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Abstract—The universal line model (ULM) is a transmission 

line model developed directly in the phase domain that is 

recognized for its accuracy and generality. It is currently the 

reference model for transient studies, but is exclusively found on 

commercial electromagnetic transients programs. This paper 

describes an implementation of ULM in the Alternative 

Transients Program (ATP), which is free for licensed users, using 

the foreign models tool and the type-94 component available in 

this platform. The implemented model is validated through 

comparisons with EMTP-RV. Then, it is used to investigate 

transients on overhead transmission lines considering a rigorous 

representation of the ground return impedance and ground 

admittance assuming frequency-dependent ground parameters. 
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I.  INTRODUCTION 

HE analysis of transients on realistic power systems is 

usually performed in electromagnetic transient (EMT) 

simulators. For this, the correct modeling of the system 

components is crucial, especially the solution of the 

transmission line equations in the time domain. The two most 

popular transmission line models currently available in EMT-

type tools are the frequency-dependent model proposed by 

Marti (JMarti) [1] and the Universal Line Model (ULM) [2].  

Marti’s model solves the transmission line equations in the 

modal domain considering a real and constant transformation 

matrix. The magnitudes of the propagation function and 

characteristic impedance of each line mode are represented as 

rational functions using Bode's asymptotic fitting [3]. The 

resulting model can accurately simulate a number of overhead 

line configurations [4], even if frequency-dependent ground 

parameters are considered [5]. However, it is not 

recommended to simulate underground cable systems and 

strongly asymmetric overhead transmission lines because the 

associated eigenvectors present a strong variation with 

frequency. In this case, the assumption of a real and constant 

transformation matrix no longer holds.  
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ULM circumvents the limitations of Marti’s model by 

solving telegrapher's equations directly in the phase domain. It 

has been successfully used to simulate transients on overhead 

transmission lines and underground cables [6]. The model is 

based on the fitting of both the characteristic admittance 

matrix 𝒀𝑪 and the propagation matrix 𝑯 with complex poles 

and zeros [7]. The development of ULM is relatively recent 

and the model has been continuously improved [8].  

Despite its advantages over Marti’s model, ULM is only 

available in commercial EMT simulators (e.g., [9], [10]). Its 

absence in the Alternative Transients Program (ATP), which is 

free to licensed users, frequently poses difficulties to the 

analysis of transient phenomena for which Marti’s model is 

not sufficiently accurate. In principle, this problem could be 

overcome with Noda’s phase-domain transmission line model 

[11], which is available in ATP. However, this model is 

sensitive to the selected time step and prone to fitting errors 

[12]. As a consequence, it is often difficult for ATP users to 

deal with cases that require a phase-domain line model. This 

context has motivated this paper, which presents an 

implementation of ULM in ATP. In this proposal, the line 

parameters are first calculated and fitted in MATLAB. The 

fitted parameters are then used as input parameters of a code 

written in C language that implements the ULM equations. 

The code is finally interfaced with ATP as a foreign model 

using a type-94 component [13]. 

This paper is organized as follows. Section II discusses 

ULM in brief. Section III presents its implementation in ATP. 

Section IV validates the implemented model using EMTP-RV 

as a reference. Section V evaluates the impact of considering 

more rigorous formulations for the calculation of the ground 

return impedance and per-unit-length admittance including 

frequency-dependent soil electrical parameters. Finally, 

Section VI presents the conclusions.   

II.  ULM 

ULM is presented in detail in [2]. This section aims to 

highlight the aspects of the model that are the most important 

for its implementation. 

A.  Model Formulation 

The currents and voltages in terminals k and m of a 

transmission line of length ℓ with NC conductors (see Fig. 1) 

are related in the frequency domain as [7] 

 

𝑰𝒌 − 𝒀𝒄𝑽𝒌 = −𝑯(𝑰𝒎 + 𝒀𝒄𝑽𝒎), (1) 

𝑰𝒎 − 𝒀𝒄𝑽𝒎 = −𝑯(𝑰𝒌 + 𝒀𝒄𝑽𝒌), (2) 

 

where 𝑽𝒌 and 𝑰𝒌 are the voltage and current vectors at the 
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sending end of the line, 𝑽𝒎  and 𝑰𝒎  are the voltage and 

current vectors at the receiving end of the line, 𝒀𝒄 is the 

characteristic admittance matrix, given by 

 

𝒀𝑪 = 𝒀−𝟏√𝒀𝒁, (3) 

 

and 𝑯 is the propagation function, given by 

 

𝑯 = exp(√𝒀𝒁ℓ), (4) 

 

where 𝒁 and 𝒀 are respectively the per-unit-length series 

impedance and shunt admittance of the line, both square 

matrices of order NC.  

 

 
Fig. 1.  Transmission line of length ℓ. 

 

Equations (1) and (2) are the basis of ULM. They lead to 

the equivalent circuit shown in Fig. 2, where 𝑩𝒌 and 𝑩𝒎 are 

  

𝑩𝒌 = 𝑯(𝑰𝒎 + 𝒀𝒄𝑽𝒎), (5) 

𝑩𝒎 = 𝑯(𝑰𝒌 + 𝒀𝒄𝑽𝒌). (6) 

 
Fig. 2.  Frequency-domain equivalent circuit of ULM. 

 

The time-domain equivalents of (1) and (2) read 
  

𝒊𝒌(𝑡) − 𝒚𝑪(𝑡) ∗ 𝒗𝒌(𝑡) = −𝒃𝒌(𝑡), (7) 

𝒊𝒎(𝑡) − 𝒚𝑪(𝑡) ∗ 𝒗𝒎(𝑡) = −𝒃𝒎(𝑡), (8) 

𝒃𝒌(𝑡) = 𝒉(𝑡) ∗ [𝒊𝒎(𝑡) + 𝒚𝒄(𝑡) ∗ 𝒗𝒎(𝑡)], (9) 

𝒃𝒎(𝑡) = 𝒉(𝑡) ∗ [𝒊𝒌(𝑡) + 𝒚𝒄(𝑡) ∗ 𝒗𝒌(𝑡)], (10) 

 

where the variables represented with lowercase letters are the 

time-domain counterparts of the respective quantities in (1)-

(6), and the symbol ‘*’ indicates the convolution operation. To 

solve the convolutions in (7)-(10) efficiently, it is necessary to 

approximate 𝒚𝑪(𝑡) and 𝒉(𝑡) as sums of exponentials [7]. In 

ULM, this process is performed in the frequency domain by 

fitting 𝒀𝑪 and 𝑯 as sums of rational functions as described 

in the next sections. 

B.  Characteristic admittance matrix 𝒀𝑪 

The characteristic admittance matrix presents a smooth 

behavior and can be fitted directly in the phase domain with a 

relatively small number of poles [14]. The poles of the 

approximate matrix 𝒀̃𝑪 are obtained by fitting the trace of 𝒀𝑪 

with the vector fitting technique [15]. Thereby, all elements of 

𝒀̃𝑪 are represented using a single set of poles. The residuals 

associated with each element of 𝒀̃𝑪  are obtained as the 

solution of a weighted least squares problem. The approximate 

matrix is represented as 

 

𝒀𝑪 ≈ 𝒀̃𝑪 = 𝒌𝟎 + ∑
𝒌𝒏

𝑠 − 𝑎𝑛

𝑁𝑝𝑌

𝑛=1

 (11) 

 

where s is the complex frequency, 𝒌𝟎  is a real matrix, 

𝒌𝟏: 𝒌𝑁𝑝𝑌 are real or complex matrices of residues associated 

with each element of 𝒀𝑪, and 𝑎1: 𝑎𝑁𝑝𝑌  are the 𝑁𝑝𝑌  poles 

required for fitting 𝒀𝑪.  

C.  Propagation matrix 𝑯 

The fitting of the propagation matrix first requires 𝑯 to be 

transformed to its modal domain equivalent 𝑒−√𝝀ℓ as  

 

𝑒−√𝝀ℓ = 𝑻𝑰
−𝟏𝑯𝑻𝑰 (12) 

 

where the columns of matrix 𝑻𝑰 contain the eigenvectors of 

𝒀𝒁 and 𝝀 is a diagonal matrix with the eigenvalues of 𝒀𝒁, 

both calculated using the Newton-Raphson method as in [16]. 

Equation (12) can then be rewritten as [2] 

 

𝑯 = ∑ 𝑫𝒋𝑒
−√𝜆𝑗ℓ

𝑁𝑚𝑜𝑑

𝑗=1

, 

 

(13) 

 

 

where the index j refers to the j-th transmission line mode, and 

𝑁𝑚𝑜𝑑  is the total number of modes. Matrices 𝑫𝒋 are obtained 

by multiplying the j-th column of 𝑻𝑰  by the j-th row of 

(𝑻𝑰)
−1 [2]. Each exponential term in (13) corresponds to the 

propagation function associated with a given mode, whose 

fitting is performed indirectly by defining 𝑃𝑗 as [1] 

 

𝑃𝑗 = 𝑒
−√𝜆𝑗ℓ

𝑒𝑠𝜏𝑗 , 

 

(14) 
 

 

where 𝜏𝑗  is the minimum time delay associated with j-th 

mode. The use of the lossless propagation time delay for 𝜏𝑗 

can lead to a significant loss of accuracy in the fitting process. 

The procedure proposed in [8] was adopted in this paper to 

determine the time delay that generates the smallest fitting 

error for a given approximation order. 

The approximate matrix 𝑯̃ can then be represented as 

 

𝑯 ≈ 𝑯̃ = ∑ (∑
𝒄̅𝒊𝒋

𝑠 − 𝑎̅𝑖

𝑁𝑝𝐻

𝑖=1

)𝑒−𝑠𝜏𝑗

𝑁𝑚𝑜𝑑

𝑗=1

, (15) 

 

where 𝑎̅1: 𝑎̅𝑁𝑝𝐻  are the 𝑁𝑝𝐻  poles required for fitting 𝑃𝑗 

using the vector fitting technique, and 𝒄̅𝒊𝒋  are matrices of 

residuals that approximate 𝑫𝒋𝑃𝑗 assuming the same poles of 

𝑃𝑗 [2]. 
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D.  Time domain implementation 

The numerical solution of (7)-(10) in the time domain using 

recursive convolutions results in the Norton-equivalent circuit 

shown in Fig. 3, where 𝑮 is the conductance matrix defined as  

 

𝑮 = 𝒌𝟎 + ∑𝒒𝒏

𝑁𝑝𝑌

𝑛=1

, (16) 

 

and 𝒊𝒌𝒉𝒊𝒔𝒕(𝑡) is the historical current source calculated as  

 

𝒊𝒌𝒉𝒊𝒔𝒕(𝑡) = −𝒋𝒌𝒉(𝑡 − ∆𝑡) + 𝒃𝒌(𝑡). (17) 

 

The term 𝒋𝒌𝒉(𝑡) is calculated as follows 

 

𝒋𝒌𝒉(𝑡 − 𝛥𝑡) = ∑[𝑝𝑛 ∙ 𝒋𝒌𝒏(𝑡 − 𝛥𝑡)]

𝑁𝑝𝑌

𝑛=1

+ (∑𝒓𝒏

𝑁𝑝𝑌

𝑛=1

)𝒗𝒌(𝑡 − 𝛥𝑡). 

(18) 

 

where 

 

𝒋𝒌𝒏(𝑡) = 𝑝𝑛 ∙ 𝒋𝒌𝒏(𝑡 − 𝛥𝑡) + 𝒒𝒏 ∙ 𝒗𝒌(𝑡)
+ 𝒓𝒏 ∙ 𝒗𝒌(𝑡 − 𝛥𝑡). 

(19) 

 

The constants 𝑝𝑛, 𝒒𝒏 and 𝒓𝒏 are given by [17] 

 

𝑝𝑛 = (2 + 𝑎𝑛𝛥𝑡)/(2 − 𝑎𝑛𝛥𝑡), (20) 

𝒒𝒏 = 𝒓𝒏 = 𝒌𝒏𝛥𝑡/2 − 𝑎𝑛𝛥𝑡. (21) 

 

where 𝛥𝑡 is the simulation step. The term 𝒃𝒌(𝑡), in turn, is 

calculated as follows 

 

𝒃𝒌(𝑡) = ∑ ∑ 𝑝̅𝑖𝒃̅𝑖𝑗(𝑡 − ∆𝑡)

𝑁𝑝𝐻

𝑖=1

𝑁𝑚𝑜𝑑

𝑗=1

+ ∑ [(∑ 𝒒̅𝑖𝑗

𝑁𝑝𝐻

𝑖=1

)𝒇𝑘,𝑗(𝑡)]

𝑁𝑚𝑜𝑑

𝑗=1

 

(22) 

where 

𝒃̅𝑖𝑗(𝑡) = 𝑝̅𝑖𝒃̅𝑖𝑗(𝑡 − ∆𝑡) + 𝒒̅𝑖𝑗𝒇𝑘,𝑗(𝑡), (23) 

𝒇𝑘,𝑗(𝑡) = 𝒇̅𝑘,𝑗(𝑡 − 𝜏𝑗) + 𝒇̅𝑘,𝑗(𝑡 − ∆𝑡 − 𝜏𝑗), (24) 

𝒇̅𝑘,𝑗(𝑡) = 𝒊𝑚,ℎ𝑖𝑠𝑡(𝑡) + 2𝒊𝑚(𝑡). (25) 

 

The constants 𝑝̅𝑖and 𝒒̅𝑗𝑖are given by [17] 

 

𝑝̅𝑖 = (2 + 𝑎̅𝑖∆𝑡)/(2 − 𝑎̅𝑖∆𝑡), (26) 

𝒒̅𝑖𝑗 = 𝒄̅𝑖𝑗∆𝑡/(2 − 𝑎̅𝑖∆𝑡). (27) 

 

For the calculation of 𝒊𝒎𝒉𝒊𝒔𝒕(𝑡) , it suffices to change 

subscript 𝑘 to 𝑚 (17)-(27), and vice-versa. Since there is no 

way to ensure that 𝜏𝑗  is an integer multiple of ∆𝑡 , the 

computational implementation of the equations for calculating 

𝒃𝒌(𝑡) and 𝒃𝒎(𝑡) requires interpolation. In this paper, linear 

interpolation was adopted in order to sample the values of 

𝒇𝑘,𝑗(𝑡) and 𝒇𝑚,𝑗(𝑡) at instants (𝑡 − ∆𝑡 − 𝜏𝑗) and (𝑡 − 𝜏𝑗). 

 

 
Fig. 3.  Time-domain equivalent circuit of ULM. 

III.  IMPLEMENTATION STRATEGY 

The implementation of ULM in ATP follows a strategy that 

combines the use of MATLAB, in a first stage, and ATP, in a 

second stage, as shown in Fig. 4. Initially, the user enters the 

transmission line data through a graphical interface developed 

in the GUIDE environment of MATLAB. The associated code 

is responsible for calculating the line parameters, the time 

delays, and the functions 𝒀𝒄 and 𝑯 plus their fitting. In the 

end, a text file is generated containing the poles and residues 

of 𝒀𝒄  and 𝑯, the elements of 𝑮, and the minimum time 

delays associated with each mode. This file acts as a link 

between MATLAB and ATP, containing all information 

necessary to perform the transient simulation in ULM.  

 

 
Fig. 4.  Diagram of the strategy used in the implementation of ULM in ATP. 

 

In the second stage, a foreign model implemented in ATP 

reads the text file generated by MATLAB. In this model, the 

ULM equations (16)-(27) were implemented in ANSI C 

language. The program initializes the variables necessary for 

calculating the transient in the first time step. From the 

voltages and currents at the line terminals, the foreign model 

calculates the historical currents, feeding back a type-94 

component in ATP at each time step. Since the 

communication of the foreign model with ATP occurs with a 

delay of one time step [13], this effect is compensated in the 

calculation of the historical current sources. Finally, ATP 
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returns the values of the terminal voltages and currents to the 

foreign model. More details on the implemented foreign 

model are presented in the next subsection.  

A.  Foreign model 

Foreign model is a tool available in ATP which allows the 

creation of new models using high-level programming 

languages such as C/C++. The use of the foreign model in this 

paper required the manipulation of the following three files: 

● ULM.c: source code of the ULM written in ANSI C. The 

program follows all the syntax and programming of a common 

ANSI C code. However, its structure must contain the 

functions “ULM_i” (function executed in the first time step) 

and “ULM_m” (executed in the next time steps). These 

functions must be registered in the file “fgnmod.f”. The 

variables xdata, xin, xout, xvar are ATP standards and must be 

present in the C program because they link ATP information 

with the foreign model. The flowchart of ULM.c is presented 

in Fig. 5. 

● makefile_c: This file is responsible for telling the compiler 

which files and libraries are linked to ATP, including saying 

which compiler will do that task. 

● fgnmod.f: this is where the foreign model is registered. In 

the subroutine "FGNMOD" it is possible to register foreign 

models as they are declared in the models present in ATP. 

The program is compiled and linked to tpbig.exe, which 

now contains the developed foreign model. 

 

 
Fig. 5.  Flowchart of ULM.c. 

B.  Norton type-94 with transmission  

The equivalent circuit shown in Fig. 3 is the basis for 

implementing ULM in ATP, and “Norton type-94 with 

transmission” is the most suitable component in ATP to model 

this circuit. The type-94 component is a user-defined multi-

branch circuit component. The operation of the component is 

completely described in the MODELS section of the data case. 

The model can be written as a native model using the 

MODELS language, or it can call a foreign model using other 

programming languages [13]. The inputs, outputs and internal 

default variables described below are intrinsic to the 

component (including the names of the variables): 

● Input: left-node voltage and right-node voltage at time t; 

vectors if multi-node; 

● Output: two Norton equivalent circuits of the component in 

the form of a current source in parallel with the equivalent 

conductance of the component; if multi-node, the current 

source is a vector, and the conductance is a matrix; values of 

current source and admittance are predicted for next time step. 

● Internal variables: Norton source values and conductances 

at left and right terminals. 

Fig. 6 shows the equivalence between the default variables 

required by the type-94 component and the time-domain 

equivalent circuit of ULM, shown in Fig. 3. The variables 

starting with ‘r’ refer to the right terminal, and those starting 

with ‘l’ refer to the left terminal. The number of phases is 

represented by the variable ‘n’, which cannot be changed, and 

‘ng’ is the number of elements to represent the conductance 

required by the type-94 component. The historical current 

sources are represented by the variables ‘lis’ and ‘ris’, which 

receive their values through the foreign model. The foreign 

model, in turn, receives the voltage (lv, rv) and current (li, ri) 

signals from the transmission line terminations. Since the 

output of the foreign model is sent to ATP with one time step 

delay, the historical currents are advanced by one time step in 

the memory buffer used in the program. The terms related to 

the conductance matrix 𝑮 are calculated by ATP from ‘lg’ and 

‘rg’. Fig. 7 illustrates the use of a type-94 element to represent 

a six-phase transmission line modeled with ULM in 

ATPDraw. 

 

 
Fig. 6.  Three-phase equivalent circuit of ULM in ATPDraw.  

 

 
Fig. 7.  Six-phase equivalent circuit of ULM implemented in ATPDraw 

using a type-94 element. 

C.  Per-unit-length parameter calculation 

The per-unit-length parameter calculation is performed in 

MATLAB considering expressions for the external inductance 

and capacitance of the line that are based on the assumption of 

widely-spaced conductors [18]. The internal impedance is 

calculated using the approximate expression given in [18], 

which presents a good agreement with the exact solution valid 

for tubular conductors in the whole frequency range.  

The modeling of a lossy soil is relevant for the analysis of 

transients in transmission lines. Traditionally, in EMT 

simulation tools either Carson’s equations [19] or their 

logarithmic approximations [20] are used for representing the 

ground return impedance. Also, the ground admittance is 

neglected. Finally, constant soil parameters are assumed. This 
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set of assumptions is only valid if the soil is a good conductor, 

that is, if 𝜎 ≫ 𝜔𝜀, where 𝜎 is the soil conductivity, 𝜔 is the 

angular frequency, and 𝜀 is the soil permittivity. This poses 

restrictions to the simulation of high-frequency transients on 

transmission lines located above a poorly conducting soil. 

In the ULM implementation presented this paper, the 

limitations above are overcome by calculating the ground-

return impedance with Nakagawa’s integral equation [21], 

which is a quasi-TEM approximation of the full wave model 

proposed by Kikuchi [22]. As opposed to Carson’s equations, 

this equation can be used for simulating high-frequency 

transients even in poorly conducting soils. Also, it allows the 

consideration of values of relative permittivity other than 

unity, which is implicitly assumed in Carson’s work [5]. If 

𝜎 ≫ 𝜔𝜀  is assumed, Nakagawa’s equations reduce to 

Carson’s equations [5]. Similarly as in [5], the ground 

admittance was considered using Wise’s integral equation [21] 

[23]. For representing a frequency-dependent soil, the causal 

model of Alipio and Visacro was used [24]. 

IV.  MODEL VALIDATION 

A.  Case A: Double-circuit transmission line 

Case A considers a 10-km long 230-kV three-phase line 

with two shield wires and a 115-kV three-phase horizontal line 

running in parallel [25], as shown in Error! Reference source 

not found.. In this test case, a step voltage was applied at the 

sending end of the 230-kV line, on phase a, assuming all 

remaining line terminals to be grounded on terminal k and 

open-ended on terminal m. The voltages induced on the 115-

kV line were calculated considering terminal k grounded and 

terminal m open-ended. In all simulations, the fitting was 

performed from 10-1 to 108 Hz considering a shunt 

conductance of 0.2×10-9 S/m. The fitting process considered 

20 poles for 𝒀𝑪 and 𝑯, and the ground return impedance was 

calculated using Carson’s integral equations [19]. In order to 

provide a fair comparison with the transmission line models 

available in EMT simulators, the ground admittance was 

neglected.  

 
Fig. 8.  Parallel line configuration considered in case A. 

 
Fig. 9.  Equivalent circuit for case A. 

 

Fig. 10 shows voltages calculated on phase d at terminal m 

of the 115-kV line considering the ULM component 

implemented in ATP (ULM-ATP), ULM available in EMTP-

RV (ULM-RV), and JMarti model available in ATP. The 

simulations considered a soil resistivity of 100 Ωm and 

constant soil parameters. It is observed that the voltage 

waveforms calculated with ULM-ATP and ULM-RV are 

coincident, which validates the implemented model. Although 

not shown, similar results were obtained for the remaining 

phase conductors. The voltage waveform calculated with 

Marti’s model exhibits some deviations when compared with 

ULM, but the model performance can be considered 

acceptable. The observed differences are due to the fact that 

the eigenvectors associated with the line configuration shown 

in Error! Reference source not found. present a non-

negligible variation with frequency.  

 
Fig. 10. Voltage at the receiving end of the 115-kV line (phase d). Simulation 

for 100 -m soil assuming constant soil parameters. 

 

Fig. 11 repeats the previous simulation, except that now a 

10000 Ωm soil resistivity is considered. Once again, an 

overlapping is observed between the curves calculated with 

ULM-ATP and ULM-RV, whereas the voltage waveform 

calculated with Marti’s model present small deviations due to 

the use of a real and constant transformation matrix. 

 
Fig. 11. Voltage at the receiving end of the 115-kV line (phase d). Simulation 

for 10000 -m soil assuming constant soil parameters. 

B.  Case B: Rural distribution line parallel with a fence 

Case B considers a 3-km long rural distribution line 2-m 

apart from a fence, as shown in Fig. 12. A step voltage was 

applied at the sending end of the line, on phase a, assuming 

the remaining line terminals to be grounded on terminal k and 

open-ended on terminal m. The fence conductors were left 

open-ended at both terminations. In all simulations, the fitting 

was performed from 10-1 to 108 Hz considering a shunt 

conductance of 0.2×10-9 S/m. The fitting process considered 

25 poles for 𝒀𝑪  and 12 poles for 𝑯 . The ground return 

impedance was calculated using Carson’s integral equations 

[19] and the ground admittance was neglected. 
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Fig. 12. Distribution line parallel to a fence considered in Case B. 
 

 
Fig. 13. Equivalent circuit for Case B. 

 

Fig. 14 shows voltages calculated on the fence (conductor 

d) at terminal m considering the following models: ULM-

ATP, ULM-RV, and JMarti. The simulations considered a soil 

resistivity of 500 Ωm and constant soil parameters. The 

voltage waveform calculated with ULM-ATP overlaps with 

the voltage waveform calculated with ULM-RV, which 

confirms the validity of the implemented model. Similar 

results were obtained for the remaining conductors, even 

though not shown. The voltage waveform calculated with 

Marti’s model exhibits some deviations when compared with 

those calculated with ULM-ATP and ULM-RV because a real 

and constant transformation matrix is used.  

 
Fig. 14. Voltage at the receiving end of the fence (conductor d). Simulation 

for 500 -m soil assuming constant soil parameters. 

 

Fig. 15 repeats the previous simulation, except that the soil 

resistivity is now increased to 5000 Ωm. Once again, the 

waveforms calculated with ULM-ATP and ULM-RV are 

coincident, while the voltage waveform calculated with 

Marti’s model present minor deviations. 

 

Fig. 15. Voltage at the receiving end of the fence (condutor d). Simulation for 

5000 -m soil assuming constant soil parameters. 

V.  ANALYSIS FOR FREQUENCY-DEPENDENT PARAMETERS 

CONSIDERING THE GROUND ADMITTANCE 

A.  Case A: Double-circuit transmission line 

Case A used to validate the implemented model in Section 

IV-A is now repeated considering Nakagawa’s equation to 

calculate the ground return impedance [21], Wise’s equation 

[21][23] to calculate the ground admittance, and frequency-

dependent soil parameters. The models are now named ULM-

ATP* and JMarti* to stress the fact that a more rigorous 

formulation is considered in the per-unit-length parameter 

calculation. The procedure described in [5] was initially 

considered to simulate the test case using JMarti* in ATP. 

However, it was found that the limitation of using strictly real 

poles in the fitting of the modal characteristic impedance and 

modal propagation function for simulation with Marti’s model 

in ATP has significantly reduced the model accuracy. For this 

reason, the results presented in this section considered a 

version of Marti’s model implemented by the authors in 

MATLAB that enables the use of both real and complex 

conjugate poles. For comparison purposes, the same test case 

was simulated using ULM available in EMTP-RV (ULM-

RV), whose implementation assumes constant soil parameters, 

neglects the ground admittance, and considers the logarithmic 

approximation of Carson’s equations to calculate the ground 

return impedance. 

Fig. 16 shows the voltage waveforms calculated on phase d 

at the receiving end of the 115-kV line of Fig. 8 considering a 

100-m soil. It is observed that for a low resistivity soil the 

results obtained with ULM-ATP* are practically coincident 

with those obtained with ULM-RV. This indicates that, in this 

situation, the use of the model available in EMTP-RV leads to 

good results in the simulation of electromagnetic transients. 

This result was expected because for low-resistivity soils the 

influence of the ground admittance and of frequency-

dependent soil parameters is negligible [5], [21], [24]. 

Furthermore, the voltage waveform calculated with the 

JMarti* model is comparable to that shown in Fig. 10, and 

despite the observed deviations the model performance is once 

again considered acceptable. 

 

 
Fig. 16. Voltage at the receiving end of the 115-kV line (phase d). Simulation 

for 100 -m soil assuming frequency-dependent soil parameters, plus 

Nakagawa’s and Wise’s equations in ULM-ATP* and JMarti*.  

 

Fig. 17 illustrates the results obtained for a 10000 m soil. 

In this case, it is noticed that ULM-RV leads to overvoltages 
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with deviations compared to the reference case, ULM-ATP*. 

This is because ULM-RV calculates the ground return 

impedance and admittance using a less rigorous formulation 

than ULM-ATP*. Also, it assumes constant ground 

parameters, which is not realistic for high-resistivity soils. It is 

observed that the voltage waveform calculated with JMarti* is 

similar to the ones calculated with the remaining models until 

0.2 ms. As time elapses, it presents greater deviations. This is 

related to the loss of accuracy associated with the use of a real 

and constant transformation matrix. This simplifying 

assumption becomes more critical in this particular case 

because the effect of frequency-dependent ground parameters 

is stronger for high-resistivity soils. The use of ULM-ATP is 

recommended in this case. 

 
Fig. 17. Voltage at the receiving end of the 115-kV line (phase d). Simulation 

for 10000 -m soil assuming frequency-dependent soil parameters, plus 

Nakagawa’s and Wise’s equations in ULM-ATP* and JMarti*. 

B.  Case B: Rural distribution line parallel with a fence 

Case B previously considered in Section IV-B is now 

repeated assuming frequency-dependent parameters, 

Nakagawa’s equations for calculating the ground return 

impedance, and Wise’s equation for calculating the ground 

admittance. Once again, the models considering a more 

rigorous per-unit-length parameter calculation are named 

ULM-ATP* and JMarti*.  

Fig. 18 shows the voltage waveforms calculated on 

conductor d at the receiving end of the fence for a 500-m 

soil. It is observed that for this soil resistivity the results 

obtained with ULM-ATP* are practically coincident with 

those obtained with ULM-RV. Furthermore, the voltage 

waveform calculated with the JMarti* model is comparable to 

that shown in Fig. 14, and the model performance is 

considered acceptable. 

 

 
Fig. 18. Voltage at the receiving end of the fence (conductor d). Simulation 

for 500 -m soil assuming frequency-dependent soil parameters, plus 
Nakagawa’s and Wise’s equations in ULM-ATP* and JMarti*.  

 

Fig. 19 illustrates the results obtained for a 5000 m soil, 

for which the effect of frequency-dependent soil parameters 

and ground admittance is more significant [5], [21], [24]. 

ULM-RV leads now to overvoltages with clear deviations 

compared to the reference case, ULM-ATP*, exactly because 

it assumes constant soil parameters and considers a less 

rigorous formulation for calculating the ground return 

impedance and admittance. The voltage waveform obtained 

with JMarti* also presents deviations compared to the 

reference curve, although such deviations are not as significant 

as those observed for ULM-RV. This is an interesting result 

that indicates that in certain conditions neglecting the ground 

admittance and the variation of the soil electrical parameters 

with frequency could have a detrimental effect on the 

performance of ULM that is possibly more critical than 

ultimately assuming a less rigorous transmission line model 

such as Marti’s model for the calculation of transient 

phenomena.  

 
Fig. 19. Voltage at the receiving end of the fence (conductor d). Simulation 

for 5000 -m soil assuming frequency-dependent soil parameters, plus 

Nakagawa’s and Wise’s equations in ULM-ATP* and JMarti*. 

VI.  CONCLUSIONS 

This paper demonstrated an implementation of ULM in 

ATP as a foreign model coupled with a type-94 component. 

The per-unit-length parameter calculation and fitting are 

performed in MATLAB, which allows a greater degree of 

control and flexibility in the selection of model parameters and 

equations. The implemented model was shown to reproduce 

results obtained with ULM available in EMTP-RV with great 

accuracy. This indicates that the proposed ULM 

implementation in ATP leads to reliable results and can be 

used in the evaluation of transient phenomena on overhead 

lines with strongly asymmetric geometry. In addition, it 

incorporates rigorous expressions for the calculation of the 

ground return impedance and ground admittance, as well as 

frequency-dependent soil parameters, which is shown to be 

important for the simulation of high-frequency transients on 

transmission lines above a poorly-conducting ground. The 

proposed implementation is flexible and can be easily adapted 

to accommodate different parameter calculation strategies and 

different fitting techniques. Future works include the use of 

ULM-ATP in the simulation of transients in underground 

cables and compact distribution lines, as well as lightning-

induced voltage calculations.  

The support files and instructions for implementing ULM 

in ATP are available on the following link: 

https://github.com/zanonfelipe/ULMAtp 
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