0,

G

else





 
 




  
  

   
  

 
 



 (5) 

The curve of this  sinc    window function is shown in 

Fig. 4. It’s can be seen that the value remains 1 for the most 

part of the frequency range, but instead of drops to 0 abruptly 

at a frequency     , it drops to 0 gradually and smoothly as 

the frequency approaches     . 

 

Fig. 4.   sinc     window function with fmax = 107 Hz 

We can see from Fig. 5, after applying sinc window (which 

is also called  -approximation [10], [11]), the oscillation is 

greatly reduced compared to the original result. 
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Fig. 5.  Oscillations damped with sinc method 

This method requires the calculation of  sinc    at each 

frequency point and also the multiplication of  sinc    with 

     at each frequency point. In the next section, a new 

approach to mitigate the Gibbs oscillation is proposed which 

effectively reduces the oscillation and is computationally 

much more efficient. We have labeled it “linear mid-point 

interpolation”. 

III.  PROPOSED LINEAR MID-POINT INTERPOLATION METHOD 

To reduce the oscillation, a new and more computationally 

efficient method is proposed in this paper. It performs a linear 

mid-point interpolation after the original calculated result (the 

one with Gibbs oscillation) is obtained. With the sinc window, 

     must be multiplied by  sinc    at each frequency point 

and then the product to be integrated as in inverse Fourier 

transform. As an alternative, the proposed “linear mid-point 

interpolation” method can be utilized after the result curve is 

obtained from (2) and this can be done only when researchers 

feel necessary after observing the existence of Gibbs 

oscillation. This method is illustrated in Fig. 6. Let’s assume 

that the samples of the original result with a time-step   , at 

    ,                are      ,      , 

              , respectively. These are used to calculate the 

new values      ,                            , k =1,2..n. 

as in (6). 
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,    is the output time step, the time interval 
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Fig. 6.  Illustration of the linear mid-point interpolation 

Equation (6) can be rewritten, from a point of view of 

convolution, in the following equation 

            
 

  

       (7) 

where      
 

 
                  and      is the 

Dirac delta function. 

It means      is the convolution of      and     ;      
is one half of the sum of two      functions with a time 

offset of    and     respectively.  

The convolution of      with      function in the time 

domain is equal to that      times 1 in the frequency 

domain, and the time offset of    in time domain is equal to 

that      times       . Therefore, the time domain 

equation (7) is equivalent to the frequency domain equation 

(8).  

     
 

 
                       

         
 

 

 

    

  

(8) 

Similar to sinc window method,      can be seen as 

     weighted by a cosine window function         

    
 

 

 

    
 . The cosine window function         is shown 

in Fig. 7 as the blue curve, and the sinc window function 

 sinc    is also in red curve for comparison. Like the sinc 

window function, the cosine window function remains 1 for 

the most part of the frequency range and drops to 0 gradually 

as the frequency approaches     . This explains the 

mechanism of the interpolation method in suppression of 

oscillation. 

 
Fig. 7.   cos     and  sinc    window function with fmax = 107 Hz 

It is interesting to mention that the linear mid-point 

interpolation method is also used in EMT-type programs to 

suppress the numerical oscillations (chatter) caused by 

discontinuities (switching, the action of power electronics, 

etc.), which is usually named as half step interpolation. The 

idea of using half step interpolation to suppress oscillations 

probably comes from the intuition that the linear mid-point 

(the average value) of the line connecting the adjacent two 
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points lies on the correct solution, since the two points with 

numerical oscillations evenly distributed on the two sides of 

real solution [12]-[16]. However, the above analysis explains 

the plausibility of the half step interpolation method from a 

different viewpoint. The half step interpolation is actually a 

low pass filter (or multiply cosine window function in the 

frequency domain), which can filter the high frequency 

oscillations. 

This cosine window method can also be implemented in the 

frequency domain. The result obtained from the cosine 

window function method is compared with the one obtained 

from the linear mid-point interpolation method, which is 

shown in Fig. 8. It is clear that the cosine window function 

method and the linear mid-point interpolation method obtain 

identical results, which proves the linear mid-point 

interpolation method is not only equivalent to cosine window 

function method in theory, but also the two are equivalent in 

practice. 

 

Fig. 8.  Cosine window function and linear mid-point interpolation 

comparison 

In Fig. 9, the linear mid-point interpolation method is also 

compared with sinc method. Both methods have reduced the 

Gibbs oscillation dramatically and the difference between 

these two methods is marginal. 

 

Fig. 9.  The linear mid-point interpolation and sinc method comparison 

IV.  WEIGHTING ORDER 

From Fig. 9, we can see that the oscillation is greatly 

reduced but not eliminated. To obtain better results, we can 

apply a weighting order   to sinc window function (or cosine 

window function), then the new window function  sin 
     

            
  (or   cos

                
 ), where n can be 

any real number larger than zero. As weighting order n gets 

larger, the Gibbs oscillation gets more suppressed. When the 

weighting order   is an integer number, the cosine window 

function to the power of n  cos
     can also be implemented 

with the linear mid-point interpolation method, and   will be 

the rounds of the linear mid-point interpolation applied in the 

time domain. Take     as an example to prove the 

statement. The value after second round of linear mid-point 

interpolation        is as shown in (9). 

       
 

 
                    (9) 

       in (9) are obtained from the first round of linear mid-

point interpolation, and as shown in (10) and (11). 
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Substitute (10) and (11) into (9), 
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Similarly, (12) can be written, from the viewpoint of 

convolution, as in (13), 
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where      
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Transform the time domain equation (13) into a frequency 

domain equation, 

     
 

 
                         

 

 
     

 
 

 
           

 

 

 

    

     

 
 

 
            

 

 

 

    

       

          
 

 

 

    

  

         
     

(14) 

From the above equation, the second round of linear mid-

point interpolation is clear to be equivalent to multiply 

    
      in the frequency domain. In the similar way,    

can be generalized to other integers, where the  -th round of 

linear mid-point interpolation method is equivalent to multiply 

the  -th power of         in frequency domain. The effect 

of different weighting orders on step function is shown in Fig. 

10 for the linear mid-point interpolation method. It’s clear that 

the overshoot gets smaller as   gets larger. 
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Fig. 10.  Weighting order effects for the linear mid-point interpolation 

method 

V.  CALCULATION EXAMPLE 

The frequency domain simulation is widely used to verify 

the frequency-dependent transmission line models[17]-[20]. 

Fig. 11 illustrates model circuits for transient studies in this 

paper. The switching surges on a single conductor above the 

imperfectly conducting earth with resistivities ρe is simulated. 

The conductor height h = 15 m, radius r = 1 cm, length x = 1 

km, and the conductor resistivity is ρc = 2×10
-8

 Ωm. Switch S 

is closed at t = 0 s and the switching surge voltage Vr at the 

open-circuited receiving end are calculated. 

earth resistivity ρe

radius r

height h

length x

conductor resistivity ρc

e0(t)

VrIs

Ir

S

Fig. 11.  Switching surge on a single conductor 

The parameters of the conductor in this paper are calculated 

as follows [21] 

                   (15) 

                        (16) 

where           
       

           ,   is the per-

unit-length impedance and   is the per-unit-length 

admittance. 
  The relationship of each variable is given as below [21], 
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where   is the propagation constant,    is the characteristic 

impedance and    is the characteristic admittance, which can 

be calculated as in (18). 

 

          

        

       

  (18) 

Source voltage     at the sending end is set to be 1 p.u., and 

the receiving end is open, i.e. the receiving end current    is 0 

and then we can have receiving end voltage     as below,  

   
 

         
   

 

         
 (19) 

Applying inverse Fourie transform to (19), we can get the 

time domain response of the switching surge at the open end. 

The original result with Gibbs oscillation is shown in Fig. 12 

as black curve. Due to the travelling wave reflections, we can 

see the receiving end voltage jumps between 0 and 2 p.u. 

before it reaches steady state. At each discontinuity of the 

black curve, Gibbs oscillations are observed. 

After the original black curve is obtained, the linear mid-

point interpolation method is applied to the black curve. The 

first round interpolated result is shown in Fig. 12 as red curve. 

Then the mid-point interpolation method is applied to the red 

curve again to obtain the second round interpolated result, 

which is shown in Fig. 12 as blue curve.  

It’s can be seen from Fig. 12 that the three curves agree 

well at the  smooth parts, while at discontinuous points, the 

Gibbs oscillation is greatly reduced after the first round of 

interpolation (n = 1) and is even more suppressed after the 

second round of interpolation (n = 2). 

  

 
Fig. 12.  Simulation result of switching surge 
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VI.  CONCLUSIONS 

A very simple and effective approach to suppress the Gibbs 

oscillation is discussed in detail in this paper. The linear mid-

point interpolation method is proved to be equivalent to the 

multiplication of cosine window function in the frequency 

domain. The comparison of cosine window with sinc window 

further shows the plausibility of the cosine window. Because 

of the equivalency, the plausibility of the interpolation method 

is naturally demonstrated. Furthermore, a higher weighting 

order n in the frequency domain is proved to be equivalent to 

multiple interpolations (when n is an integer), which is shown 

to further suppress Gibbs oscillations as n becomes larger. The 

method is then applied to the simulation of switching surge on 

a single conductor, and a satisfactory result is obtained 

through the proposed linear mid-point interpolation method. 
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We wish to submit the paper “A Study on Interpolation and Weighting Function for Numerical 

Fourier Transform” for consideration by IPST 2021. 

Due to its ability to accurately include the frequency-dependent characteristics, the frequency 

domain simulation is widely used to verify the time domain models. However, the intrinsic Gibbs 

oscillation occurs at discontinuity when inverse Fourier transform is numerically evaluated. The 

current solutions of this issue are more complicated than the method proposed in our paper, 

which is simple, effective and can be done after the original result is obtained. Although the 

proposed method is originally used for over-head transmission line simulations, it also can be 

applied to any simulations where inverse Fourier transform is involved.  

Should you have any questions concerning this manuscript, please feel free to contact me at 

shix34@myumanitoba.ca. 

Thank you for your consideration of this paper. 
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