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Abstract— The analysis of electromagnetic transients in power 

systems often requires intensive computations. Various methods 

have been proposed to reduce execution times and computational 

costs. A new technique is proposed here in which the system model 

is synthesized in the Laplace domain and is simulated in the time 

domain through long convolutions. The nodal matrix of the system 

under analysis is reduced by Kron's method to leave only the nodes 

related to observations and to changes in explicit form. State 

vectors derived from the reduced matrix are convolved with 

auxiliary signals to simulate transient events and the convolutions 

are performed in parallel by an algorithm based on polyphase 

QMF filter-banks. The proposed technique is applied in the 

simulation of a transient on a 17-bus network. The obtained results 

are compared with those from PSCAD / EMTDC and from the 

conventional Laplace Transform. Finally, the suitability of this 

technique for parallel processing is demonstrated by a basic 

implementation on an FPGA. 
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Transform; parallel processing; real-time; faster than real time; 
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I. INTRODUCTION 

he analysis and the simulation of electromagnetic transients 

(EMT) in power systems often demand lengthy and 

intensive computations. These tasks usually are carried out 

through sequential time-domain techniques based mostly in 

emtp techniques [1], [2]. Certain transient studies could require 

hundreds of simulations consisting in variations of the same 

network and the same phenomena; this is the case at statistical 

studies in insulation coordination [3], [4]. The aim of this paper 

is to introduce a methodology to reduce computational times 

and costs in the simulation of EMTs, especially at statistical 

EMT studies.  

Various strategies have been previously developed to reduce 

the computational times and costs of these tasks [5]. Three of 

them are identified next. A first strategy consists in dividing a 

large network into time-decoupled subnetworks that can be 

computed simultaneously with parallel processors [6]-[8]. A 

second strategy consists in using network equivalents or 

simplified models for those subnetworks outside the area of 

interest of a transient study [9]-[11]. A third strategy is to apply 

multi-rate techniques for handling slow transient events with 

larger integration time-steps than for faster events [12]-[15]. 

One problem with the time-decoupling strategy is that this 

relies on the presence of long lines or of two-port elements with 

the proper delays to provide the required time decoupling. It is 

then clear that one does not have the control over the size of the 

decoupled subnetworks and that the computational loads of the 

parallel processes can be unbalanced. As for the use of network 

equivalents and simplified models, these are usually 

represented by rational functions that are prone to passivity-

violation problems [11], [16]. Finally, varying time-step and 

multi-rate techniques are promising; however, their effective 

application to the analysis and simulation of EMTs in power 

systems is still at an early stage of development [12]-[15]. 

To avoid the previous shortcomings, a new technique is 

proposed here that combines parallel processing, multi-rate 

techniques and reduction of computational complexity. This 

technique is based on the premise that transient events can be 

effectively represented by switch operations. The network 

under study is first represented by its nodal matrix in the 

Laplace-domain [2], [17]. This nodal matrix is then reduced by 

Kron’s method [18], leaving in explicit form only the nodes of 

interest; that is, the ones presenting changes due to transients, 

as well as those related to observation variables. The reduced 

nodal form is next modified according to state changes and 

inverted to produce reduced Zred matrices, the columns of each 

of these matrixes that are involved in a switching event are 

combined into a single one 𝓩(𝑝)  characterizing the network 

response to the switch operation. The elements of 𝓩(𝑝)  are 

transformed afterwards to discrete time-domain and switch 

effects are determined by long convolutions between the 𝓩(𝑝) 

transformed elements and waveforms from auxiliary sources 

representing the switch operation. Finally, the global response 

of the network under study to a sequence of transient events is 

obtained by repeatedly applying superposition [19]. 

The major computational burden of the technique being 

proposed here is the execution of the convolutions involved in 

each transient event. Nevertheless, these convolutions are 

carried out effectively with a parallel-processing algorithm 

based on the structure of a bank of polyphase Quadrature-

Mirror Filters (QMF) [20]-[23]. 

The main contribution of this paper is thus the introduction 

of the previously described methodology that reduces 

substantially the computational times and costs of EMT 

simulations often required by statistical studies. The proposed 

methodology provides full flexibility to apply multi-rate and 

highly paralleled processes so to attain simulation speeds 

hundreds of times faster than real-time. An additional feature of 

the proposed methodology is that, by not requiring the use of 

rational approximations, it is free from passivity problems. 

Finally, it should be pointed out that, at its present state of 

development, this methodology may not be appropriate for 

long-term simulations (i.e., longer than 1s), as well as for 

dealing with detailed representations of power electronic 

devices. 
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II. NETWORK REPRESENTATION 

Consider an Nnode network represented in nodal form: 

𝑰 = 𝒀𝑏𝑢𝑠𝑽                                       (1) 

where Ybus is the corresponding N×N admittance matrix, V is 

the vector of nodal voltages and I is the vector of currents being 

injected into the nodes. It is assumed here that the elements of 

Ybus, V and I are in the Laplace domain; i.e., these are functions 

of the complex variable s=c+jꞷ with its real part “c” 

representing a damping constant and the imaginary part “ꞷ” 

corresponding to frequency [2], [17]. 

Electric power networks tend to be very large with a number 

of nodes in the order of the thousands [3], [4]. The direct 

solution of (1) can thus be impractical and often requires very 

long computational times. It is thus proposed to partition Ybus of 

(1) as follows: 

[
𝑰1

𝑰2
] = [

𝒀11 𝒀12

𝒀21 𝒀22
] [

𝑽1

𝑽2
] ,                            (2) 

where sub-matrix Y11 involves only the nodes that present 

changes due to transients (i.e., switching operations), as well as 

the ones related to observed signals. The order N1×N1 of matrix 

Y11 should thus be much smaller than that of Ybus [3], [4]. On 

the other hand, Y22 includes all the nodes whose voltages are 

not required explicitly. On applying Kron´s reduction to (2) 

[18]: 

 𝑰1 = 𝒀𝑟𝑒𝑑𝑽1 + 𝒀12𝒀22
−1𝑰2                            (3) 

with 

𝒀𝑟𝑒𝑑 = [𝒀11 − 𝒀12𝒀22
−1𝒀21].                         (4) 

It follows from (3) that: 

𝑽1 = 𝑽𝑆𝑆+𝑽𝑇𝑅                                     (5) 

with  

𝑽𝑆𝑆 = 𝒁𝑆𝑆𝑰2,                                       (6) 

𝑽𝑇𝑅 = 𝒁𝑟𝑒𝑑𝑰1                                      (7) 

𝒁𝑟𝑒𝑑 = [𝒀𝑟𝑒𝑑]−1                                 (8) 

and              𝒁𝑆𝑆 = −𝒁𝑟𝑒𝑑𝒀12𝒀22
−1              (9) 

Note in (5) that the voltage response V1 consists of two parts. 

The first one is the steady state response VSS and the second one 

is a transient disturbance VTR due to a switch operation. Usually, 

the elements of I2 are alternating current (AC) pure sinusoids at 

the nominal frequency ꞷ0 = 100π or 120π rad/s; the components 

of ZSS are thus constants evaluated at ꞷ0. In the case that the 

initial steady state is a harmonic state, ZSS must be calculated at 

each harmonic frequency kꞷ0, with k=2, 3, …, etc, and VSS is 

obtained by superposing the responses of the harmonics. 

At the beginning of a study, in the steady state, vector I1 in 

(7) is zero and, consequently, VTR is also zero. From this point 

on, the occurrence of a transient is simulated by switches being 

represented by current injections at the corresponding nodes. A 

further consideration for the methodology being presented here 

is that nonlinear elements are incorporated into the simulations 

through piecewise-linear representations. This can be done as 

described in references [19] and [24] and it should be noted that 

piecewise-linear models involve operating switches.  

III. SWITCH REPRESENTATION 

Fig. 1a depicts an open switch at nodes k and l of a network 

and vkl(t) denotes the voltage difference between its poles. 

Switch closing can be simulated by connecting a voltage source 

vclose(t) that neutralizes vkl(t), see Fig. 1b: 

𝑣𝑐𝑙𝑜𝑠𝑒(𝑡) = −𝑣𝑘,𝑙(𝑡)𝑢(𝑡 − 𝑡𝑐𝑙𝑜𝑠𝑒)                (10) 

where u(t) is the unit step function and tclose is the switch closing 

time [19]. For nodal analysis it is convenient to convert the 

voltage source at Fig. 1b into its Norton equivalent as in Fig. 

1c, with 

𝑖𝑐𝑙𝑜𝑠𝑒(𝑡) = 𝑣𝑐𝑙𝑜𝑠𝑒(𝑡) 𝑅𝑠𝑤⁄                         (11) 

and                 𝐺𝑠𝑤 = 1 𝑅𝑠𝑤  ⁄                                  (12) 

   
       (a)               (b)               (c) 
Fig. 1.  (a) Closing switch. (b) Closing representation with an auxiliary voltage 

source (c) Closing switch representation with auxiliary current source. 

In the case of an ideal switch, the inclusion of GSW will 

introduce an error; this, however, can be minimized by 

choosing a sufficiently large value for GSW; for instance, GSW = 

106 S. 

Fig. 2a depicts a closed switch between the nodes k and l of 

a network and ikl(t) represents its current. Switch opening is 

simulated by injecting a current iopen(t) at nodes k and l that 

neutralizes ikl(t) (see Fig. 2b): 

𝑖𝑜𝑝𝑒𝑛(𝑡) = −𝑖𝑘,𝑙(𝑡)𝑢(𝑡 − 𝑡𝑜𝑝𝑒𝑛)             (13) 

where topen is the switch opening time. 

 
(a)              (b) 

Fig. 2.  (a) Closed Switch (b) Simulating switch opening with an auxiliary 

current source. 

The two auxiliary currents, iclose(t) and iopen(t), are brought 

into the Laplace domain: 

𝐼𝑜𝑝𝑒𝑛(𝑠) = ℒ{𝑖𝑜𝑝𝑒𝑛(𝑡)}                                  (14) 

and          𝐼𝑐𝑙𝑜𝑠𝑒(𝑠) = ℒ{𝑖𝑐𝑙𝑜𝑠𝑒(𝑡)}                                 (15) 

where ℒ{} represents the Laplace transform. Lower-case letters 

represent time domain quantities, while upper-case letters 

represent their corresponding Laplace domain counterparts. As 

opposed to the standard method for evaluating EMTs with the 

Numerical Laplace Transform (NLT) [2], [17], the technique 

being proposed here does not require the Direct Laplace 

Transform. Its appearance in (14) and (15) is merely symbolic. 

IV. SIMULATING A SEQUENCE OF TRANSIENT EVENTS 

Operation of the above switch model modifies 𝒁𝑟𝑒𝑑  (8). 

Nevertheless, this is a simple process, as one has to apply the 



corresponding changes to a maximum of four elements of Y11 

in (4), as well as to invert the new low-order Yred matrix to 

obtain the 𝒁𝒓𝒆𝒅
(𝑝)

 matrix in turn. Therefore, a sequence of P 

switch operations can be described as follows: 

𝑽1
(0)

= 𝑽𝒔𝒔,                                     (16) 

𝑽1
(𝑝)

= 𝒁𝒓𝒆𝒅
(𝑝)

𝐼1
(𝑝)

+ 𝑽1
(𝑝−1)

,   with 𝑝 = 1,2,3, … , 𝑃,    (17) 

where 𝑽1
(0)

 represents the initial voltage response which 

usually is the steady state and 𝒁𝑟𝑒𝑑
(𝑝)

is the reduced impedance 

matrix of the system being modified according to switch 

operations. The calculation of the first term at the right-hand-

side of (17) does not require the full multiplication of order 

N1×N1 matrix 𝒁𝑟𝑒𝑑
(𝑝)

 by the order N1 vector of currents 𝐼1
(𝑝)

 as 

this vector has only two non-zero values corresponding to the 

switch nodes; i.e., k and l at Figs. 1c and 2b: 

1

1

1 1 1 1 1

( ) ( ) ( ) ( )

1,1 1, 1, 1, ( )

( ) ( ) ( ) ( )

21 2 2 2( )

( )

( ) ( ) ( ) ( )

1

p p p p

k l N p

swp p p p

k l Np

TR

p

swp p p p

N N k N l N N

Z Z Z Z
I k

Z Z Z Z

I l
Z Z Z Z

  
     
   
         

V
(18) 

Note that 𝐼𝑆𝑊
(𝑝)

 consists either of current Iclose or of Iopen, 

depending on the switch change of state. Since the elements in 

the vector of currents are zero, except for those at nodes k and 

l, expression (18) can be rewritten as follows: 

𝑽𝑇𝑅
(𝑝)

= 𝓩(𝑝)𝐼𝑆𝑊
(𝑝)

                                  (19) 
with 

𝓩(𝑝) =

[
 
 
 
 𝒵1

(𝑝)

𝒵2
(𝑝)

⋮

𝒵𝑁1
(𝑝)

]
 
 
 
 

=

[
 
 
 
 𝑍1,𝑘

(𝑝)
− 𝑍1,𝑙

(𝑝)

𝑍2,𝑘
(𝑝)

− 𝑍2,𝑙
(𝑝)

⋮

𝑍𝑁1,𝑘
(𝑝)

− 𝑍𝑁1,𝑙
(𝑝)

]
 
 
 
 

                              (20)     

Note that 𝓩(𝑝) is a vector of impedance differences and 𝐼𝑆𝑊
(𝑝)

 

is a scalar; therefore, the calculation of the vector of voltages 

𝑽𝑇𝑅
(𝑝)

 is no longer the multiplication of a matrix by a vector; it 

is instead the product of a vector by a scalar and the 

computational complexity is reduced from 𝑁1
2  to 𝑁1 . With 

this simplification, base equations (16)-(17) are restated as 

follows: 

𝑽1
(0)

= 𝑽𝑺𝑺                                                                     (21) 

and      𝑽1
(𝑝)

= 𝓩(𝑝)𝐼𝑆𝑊
(𝑝)

+ 𝑽1
(𝑝−1)

, with p = 1,2, . . , P         (22) 

After applying the inverse Laplace transform to (21) and (22) 

the base expressions take the following time domain form: 

𝒗1
(0)

= 𝒗𝑺𝑺                                                                     (23) 

and    𝒗1
(𝑝)

= 𝖟(𝑝) ∗ 𝑖𝑆𝑊
(𝑝)

+ 𝒗1
(𝑝−1)

, 𝑤𝑖𝑡ℎ 𝑝 = 1,2, . . , 𝑃     (24) 

where ‘‘∗’’ represents convolution; 𝖟(𝑝) , 𝒗𝟏
(𝑝)

, and 𝑖𝒔𝒘
(𝑝)

 are 

the inverse transforms of 𝓩(𝑝) , 𝑽𝟏
(𝑝)

 and 𝐼𝒔𝒘
(𝑝)

, respectively. 

Note that (24) represents N1 scalar equations of the form: 

𝑣1,𝑘
(𝑝)

= 𝔷𝑘
(𝑝)

∗ 𝑖𝑆𝑊
(𝑝)

+ 𝑣1,𝑘
(𝑝−1)

                                         (25) 

As base expressions (23)-(25) are implemented numerically in 

discrete time, the 𝔷𝑘
(𝑝)

 terms are obtained at a preprocessing 

stage by applying the Inverse Numerical Laplace Transform 

(INLT) [16], [19] to the 𝒵𝑘
(𝑝)

 terms at (20). The INLT requires 

to establish the maximum frequency ω𝑚𝑎𝑥 (or bandwidth) of 

the transient phenomenon being considered, as well as the 

simulation time T𝑚𝑎𝑥. Other parameters being needed for the 

INLT are [2], [17]: 

𝑁𝑡 = ⌈ω𝑚𝑎𝑥 × T𝑚𝑎𝑥/2𝜋⌉,                                         (26) 

∆𝑡 = T𝑚𝑎𝑥/N𝑡 ,                                                             (27) 

∆𝜔 = ω𝑚𝑎𝑥/N𝑡                                                           (28) 

and    𝑐 = ℜ𝔢{𝑠} = [5 × 𝑙𝑛(10)] /T𝑚𝑎𝑥 .                           (29) 

𝑁𝑡 is the number of samples, either in 𝒵𝑘
(𝑝)

 or in 𝔷𝑘
(𝑝)

, ∆𝑡 is 

the time-step, ∆𝜔 is the frequency-step and c is the damping 

constant in the complex variable s. The value of c in (29) is 

appropriate for an 𝑁𝑡 between 512 and 2048 samples and the 

accuracy attained by the INLT is in the order of 10−5 [2]. 

V. MULTI-RATE AND PARALLEL PROCESSING 

Convolutions in (24) and (25) are carried out through the 

following expression resembling the output of a FIR digital 

filter [23]: 

𝑦(𝑛) = ∑ ℎ(𝑛 − 𝑘)𝑥(𝑘) ;    𝑛 = 1,2, … , 𝑁𝑡 − 1,
𝑛

𝑘=0
     (30) 

with ℎ(𝑛)  and 𝑥(𝑘)  representing 𝔷𝑘
(𝑝)

 and 𝑖𝑆𝑊
(𝑝)

, 

respectively (see Fig. 3a). 

A.  Polyphase Filters 

Consider the following transfer function obtained by 

applying the Z transform to the filter relation in (30) [23]: 

𝐻(𝑧) = ∑ ℎ𝑖𝑧
−𝑖 ,

𝑁𝑡−1

𝑖=0
                  (31) 

where ℎ𝑖 = ℎ(𝑖) . The following regrouping of the filter 

coefficients is carried out in M blocks with L sums each [22]: 

 𝐻(𝑧) = ∑ 𝑧−𝑘𝐻𝑘(𝑧
𝑀)

𝑀−1

𝑘=0
,                       (32) 

with                      𝐻𝑘(𝑧
𝑀) = ∑ ℎ𝑘+𝑙𝑀𝑧−𝑙

𝐿−1

𝑙=0
,                       (33) 

and                        𝐿 = ⌈𝑁𝑡/𝑀⌉.                                                   (34) 

The parallel processing structure shown in Figure 3b follows 

from (32) and (33). This structure can be improved further by 

simplifying the M parallel filters Hk(zM). The order of each of 

these is M×(L-1); nevertheless, this can be reduced to (L-1) by 

the proper introduction of M-sample decimation and 

interpolation stages. Hereafter, M corresponds to the multi-rate, 

decimation, or parallelization index. Proper introduction of the 

required decimation and interpolation stages is attained here 

through a bank of Quadrature-Mirror Filters (QMF) [22], [25]. 



 
            (a)                        (b) 
Fig. 3.  Filter representation. (a) Input/output bock. (b) Polyphase. 

B.  QMF Filter Banks. 

Fig. 4 shows a QMF filter-bank in cascade-connection with 

the polyphase filter of Fig. 3b. This is the simplest M-stage 

QMF bank [22], [23]. It consists of an arrangement of filters 

(delays), decimators, and interpolators [20], [25]. ↓ 𝑀 

represents the decimation operation, i.e., the one in which only 

the first sample out of each group of M is kept. ↑ 𝑀 represents 

the interpolation operation, i.e., the one in which 𝑀 − 1 zeros 

are inserted between every two samples of the input signal. The 

output 𝑤(𝑛) of the QMF filter-bank is simply its input 𝑥(𝑛) 

delayed 𝑀 − 1 time-steps [21], [22], [25]: 

𝑤(𝑛) = 𝑥(𝑛 − 𝑀 + 1)                       (35) 

or, in the Z transform domain: 

𝑌(𝑧) = 𝑋(𝑧)𝑧−𝑀+1                           (36) 

 

The decimation and interpolation blocks of the QMF filter 

bank are time-varying processes which in general cannot be 

commuted with other filters; nevertheless, since at each 

polyphase filter the z variable appears as a power of M one can 

appeal to Noble´s identity to perform the desired commutations 

[22]-[25]. This results in the structure of Fig. 5 that enables the 

parallel computation of the convolutions in (24) and (25), along 

with the polyphase filter simplification. Note however that the 

output of the system depicted by Fig. 5 has been affected by a 

delay of M-1 time-steps. 

 

Fig. 4.  Cascade connection of a QMF Filter-Bank and a polyphase filter. 

C.  Computational Complexity of the Polyphase-QMF 

Filter Bank. 

According to (30), the calculation of y(n) requires n 

multiplications and n1 additions; thus, the following number 

of sums is needed to obtain all the outputs, from n = 0 to Nt: 

(𝑁𝑡
2 − 𝑁𝑡) /2;                                          (37) 

this along with the following number of multiplications: 

(𝑁𝑡
2 + 𝑁𝑡) /2;                                          (38) 

 
Fig. 5.  Polyphase-QMF filter-bank. 

As the convolution is implemented using the structure of 

Figure 5, this requires the execution of 𝑀2  convolution 

threads in parallel; however, each of these threads is for L=Nt/M 

samples and, therefore, the total number of sums being 

performed is: 

𝑀2[(L)2 − L]/2 = [𝑁𝑡
2 − 𝑀𝑁𝑡]/2,              (39) 

and the number of multiplications is: 

           𝑀2[(𝐿)2 + L]/2 = [𝑁𝑡
2 + 𝑀𝑁𝑡]/2                (40) 

Under the premise that at (37) to (40) the quadratic term 

prevails over the first degree term, it is concluded that both 

implementations, the direct one of (38) and the parallel one of 

Fig. 5, perform the same number of operations; However, the 

computation time of the direct implementation will be 

proportional to 𝑁𝑡
2  while that of the parallel one is 

proportional to 𝐿2 = (𝑁𝑡/𝑀)2 . This means that with the 

structure of the polyphase-QMF filter-bank, the processing 

speed increases 𝑀2 times. Recall that M is the decimation or 

parallelization factor being used. Table I presents a comparison 

of the number of operations between both processes, the direct 

one and the parallel one being proposed. 

TABLE I 

DIRECT VS. PARALLEL CONVOLUTIONS 

 Direct Structure Polyphase filter Banks 

Additions (𝑁𝑡
2 − 𝑁𝑡)/2 [𝑁𝑡

2 − 𝑀𝑁𝑡]/2+M 

Multiplicactions (𝑁𝑡
2 + 𝑁𝑡)/2 [𝑁𝑡

2 + 𝑀𝑁𝑡]/2  

Acceleration Factor 1 𝑀2 

Although the 𝑀2  speed-increase factor is attained at the 

cost of having 𝑀2 processes in parallel, this is each time less 

of a limitation due to the continuous and sustained progress of 

parallel processing hardware. Currently, for example, an 

NVIDIA Tesla K20 GPU-card can run up to 26,624 processes 

in parallel; this is, in the order of 214 processes [26]. 

One important issue regarding the proposed parallel process 

is that the data output is affected by an (M1)-sample delay. 

Nevertheless, this delay becomes irrelevant in practice when 

compared to the 𝑀2  speed-increase factor being obtained. 

Thus, this delay can be amply compensated. 



VI. APPLICATION CASE 

 

A. Test Network 

Fig. 6 presents the one-line diagram of a network composed 

of 12 overhead transmission lines, 3 underground cables and 

four generators with their respective transformers for a total of 

17 three-phase nodes. The underground cables and the overhead 

transmission lines are modeled in the discrete Laplace domain 

using a two-port nodal representation and their parameters are 

calculated according to the data in Figs. 7 and 8 [27]. Table II 

provides the parameters of the transformers and generators, 

whereas Table III presents the values of the loads in the system. 

Finally, Table IV specifies the lengths of each line (TL) and 

each cable (CL). 

Cables are composed of a core and a sheath (see Fig. 7) and 

the sheaths are considered solidly grounded at both ends. The 

aerial lines have two ground wires (see Fig. 8) which are 

considered solidly grounded at transmission towers. 

Fig. 6.  One-line diagram of test network. 

 
TABLE II 

GENERATOR AND TRANSFORMER DATA. 

Generator Value [PU] 

𝐺1 1.03∠20.2°; 𝑍𝐺1: 1.2𝛺, 38.98𝑚𝐻 

𝐺2 1.01∠10.5°; 𝑍𝐺1: 1.1𝛺, 45.52𝑚𝐻 

𝐺3 1.03∠ − 6.8°; 𝑍𝐺1: 0.9𝛺, 38.98𝑚𝐻 

𝐺4 1.01∠ − 17°; 𝑍𝐺1: 0.8𝛺, 35.23𝑚𝐻 

Transformer Value [PU] 

𝑇1 𝑍𝑇1: 1.5𝛺, 23.4𝑚𝐻 

𝑇2 𝑍𝑇2: 0.8𝛺, 29.5𝑚𝐻 

𝑇3 𝑍𝑇3: 1.6𝛺, 23.4𝑚𝐻 

𝑇4 𝑍𝑇4: 0.6𝛺, 35.23𝑚𝐻 

TABLE III 

LOAD DATA. 

Load 𝒁𝑳𝟏 𝒁𝑳𝟐 𝒁𝑳𝟑 𝒁𝑳𝟒 𝒁𝑳𝟓 

R [𝛺] 
 

2150 250 350 350 

L [𝑚𝐻] 500 380 25 60 25 

Load 𝒁𝑳𝟔 𝒁𝑳𝟕 𝒁𝑳𝟖 𝑪𝟏 𝑪𝟐 

R[𝛺] 420 200 650 - - 

L[𝑚𝐻] 30 130 250 - - 

C[μF] - - - 5 20 

TABLE IV 

LINE AND CABLE LENGTHS. 

Line 
 

 
 

 
  

 
 

Length [Km] 10 15 20 150 120 400 220 35 

Line 
  

 
  

 

 

 

Length [Km] 10 35 15 65 133 42 375  

 

 
Fig. 7. Transversal layout and electrical data for transmission cables. 

 
Fig. 8.  Transversal layout and electrical data of overhead lines. Conductor 

heights are medium (or average) heights. 

B. Simulation using a conventional CPU 

Fig. 6 network is considered initially at its AC-60 Hz steady 

state (t=0); after a time t =22.4ms the BRK switch at node 2 

closes simulating a three-phase-to-ground fault with a fault 

resistance Rfault=5Ω ; subsequently, the fault clears at time 

t=44.3ms. Figs 9 and 10 show the voltage waveforms for nodes 

2 and 12, respectively. These results are obtained with a desktop 

computer (CPU) based on an Intel i7 processor, 2.8 GHz and 8 

GB RAM. Three different methods have been used to conduct 

the simulation: 1) the proposed method with polyphase-QMF 

filter-banks and decimation factors M = 1, 8, 32, 64 and 128; 2) 

the conventional NLT [2], [17] without Kron reduction and 

sequential processing; 3) the PSCAD/EMTDC® program. 

Maximum relative differences between the proposed method 

and PSCAD/EMTDC for the results of Fig.9 are 0.0056 for 

phase a, 0.0033 for phase b and 0.012 for phase c. As for the 

results of Fig. 10, these differences are 0.0056 for phase a, 0.002 

for phase b and 0.0073 for phase c. All these differences are 

within an acceptable range and are possibly due to differences 

in the calculation of line and cable parameters between the 

methods being compared. In sum, the results of Figs. 9 and 10 

show that the three methods agree well, thus validating the one 

proposed here. 

The proposed method and the NLT method, have been 

implemented in MATLAB with simulation time 𝑇𝑚𝑎𝑥 =
60 𝑚𝑠, number of samples Nt=4096 and time-step t=14.65s. 

For the PSCAD® simulation the same t is used and the 

number of samples is increased to Nt=4250. The execution time 

for the PSCAD/EMTDC® simulation was 2.55 s. Timing tests 

were further made for the proposed method with MATLAB and 

the Parallel Computing Toolbox for the  decimation  indexes 

M = 1, 2 and 4. Their respective execution times were 226 ms, 

82.2 ms and 31.7 ms.  
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Fig. 9.  Voltage responses at node 2 in PU. 

 
Fig. 10.  Voltage responses at node 12 in PU. 

Figure 11 shows the waveforms obtained with the proposed 

method for phase a at node 12 and with decimation factors M = 

8, 32, 64 and 128. These waveforms are plotted without 

compensating the delay given by (35) and it is verified that the 

use of decimation factors does not affect the precision of the 

proposed method. 

 
Fig. 11. Voltage response at phase a of node 2 using decimation factors M = 8, 

32, 64 and 128. 

 

C. Parallel Hardware Implementation 

The suitability of the proposed method for parallel 

processors is demonstrated through an elementary 

implementation of Fig. 6 network model in a basic field 

programmable gate array (FPGA), a Virtex-6 XC6VLX240T-

1FFG1156 with a clock frequency of 60 MHz. Due to the 

limitations of the available FPGA, the implementation was 

done with fixed point arithmetic and 24 bit word-length. 

The network in Fig. 6 is considered initially in the zero-state 

and a simultaneous energization occurs at time t=0. This 

simulation is carried out in the FPGA with a decimation factor 

M=2. It is also performed with PSCAD/EMTDC® as well as 

with the conventional NLT without Kron reduction. The 

simulation time is 𝑇𝑚𝑎𝑥 = 40 𝑚𝑠  and the time-step is 

t=78.125s; this results in 𝑁𝑡 = 512  samples and a 

bandwidth of 12.8 kHz. Fig. 12 provides the three-phase voltage 

waveforms at node 1. A good agreement is seen between the 

three methods. The maximum relative differences between the 

FPGA results and PSCAD/EMTDC are 0.012 for phase a, 

0.0027 for phase b and 0.0076 for phase c. These differences 

are possibly due to the use of fixed-point Arithmetic and 24 bit 

word-length in the FPGA simulation; this is in addition to the 

differences in the calculation of the line and cable parameters 

between both methods. FPGA simulation time was of 21.7s 

which amounts to 1843 times the real-time speed. This confirms 

the ability of the proposed technique to perform simulations 

both, in real time and in faster than real-time. 

 
Fig. 12. FPGA simulation and comparison with NLT and PSCAD/EMTDC®. 

VII. CONCLUSIONS 

In this paper, a new parallel-processing technique has been 

proposed to decrease computational times and costs involved in 

the analysis and simulation of power system EMTs. Its major 

field of applications is at statistical studies to execute hundreds 

of EMT simulations that involve variations of the same network 

and the same phenomena. In this technique, the model for the 

network under study is synthesized offline in the Laplace 

domain, avoiding all instabilities associated to time-domain 

methods, and it is executed in the time domain through long 

convolutions. Unlike other methods proposed elsewhere, the 

parallelization technique used here is independent of the 

topology of the network under study and does not require time-

decoupling elements, such as long lines. This feature enables 

the computational-load balancing of the parallel processes 

involved in a simulation.  

Computational-complexity reduction has been achieved 

through Kron´s method. This avoids resorting to rational 

equivalents and reduced-order models that are prone to 

passivity violations. Multiresolution analysis has been 

introduced in the proposed technique through algorithms based 

on polyphase-QMF filter banks. These algorithms have 

provided speed-increase factors proportional to 𝑀2, being M 

the parallelization (or decimation) index. Although this factor 

is attained at the cost of running 𝑀2  parallel processes 

(threads), this is each time less of a limitation due to the 

continuous and sustained progress of parallel processing 

hardware. 

The technique being proposed here has been applied in the 

simulation of a transient on a 17-bus network including full 

frequency-dependent lines and cables. The simulation results 

have been compared satisfactorily well with those from 

PSCAD/EMTDC®, as well as from the conventional NLT 

technique without Kron reduction. The affinity of the proposed 

technique with parallel processors has been further 

demonstrated by an elementary implementation of it in a basic 

FPGA. This implementation has attained simulation speeds that 

are 1843 times faster than real time. 

Finally, at its present state of development, the proposed 

method may not be appropriate for both, long term simulations 

(i.e., longer than, say, 1 s) and EMT simulations requiring the 

detailed modeling of power electronic-based devices. These 

two topics could be subjects for future research. 



VIII. REFERENCES 

[1] Hermann W. Dommel, EMTP-Theory Book, Bonneville Power 

Administration, Portland, OR, USA, 1996. 

[2] Martinez-Velasco, Juan A., Transient Analysis of Power Systems: 
Solution Techniques, Tools and Applications, John Wiley & Sons, 2014. 

[3] H. Khalilnezhad, M. Popov, L. van der Sluis, J. A. Bos and A. Ametani, 

"Statistical Analysis of Energization Overvoltages in EHV Hybrid OHL-
Cable Systems," IEEE Trans. Power Delivery, vol. 33, no. 6, pp. 2765-

2775, Dec. 2018. 

[4] Mestas, Patricia, and Maria Cristina Tavares, "Relevant parameters in a 
statistical analysis-Application to transmission-line energization." IEEE 

Trans. Power Delivery, vol. 29, no. 6, pp. 2605-2613, 2014. 

[5] M. Armstrong, J. R. Marti, L. R. Linares and P. Kundur, "Multilevel 
MATE for efficient simultaneous solution of control systems and 

nonlinearities in the OVNI simulator," IEEE Trans. Power Systems, vol. 

21, no. 3, pp. 1250-1259, Aug. 2006 
[6] Z. Zhou and V. Dinavahi, "Parallel Massive-Thread Electromagnetic 

Transient Simulation on GPU," in IEEE Transactions on Power Delivery, 

vol. 29, no. 3, pp. 1045-1053, June 2014. 
[7] T. Duan, Z. Shen and V. Dinavahi, "Multi-Rate Mixed-Solver for Real-

Time Nonlinear Electromagnetic Transient Emulation of AC/DC 

Networks on FPGA-MPSoC Architecture," in IEEE Power and Energy 
Technology Systems Journal, vol. 6, no. 4, pp. 183-194, Dec. 2019 

[8] M. Matar and R. Iravani, "The Reconfigurable-Hardware Real-Time and 

Faster-Than-Real-Time Simulator for the Analysis of Electromagnetic 
Transients in Power Systems," in IEEE Transactions on Power Delivery, 

vol. 28, no. 2, pp. 619-627, April 2013. 
[9] M. Kizilcay, “Low-order network equivalents for electromagnetic 

transients studies”, European Trans. on Electrical Power, 3(2), pp.. 123-

129, 1993. 
[10] M. Matar and R. Iravani, "A Modified Multiport Two-Layer Network 

Equivalent for the Analysis of Electromagnetic Transients," in IEEE 

Transactions on Power Delivery, vol. 25, no. 1, pp. 434-441, Jan. 2010. 
[11] D. Shu, X. Xie, Z. Yan and V. Dinavahi, "A Two-Layer Network 

Equivalent With Local Passivity Compensation With Applications to 

Hybrid Simulations of MMC-Based AC–DC Grids," in IEEE 
Transactions on Power Systems, vol. 34, no. 6, pp. 4514-4524, Nov. 2019 

[12] A. Semlyen and F. de Leon, "Computation of electromagnetic transients 

using dual or multiple time steps," IEEE Trans. on Power Systems, vol. 8, 
no. 3, pp. 1274-1281, Aug. 1993. 

[13] H. Zini and G. Ratta, "Multirate modeling scheme for electromagnetic 

transients calculation," IEEE Trans. on Power Delivery, vol. 19, no. 1, pp. 
240-247, Jan. 2004. 

[14] H. Ye, K. Strunz, “Multi-scale and frequency-dependent modeling of 

electric power transmission lines”, IEEE Trans. on Power Delivery, 
vol.33, no 1, pp. 32-41, 2018. 

[15] T. Cheng, T. Duan and V. Dinavahi, "Parallel-in-Time Object-Oriented 

Electromagnetic Transient Simulation of Power Systems," IEEE Open 
Access Journal of Power and Energy, vol. 7, pp. 296-306, 2020. 

[16] S. Grivet-Talocia, B. Gustavsen, Passive macromodeling: Theory and 

applications. John Wiley & Sons, 2015. 
[17] P. Moreno and A. Ramirez, "Implementation of the Numerical Laplace 

Transform: A Review”, IEEE Trans. on Power Delivery, vol. 23, no. 4, 

pp. 2599-2609, Oct. 2008. 

[18] Dörfler, Florian, and Francesco Bullo. "Kron Reduction of Graphs With 

Applications to Electrical Networks." IEEE Trans. on Circuits and 

Systems, vol. 60, no. 1, pp. 150-163, 2013. 
[19] Pablo Moreno, Pablo Gómez, José L. Naredo, J. L. Guardado, “Frequency 

domain transient analysis of electrical networks including non-linear 

conditions”, International Journal of Electrical Power and Energy 
Systems, Vol. 27, Issue 2, pp. 139-146, Feb. 2005. 

[20] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, 

Prentice-Hall Inc., Upper Saddle River, New Jersey 1983 
[21] N. J. Fliege, Multirate digital signal processing, vol. 994, New York: John 

Wiley, 1994. 

[22] M. Vetterli., "A theory of multirate filter banks," IEEE Trans. on 
Acoustics, Speech and Signal Processing, vol.35-3, pp.356-372, Mar 

1987. 

[23] John G, Proakis, Dimitris G. Manolakis, Digital Signal Processing”, 4th 
Ed., Prentice Hall, 2007. 

[24] C. M. Luna, P. Moreno and J. R. Loo-Yau, "Transformer model with 

saturation effects for frequency-domain transients simulation," in IET 
Generation, Transmission & Distribution, vol. 11, no. 1, pp. 49-56, 2017 

[25] J. R. Zuluaga and J. L. Naredo, "Poly-phase filter-bank realization for the 

simulation of electric-network transients," 11th International Conference 

on Electrical Engineering, Computing Science and Automatic Control 

(CCE), Campeche, 2014. 
[26] GPU Tesla K20, Datasheet NVIDIA. 

https://www.orbitalstore.mx/nvidia/tesla-k20.html. 

[27] J.A. Martinez-Velasco, Power System Transients: Parameter 
Determination, CRC Press, Boca Raton FL, 2009. 




