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Abstract—Modern power electronic circuits contain numerous 

switches driven by high frequency controllers and can cause 

discontinuities in time-domain simulation methods. This paper 

presents numerical problems resulting from discontinuities when 

simulating power electronic circuits. Limitations in existing 

methods are analyzed. Three new methods are proposed to 

improve accuracy and computational performance.  

 

Keywords: Accuracy, Discontinuity, Power electronic circuits, 

Simulation method, Time-domain simulation. 

1. INTRODUCTION 

he trapezoidal integration method is commonly used in 

time-domain simulation of electromagnetic transients and 

power electronic circuits [1],[2]. It is a one-step implicit A-

stable method with second order accuracy [3],[4] that can 

perform efficiently and accurately for a wide range of transient 

frequencies [4].  

Trapezoidal (TR) integration causes numerical oscillations 

at discontinuities. Discontinuities occur due to switching in 

power electronics circuits or due to nonlinear functions. 

Several techniques are proposed in the literature to eliminate 

such oscillations. One of them consists in using the L-stable 

Backward Euler (BE) method to reinitialize TR integration 

[5]. Another approach consists of switching from trapezoidal 

(TR) integration to BE method for two half time-steps after 

the discontinuity occurrence [4],[6]. This method is 

implemented in [7]. Numerical oscillations can be also 

eliminated using the chatter removal technique [8]. It consists 

in performing a half time-step interpolation after crossing a 

discontinuity. However, as demonstrated in this paper, the 

existing methods are not perfect. 

Discontinuities create errors and simulation methods must 

adapt to guarantee accuracy. In fixed time-step simulations, 

discontinuities may occur between two discrete time points. 

Interpolation techniques [9],[10] are applied to fall back to 

discontinuity instant and to resynchronize with simulation 

time-mesh. Inaccurate tracking of discontinuities may result in 

additional errors and even in non-characteristic harmonics for 

some power-electronic circuits [11],[12]. Interpolation is also 

used to attempt accurate tracking of multiple commutations 

occurring in-between consecutive time points [13].  
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As demonstrated in [14], a reliable time-domain simulation 

algorithm must incorporate a mechanism to accurately track 

discontinuities and a mechanism to account for instantaneous 

commutations. This is challenging because additional errors 

may be created, as demonstrated in this paper. 

It is noteworthy to mention that some numerical integration 

algorithms [3],[15]-[17] are oscillation-free. The focus of this 

paper is on the widely (major simulation tools) used 

trapezoidal integration method. 

This paper summarizes numerical issues resulting from 

discontinuities in the computation of electromagnetic 

transients with power electronic circuits and proposes 

alternative solution methods. This paper is organized as 

follows. Section 2 describes the numerical problems. Section 3 

presents existing methods and limitations. Section 4 

contributes new methods. Finally, in section 5, numerical 

results and practical simulation cases are presented. 

2. MAIN ISSUES WITH DISCONTINUITIES IN TIME-

DOMAIN SIMULATION 

2.1. Generalities 

In time-domain simulation, network components are 

described by differential equations in the form: 

 ( , )x f x t   (1) 

It is common to solve such equations using, for example,  

TR and BE integration (discretization) methods with fixed 

time-step t . The methods are recalled here: 
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
     (2) 

 tt t t ttx x f     (3) 

Discretization methods allow creating companion models 

[18] and to formulate network equations using, for example, 

modified-augmented-nodal-analysis [7]: 

 t t tA x b   (4) 

where tA  is the simulated network Jacobian matrix, tx  is 

the vector of unknowns and tb  is the vector of known 

quantities (includes history terms, known sources…). 

Equation (4) is solved at each time-point t. Solution accuracy 

can be verified using the local-error ( )ke t of a given variable 

x  at a given timepoint kt . It is found by calculating the 

difference between the numerical value kx  and its exact 

solution ( )kx t  retrieved through a reference simulation or 

analytically:  

T 
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 ( ) ( )k k ke t x x t    (5) 

For a simulation between time-points startt  and endt , the 

error can be evaluated at every instant [ , ]k start endt t t . We 

quantify the overall error by the relative rms error (RRE) [3]: 
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where rmsx is the rms value of the exact solution waveform and 

sn  is the number of simulation points.  

The next section presents numerical problems encountered 

in time-domain simulation due to the occurrence of 

discontinuities in switching circuits. 

2.2. Numerical oscillations 

In [6], numerical oscillations resulting from TR integration 

are avoided by applying two halved time-step BE integrations 

after discontinuity detection. For an inductance L, 

discretization with TR and BE methods gives 
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This technique assumes that the current in L after the 

discontinuity instant becomes exactly zero. This may not be 

true in some cases and small amplitude numerical oscillations 

may be observed.  

In the circuit of Fig. 1, the switch SW is opened at time-

point dt . The inductance is deenergized, but a current path 

remains because of the resistance in parallel. This causes 

numerical oscillation in the voltage across L. 

 
Fig. 1.  Simple RL circuit 

At dt , the simulation technique switches from TR to BE. 

The BE procedure for the two following time-points gives: 
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It is noticed that 
dt

i cannot be zero in this case. When the 

simulation is pursued with TR from the reached time-point t :  
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It is apparent that when   01 2  R t L , the 

inductance voltage shows numerical oscillations with a 

damping factor (less than one). This is typically the case for 

large resistance values. In such case, the actual first order 

transient can be captured by lowering t .When 

  01 2  R t L , there will be no numerical oscillations 

and when   01 2  R t L , it is expected that the voltage 

will decay due to the RL-branch time-constant and there will 

be no numerical oscillations. The same conclusions can be 

drawn from a circuit with a capacitor in series with a 

resistance. A discontinuity can cause numerical oscillations in 

the capacitor current. 

It is seen from (14) that to minimise the amplitude of 

oscillations, t tv  should be minimized. That requires to 

minimize /2dt tv  in (9). From (9):  
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td
i is the current in L before BE is applied. Minimizing td

i  

will minimize the amplitude of oscillations. This can be 

achieved by applying linear interpolation to detect the instant 

of zero crossing current for the switch, or using simultaneous 

switching at dt  which gives a zero switch current.  

2.3. Event localization 

In fixed time-step computations, when an event such as a 

discontinuity occurs between two consecutive time-points, 

interpolation can be applied to calculate unknown variables at 

the discontinuity instant [9]. Interpolation can be linear or 

quadratic. In the case of linear interpolation: 

 1(1 )z n nx x x       (16) 

    1z n n nt t t t      (17) 

where nx , 1nx  and zx are respectively the values of a variable 

x  at time-points nt  , 1n nt t t    and at the 

discontinuity instant 1[ , ]z n nt t t  . Quadratic interpolation 

requires the solution 1nx  at 1nt  or the solution x  at an 

intermediate point t  between nt  and 1nt   if the numerical 

method is of multi-step type, such as 2S-DIRK [19] or TR-

BDF2 [16],[17]. Quadratic interpolation is presented in [20]. 

2.4. Re-initialization after a discontinuity 

When a hard switching (ideal switch model) occurs at dt , 

there are two network solutions at dt . The first solution, 

referred to as the solution at dt
 , is the solution before 

switching and the second solution, referred to as the solution 

at dt
  is the solution right after switching (normally obtained 

by re-initialization). In this case, the history terms in (7) or in 

(8) should be values at dt
 . Without re-initialization at dt , the 

solution obtained at dt t will not be correct. This creates 

additional errors that propagate in subsequent steps. The 

problem of re-initialization is critical with TR integration 
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because history terms are both related to current and voltage. 

With BE integration, the history term for an inductance or a 

capacitance is related to the state variable. Since state 

variables cannot jump, when BE integration is applied, re-

initialization is not required for state variables. Therefore, 

switching from TR to BE is an efficient way to simultaneously 

deal with numerical oscillations and re-initialization. This 

technique was firstly introduced in [5] where a single / 2t -

BE integration is applied to reinitialize the solution at
dt
 . 

Accuracy of this technique is however compromised for 

higher values of t . An alternative is proposed in [6] and 

referred to as critical damping adjustment. 

2.5. Instantaneous commutations 

In time-domain simulation, when a discontinuity occurs at 

a time-point dt , the network solution at dt
  may require 

instantaneous commutation. 

 
Fig. 2.  Simple test circuit for instantaneous commutation 

In the circuit of Fig. 2 (taken from [14]), the controlled 

switch SW is initially closed and the ideal diode D is off. The 

DC voltage is applied across inductance L and the current 

ramps through L. When SW is opened at time-point dt , D 

must turn on at the same moment. If D is turned on one step 

later, the current in L will be zero and will keep this value in 

all subsequent steps. This incorrect result shows the 

importance of handling instantaneous commutations in 

simulation algorithms. That is done by applying a technique 

named simultaneous switching (SS) [7] which consists (after 

every switch state change) of checking all switches for new 

state changes and solving the circuit again at the same time-

point until no switch change is detected before moving 

forward in time. It is noteworthy to mention that when 

nonlinear models (nonlinear resistors) are used to represent 

semiconductor switches, the switch states can be determined 

by solving the nonlinear circuit equations [18]. 

A reliable simulation method should be able to address all 

discontinuity related issues. The following section presents 

existing methods and limitations. 

3. EXISTING METHODS 

3.1. Methods with Interpolation or SS 

Most electromagnetic transient (EMT) type methods use 

TR integration with fixed t  and various techniques to 

handle discontinuities. In the timeline of Fig. 3, the hatted 

variables are on the time-mesh and a discontinuity occurs at 

01t . It is assumed for all presented methods that:  

1. TR integration is applied to move from 0̂t  to 1̂t ; 

2. the discontinuity is detected at 1̂t ; 

3. the simulation continues with TR integration after 

discontinuity correction. 

The solution by switching from TR to BE [6],[7] for two 

halved time-steps after 1̂t  is named TR_BE. 

  
Fig. 3.  Simulation timeline for different solution methods 

TR_BE can be modified by applying simultaneous 

switching (SS) at 1̂t . This method is referred to as 

TR_BE_SS [7]. TR_BE can also be modified by applying 

interpolation to bring the simulation back to 01t before 

switching to BE for 2 halved time-steps and finally 

resynchronizing with the time-mesh at 1̂t . This method is not 

available in the literature and is referred to as TR_BE_I. 

In [8],[9] the procedure from 1̂t  applied with (4) is as 

follows: 

1. node voltages and currents are linearly interpolated to 01t ; 

2. matrix tA in (4) is modified (switch position change) 

then TR integration is applied to move from 01t  to 11t ; 

3. half time-step linear interpolation is applied to eliminate 

numerical oscillations and obtain the solution at 02t ; 

4. TR integration is applied to move from 02t  to 13t ; 

5. node voltages and currents are linearly interpolated to 

resynchronize with the time-mesh at 1̂t .  

The above method uses the chatter removal technique [8] and 

is referred to as TR_DICR. 

None of the methods presented above account for both 

event localization (through interpolation) and instantaneous 

commutations (through simultaneous switching). This is a 

serious drawback that compromises their ability to accurately 

simulate power electronic circuits. 

3.2. Method with Interpolation and SS (TR_BE_I_SS_p) 

In [14], it is proposed to combine interpolation and SS. 

According to Fig. 3 and using (4) in this paper, when the 

discontinuity is detected at 1̂t : 

1. node voltages and currents are linearly interpolated to 01t

(this is the solution at 01t ); 

2. matrix tA  s modified (switch position change) and SS is 

executed at 01t , using tb at 1̂t . The result is the solution 

at 01t ; 

3. one step t  integration is applied to move from 01t to 

11t with tb  built from the solution at 01t ; 
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4. nodes voltages and currents are linearly interpolated to 

resynchronize with the time-mesh at 1̂t . 

In the programming of the method TR_BE_I_SS_p, step 3 

is replaced by two / 2t -BE integrations (to avoid numerical 

oscillations due to TR). This is the only difference with the 

method proposed in [14]. As stated in [14], this method has 

the advantage of correctly representing switching losses for 

converters. This is because it applies interpolation and SS. 

However, there is an issue in this method. When SS is 

executed in step 2, it allows to detect all instantaneous 

commutations, but the numerical solution at this point is 

mathematically incorrect since 
1̂t

b  is for a full t  solution 

and does not correspond to 
01tb .  Therefore, the solution 

obtained at 
01t  is incorrect and creates additional error that 

will propagate to subsequent steps. Combining interpolation 

and SS is a challenging task that is addressed in the next part. 

4. NEW METHODS 

New solution methods are contributed in this section. They 

seek the best way to combine interpolation and SS to give 

more accurate simulation results. 

4.1. TR_BE_SS_I Method 

This method applies SS before interpolation. In the timeline 

of Fig. 3, the discontinuity is detected at 1̂t and then : 

1. matrix tA is modified (switch position change) and SS is 

executed at 1̂t using 
1̂t

b ; 

2. node voltages and currents are linearly interpolated to 01t  

3. two / 2t -BE integrations are applied to move from 01t

to 11t ; 

4. node voltages and currents are linearly interpolated to 

resynchronize with the time-mesh at 1̂t . 

4.2. TR_BE_I_SS_m Method 

This method is a variant of TR_BE_I_SS_p. It applies SS 

at 01t  only to find the correct states for all switches. Then, 

tb for the next step (step 3) is built from the solution at 01t  

(instead of 01t ). This variant method aims to reduce the 

additional error created by the use of the incorrect solution 

01t  in step 3 of TR_BE_I_SS_p. 

4.3. TR_I_SS_m_BE Method 

For a better reduction of computation errors created in 

TR_BE_I_SS_p, the solution at 01t  must be calculated in a 

more accurate way. Also, the use of BE to advance in time 

must be avoided, due to its only first order accuracy level [4]. 

With the method TR_I_SS_m_BE, TR is always applied to 

advance in time. BE is only applied for reinitialization at 01t . 

The following steps are executed from 1̂t : 

1. nodes voltages and currents are linearly interpolated to 01t

(this is the solution at 
01t ); 

2. matrix tA is modified (switch position change) and SS is 

executed at 01t  using 
1̂t

b ; 

3. two / 2t -BE integrations are applied to move from 01t

to 11t . tb  for the first BE integration is built from 
01t ; 

4. node voltages and currents are linearly extrapolated back 

to 01t using the solutions at 02t  and 11t (this is the 

network solution at 
01t ) ; 

5. TR integration is applied to move from 01t to 11t  with 

tb  built from the solution at 
01t ; 

6. node voltages and currents are linearly interpolated to 

resynchronize with the time-mesh at 1̂t . 

The above methods will be tested next. 

5. NUMERICAL RESULTS AND SIMULATION CASES 

5.1. Sustained Numerical oscillations 

The case of Fig. 1 is used to show persisting numerical 

oscillation problems. The numerical integration time-step is 

10t s  . The switch (initially closed) is opened at 15t ms . 

 
Fig. 4.  Numerical oscillations in the voltage across inductance L 

The voltage across inductance L for tested methods is 

presented in Fig. 4. When SW is opened, the voltage appears 

as becoming zero without oscillations (up-left figure), but 

when the graph is zoomed on, it shows damped numerical 

oscillations (up-right figure). This confirms the theoretical 

analysis presented in Section 2.2.  

The down left and right (the scale is using mV) hand-side 

figures reveal different oscillation magnitudes for shown 

methods. In the left, it is observed that TR_BE, TR_DICR, 

TR_BE_SS_I and TR_I_SS_m_BE give oscillations of similar 

magnitudes. The graph on the right hand-side allows us to 

notice that when interpolation for event localization is applied 

before switching to BE (TR_BE_I and TR_BE_I_SS_m), the 

amplitude of oscillations is significantly reduced (3000 times 

smaller). Best results are achieved with TR_BE_SS. This 

confirms the analysis in Section 2.2 for the smallest 

inductance current at switching instant. 

TR_I_SS_m_BE, TR_DICR and TR_BE_I all use 



interpolation for event localization, but TR_BE_I gives much 

smaller oscillations in amplitude than TR_DICR. Switching to 

BE integration appears to be a better approach than using the 

chatter removal technique to eliminate numerical oscillations. 

TR_I_SS_m_BE, which is a variant of the method initially 

presented in [5], is intended to eliminate numerical oscillations 

by re-initializing network variables at discontinuity instants. 

This approach is the least efficient for this circuit case as it 

gives the highest oscillations in amplitude.  

For a given t , numerical oscillations are avoided only if 

the current in L is exactly zero when the switch opens. This 

condition cannot be satisfied for this circuit because of the 

resistance in parallel. 

5.2. Accuracy of Methods with Interpolation and SS 

This case shows how accuracy is affected with some 

methods discussed in this paper. The circuit of Fig. 2 is 

simulated with 100t s   for studying accuracy with the 

methods presented in Section 4. The reference for 

comparisons is TR_BE_SS with 1t s  . The controlled 

switch (initially closed) is opened at 5.23swt ms (in 

between consecutive simulation time-points). 

   
Fig. 5.  Current in inductance L, see Fig. 2. 

Fig. 5 shows the current in inductance L. With TR_BE, the 

current drops to zero when SW is opened, which is incorrect. 

With TR_DICR, the current drops to zero at swt t  when 

the condition for the conduction of the diode is satisfied. The 

exact instant Dt when the diode starts to conduct is obtained by 

interpolation and the result gives a value very close, but not 

equal to swt . That is why the second interpolation to Dt yields 

a current value slightly lower than its value at swt  as 

observed in this graph. Also, TR_DICR applies TR integration 

at the first simulation time-point t t  with a non-initialized 

inductance voltage. That is why the graph of TR_DICR is 

slightly shifted from the other graphs.  

In Fig. 5, the other tested methods apply SS, but provide 

different waveforms. The graph of TR_BE_I_SS_m overlaps 

the graph of TR_I_SS_m_BE. Those two proposed methods 

give most accurate results. This confirms the predictions in 

Section 4.2 and 4.3. The re-initialized solution at swt is 

properly calculated, which is not the case with the other 

methods. TR_BE_SS applies SS at 1nt   (timepoint next to 

swt ). This implies that the state changes of SW and D occur 

simultaneously at 1nt , which is not true. For this reason, the 

obtained solution at 1nt  is therefore inaccurate. As 

TR_BE_SS_I uses this solution to linearly interpolate the 

current value at swt , TR_BE_SS_I also creates an additional 

error at the discontinuity point. With TR_BE_I_SS_p, the 

interpolated solution at 
swt  is correct, but the solution at 

swt

is incorrect because it is obtained using the wrong tb (as 

explained in Section 3.2). 

5.3. Simulation of a simple STATCOM circuit 

Fig. 6 presents a simple STATCOM circuit [14] . The 6 

IGBTs are driven by a PWM signal generator with a 

frequency of 1980 Hz. Each IGBT is modeled by 2 diodes and 

one controlled switch. The diode model is ideal with a 0.7 V 

DC source in series, when closed. 

A set of100ms simulations are performed with different 

time-steps:1 , 2 , 5s s s   and10 s . Eight methods are tested: 

TR_BE, TR_BE_I, TR_DICR, TR_BE_SS, TR_BE_I_SS_p, 

TR_BE_SS_I, TR_BE_I_SS_m and TR_I_SS_m_BE. The 

reference for comparisons is TR_BE_SS with 500t ns  . 

 
Fig. 6.  Simple STATCOM circuit 

For each simulation, the RRE error in voltage across 

capacitor C is calculated using (6). The results are presented 

in Fig. 7. 

 
Fig. 7.  Relative RMS error in voltage across capacitor C, for tested methods  

From Fig. 7, we see that for this case, for all t , TR_BE 

is the least accurate method, followed by TR_BE_I and 

TR_DICR. The method presented in [14] (TR_BE_I_SS_p) is 

more accurate than TR_BE, TR_BE_I and TR_DICR, but is 

less accurate than any of the 3 methods proposed in this paper. 

TR_BE_SS gives almost the same accuracy than 
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TR_BE_SS_I. Also, TR_BE_I_SS_m and TR_I_SS_m_BE 

are the most accurate methods. It is observed that for these 2 

methods, that RRE does not vary significantly with t  for 

studied range of time-steps. These methods, therefore, allow to 

use larger time-steps. 

5.4. Simulation of a DC-AC-DC converter 

The converter of Fig. 8 contains 4 IGBTs driven by a 300 

kHz step signal generator with 50% width. Each IGBT is 

modeled as in the circuit of Fig. 6. 

The circuit is simulated for 2ms , using the following 

time-steps: 30 , 40 , 50ns ns ns and 80ns . The reference for 

comparisons is a TR_BE_SS simulation with 1t ns  . When 

comparing accuracy of methods, we obtain the same 

conclusions as with the previous case (STATCOM circuit). 

For TR_BE, TR_DICR and for the methods that apply 

interpolation and simultaneous switching, Fig. 9 shows the 

number of system solves (number of times (4) is solved) in 

each simulation and for each t . The number of systems 

solves for a given method is indicative of the computation 

burden required to perform the entire simulation and allows to 

compare methods. 

 
Fig. 8.  DC-AC-DC converter 
 

 
Fig. 9.  Number of systems solves 

Fig. 9 shows that TR_I_SS_m_BE has the highest 

computational burden. This is due to the re-initialization 

process which adds 2 more system solves. TR_BE_I_SS_p 

and TR_BE_I_SS_m have almost the same computational 

burden. This is normal, since the two methods only differ in 

the variables used in BE integration after applying SS. Finally, 

it is observed that TR_BE_SS_I has the lowest computational 

burden amongst techniques with interpolation and 

simultaneous switching. This method applies SS before 

interpolation. So, in case of multiple switchings occurring 

between consecutive time-points, this method accounts for all 

of them simultaneously and applies interpolation once. This 

represents a reduction of computational burden, compared to 

other methods. The two existing TR_DICR and TR_BE 

methods have the lowest computational burden because they 

are less sophisticated than all the other methods. 

6. CONCLUSION 

In this paper, we demonstrated that, with trapezoidal 

integration, numerical oscillations can still appear even if 

Backward Euler or half time-step linear interpolation are 

applied. We show how the amplitudes of these oscillations can 

be reduced by applying interpolation or simultaneous 

switching. 

We also demonstrated that the way interpolation for event 

localization and simultaneous switching are combined can 

affect accuracy for calculated variables. We proposed 3 new 

methods that perform better than a previously published 

TR_BE_I_SS_p method. The new methods TR_I_SS_m_BE 

and TR_BE_I_SS_m are the most accurate. However, due to 

the related complexity of TR_I_SS_m_BE, we can conclude 

that the proposed alternative TR_BE_I_SS_m and 

TR_BE_SS_I are the most effective techniques to simulate 

power electronic circuits, the latter having the advantage of 

requiring less computations. 
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