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Abstract-- Mode identification from post-disturbance 

ringdown responses is a valuable tool for the analysis of the 

dynamic performance and the stability margins of power 

systems. In this aspect, several techniques have been proposed, 

focusing mainly to single-signal analysis. However, considering 

large-scale power systems and especially future scenarios with 

high penetration of distributed energy resources, detailed 

network analysis at all voltage levels is required. As a result of 

these concerns, multi-channel mode identification algorithms 

have been developed. Scope of this paper is to evaluate the 

applicability and the performance of the most known 

multi-channel measurement-based identification approaches for 

the modal analysis of modern power systems incorporating active 

distribution networks. The algorithmic details and distinct 

characteristics of each method are briefly discussed. The 

examined methods are used to identify the dominant inter-area 

modes contained in ringdown responses at different levels of a 

combined transmission-distribution network. 
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I.  INTRODUCTION 

ITAL information regarding grid oscillations and 

stability margins of the power system can be provided by 

mode estimation, i.e., the mode frequency (f) and damping 

factor (σ) [1] - [3]. In this context, nowadays, online 

identification techniques are constantly used due to the 

increasing deployment of synchronized measurement 

technologies at power systems and the development of 

wide-area monitoring systems (WAMS), enabling the close to 

real-time estimation of oscillatory modes [4].  

Originally, mode identification entails the analysis of 

system responses as single entities (single-channel approach). 

To obtain representative mode estimates of the overall system 
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rather than of specific parts, multi-channel techniques have 

been introduced to process a set of measured signals [5]. The 

added information of the multi-channel approach enables more 

accurate estimates and facilitates mode classification to inter-

area and local [6]. The existing multi-channel techniques 

estimate the modal properties in one of two ways. 

The first is based upon estimating a set of coefficients, 

assumed to be common for each of the measured signals, by 

analyzing multiple signals simultaneously, i.e., in terms of 

multi-signal fitting. In most cases, this involves the solution of 

an overdetermined set of equations. For the analysis of 

oscillatory ringdown events, several multi-signal techniques 

have been proposed. The most known is based on Prony 

analysis  [6]. Since then, the multi-signal Prony method has 

been also employed in several other works improving [7] or 

extending its applicability [8]. Multi-signal estimation 

algorithms have been also established by means of the Fourier 

transform [9] and relevant modifications [10]. Other 

multi-signal estimation algorithms include the matrix pencil 

(MP) [11], vector-fitting (VF) [12], [13], autoregressive 

moving average exogenous (ARMAX) models [14], multi-

dimensional wavelets [15] and dynamic mode decomposition 

[16] for the analysis of oscillatory modes in transmission 

networks (TNs). 

In the second approach, single-channel analysis is applied 

independently to each of the available signals and the modal 

estimates are derived. These estimates are grouped, based on 

the corresponding mode frequency; for each group the final 

modal estimates are obtained by applying the arithmetic mean 

or weighted averaging [17] - [19]. 

Scope of the paper is to systematically evaluate the 

performance of different multi-channel measurement-based 

identification techniques for the analysis of oscillatory modes. 

The contributions of the paper are: a) a comparative analysis 

between single- and multi-channel approaches is performed. 

For this purpose, single- and multi-channel implementations 

of Prony, VF, and MP methods are developed and analyzed. 

The analysis is applied to a combined transmission-active 

distribution network (ADN) to investigate mode propagation 

as well as the applicability of multi-signal architectures for 

analysis of complex TN - ADN interactions [20]. In all 

examined cases, multi-channel implementations outperform 

the corresponding single-channel counterparts. b) The 

performance of three distinct multi-channel approaches is 

evaluated and quantified. In the first approach, single-channel 

analysis is applied to several signals and mode estimates are 

derived by means of arithmetic mean. In the second approach, 

instead of arithmetic mean, weighted averaging is applied 
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using the mode energy as the weighting factor. In the third 

approach, multiple signals are processed simultaneously, and 

mode estimates are derived by solving the overdetermined sets 

of equations. The accuracy and computational performance of 

the examined multi-channel implementations are quantified 

under different conditions using responses from the TN and 

the ADN. The conducted analysis reveals that the third 

approach provides the most accurate mode estimates. To the 

authors best knowledge, a systematic comparison of the 

above-mentioned multi-channel implementations is presented 

for the first time in the archived literature.  

The rest of the paper is organized as follows: In Section II, 

the single- and multi-channel implementations of Prony, MP, 

and VF techniques are mathematically described. In Section 

III, the procedure used to evaluate the examined methods is 

discussed. Numerical results are presented in Section IV. In 

particular, the performance of the different methods is 

evaluated using frequency and voltage dynamic responses 

acquired from a TN as well as an ADN. The impact of noise 

on the accuracy of the examined methods is evaluated and the 

computational burden of the developed multi-channel 

implementations is quantified. Finally, Section V summarizes 

research remarks, proposes topics for future research and 

concludes the paper.  

II.  MULTI-CHANNEL RINGDOWN RESPONSES 

Power systems are nonlinear, complex and time-varying. 

However, ringdown responses y(t) of the nonlinear system can 

be approximated by a sum of N damped sinusoids [1] 
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where ˆ( )y t  is the estimated response and i , i  and 

i i ij  =   the amplitude, phase and eigenvalues, 

respectively; i , i  is the mode angular frequency and the 

damping factor [1]. Assuming the signal is sampled at period 

Ts, (1) is written in z-domain [21] 
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is the total number of the samples. Alternatively, in terms of 

transfer function representation, the Laplace transform ( )Y s of 

(1) is used; ( )Y s is a rational function expressed by 
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where each pole ip is associated to eigenvalue i . 

In case a set of M ringdown signals ym(t) is available, 

 1, ,m M that share the same set of eigenvalues i , (2) can 

be rewritten in generalized form as 

    
1

ˆ ˆ
=

= =
N

n

m m s mi i

i

y n y nT c z  (4) 

where mic C . 

A.  Prony Analysis 

The most known method to identify the unknown 

parameters of (2) is by means of Prony analysis [21]; it is 

assumed that  ŷ n  satisfies the auto-regressive sequence 

   ( ) ( )1
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with characteristic polynomial 
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The unknown coefficients ib  are calculated by means of a 

linear prediction model. In this sense, the roots zi of d(z) are 

determined and related with the system eigenvalues i ; the 

associated residues ci are determined by compiling (5) into a 

Vandermonde matrix form and solve the system.  

In the multi-signal case, the linear prediction problem of (5) 

is formulated as [6] 

   ( ) ( )1
ˆ ˆ ˆ1 .= − + + −      m s m s N m sy nT b y n T b y n N T  (7) 

The unknown coefficients of the system are simultaneously 

solved in the same sense as in the single-channel case; the 

residues of the signals are calculated individually. 

B.  Matrix Pencil 

Considering a single dynamic response, MP adopts singular 

value decomposition (SVD) to estimate the actual system 

modes [22]. Initially, Hankel matrices H0 and H1 with entries 

the samples of the system response are constructed. In 

particular, H0 is defined as 

 0 =
T

H PSQ  (8) 

where P and Q are singular vector matrices and S is a diagonal 

matrix of singular values. SVD is applied on H0 and the 

system order is determined by retaining the largest singular 

values. Vectors V1 and V2 are constructed by deleting the last 

and the first row of the unitary vector VN, respectively; the 

elements of VN correspond to the most significant values of S. 

By using V1 and V2 the matrices Y1 and Y2 are calculated as 

 1 1 1= T
Y V V  (9) 

 2 2 1.= T
Y V V  (10) 



The signal modes are the eigenvalues of the matrix pair 

{Y2; Y1}, resulting from 
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The residues are calculated by means of (5), similarly to 

Prony method. 

The MP method can be extended to utilize multiple signals 

by constructing the Hankel matrices 0

M
H  and 1

M
H  for each 

of the M signals and concatenate vertically the resulting 0

M
H

matrices into a single matrix 0H as follows [11] 
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The algorithm proceeds similarly as for the single signal 

case, by applying SVD to 0H . The resulting matrices are used 

to estimate i  by introducing them into (11); the residues of 

each signal are calculated similarly as in Prony method. 

C.  Vector Fitting 

Given Y(s) by applying e.g., the fast Fourier transform, VF 

can approximate (3) on the basis of a two-stage linear least 

squares problem [23], by determining the poles contained in 

the ringdown [24]. In the first step, VF relocates a set of initial 

pole estimates to better positions by solving (13) with the 

known poles ( )r

k ; r denotes the r-th iteration.  
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The poles
ip  of Y(s) are calculated by solving the 

eigenvalue problem of 

 ( )( ) ( 1) ( ) ( ) 1( ) ( )+ −= = −r r r r r T reig dz A b c  (14) 

where ( )r

kz are the zeros of ( )( )r s  , 
( )rd  is scalar and 

matrices ( )r
A , ( )r

b  and ( )r
c  are defined by the rational 

model of ( )( )r s  . By replacing the poles with the new ones, 

an improved set is achieved until ( )r

k  tends to 
ip . The 

second step applies to calculate the unknown residues by using 

(14), assuming ( )( )r s   equal to unity. 

Apart from single-channel responses, VF is eminently 

suited to process simultaneously several responses assuming a 

common set of poles [25]. The main objective is to collect the 

M frequency responses ˆ ( )mY s  of  ˆ
my n into a single vector 

( ) MsY C and compute the common set of poles for all 

components of the vector model. Therefore, the unknown 

parameters are calculated following the two-step procedure of 

the basic VF algorithm. The pole relocation iteration is 

performed in order to find the model poles in terms of (13) for 

all components and for all frequencies. In the second step the 

residues and r0 are determined. 

D.  Weighted Averaging 

All above multi-channel analysis algorithms combine the M 

signals to derive a common formulation and compute 

simultaneously a common set of poles. Another approach is to 

apply the mode estimation algorithm individually to each of 

the M signals; the derived modes from each signal are grouped 

based on the corresponding mode frequency. The task of 

computing the final estimate of the mode frequency 
if  and 

the damping factor 
i  for each group of modes is formulated 

as a weighted averaging problem as shown in (15) and (16), 

respectively,  
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where 
m

iw  is the weighting factor of the i-th mode for the 

m-th signal. The weighting factor can be set equal to the 

corresponding mode energy ( )
2

1 2m m

i i iE A= [17], [18] or for 

ease of simplicity equal to unity, reducing the weighted 

averaging problem to an arithmetic mean.  

III.  EVALUATION PROCEDURE 

In this Section, the procedure used to evaluate the 

performance of the examined multi-channel analysis 

techniques is presented. 

A.  System Under Study  

For the analysis, a modified benchmark power system is 

used. The modified test system is implemented in DIgSILENT 

and it is comprised of a high voltage (HV) TN and a medium 

voltage (MV) ADN. The TN is the “Two-area Kundur test 

system” [26] and the ADN is based on the benchmark 

European MV network proposed by CIGRE [27]. A 

single-line diagram of the examined system is presented in 

Fig. 1. 

The Kundur system is a 230 kV, 60 Hz TN, containing two 

areas, connected by a weak tie between buses T7 and T9. Two 

loads and two shunt capacitors are connected to buses T7 and 

T9. The test system contains also four synchronous 

generators (SGs) with identical control systems. SGs are 

modeled using the sixth order model. They are equipped with 

IEEE 1S excitation system, IEEE Type 2 speed-governing 



 
Fig. 1. Examined power system. 

 

model, and speed sensitive power system stabilizer. Further 

information concerning the modeling of SGs are given in [28]. 

The CIGRE European MV distribution grid is a 20 kV, 

50 Hz system, containing two discrete feeders. To achieve an 

interconnection with the Kundur system, all reference values 

are modified to apply to 60 Hz. The first feeder of the MV 

grid is connected at Bus T7 of the TN via a 230/20 kV 

transformer. The second feeder is omitted in the presented 

analysis. All MV grid switches are considered open. All MV 

loads are modeled as constant impedance loads; their rated 

power can be found in [27]. Additionally, four distributed 

generators (DGs) are connected to buses D1, D3, D5 and D10 

of the MV grid. All DGs are connected to the grid via full 

scale power converters and are modeled using the Type 4a 

model [29]. 

B.  Simulated Events  

To evaluate the accuracy of the examined multi-channel 

techniques, the following procedure is adopted: Initially, two 

discrete ringdown events are generated by performing RMS 

simulations with the full nonlinear model of the system, 

depicted in Fig. 1. Afterwards, ringdown responses are 

processed and forwarded as inputs to the examined techniques 

to estimate the inter-area mode of the test system. Details 

concerning the considered ringdown events and the processing 

of the dynamic responses are provided in the next paragraphs.     

The first ringdown event (RE#1) is generated by 

disconnecting one of the two lines connecting buses T7 and 

T8. The disconnection occurs at t = 1s. The line is reconnected 

at t = 2s. Ringdown responses of frequency signals are 

acquired from all buses that host SGs and DGs. The second 

ringdown event (RE#2) is generated by simulating a 

three-phase short circuit (SC). The SC is applied to bus T8 at 

t = 1s. The fault impedance is considered equal to 1 Ω and the 

fault duration is 10 cycles. In this ringdown event, responses 

of voltage signals are recorded. The data acquisition rate for  

 
Fig. 2. Time-domain responses of frequency signals acquired during RE#1. 

Responses recorded from a) TΝ and b) ADN buses.  

 

 
Fig. 3. Time-domain responses of voltage signals acquired during RE#2. 
Responses recorded from a) TN and b) ADN buses. 

  

both events is set to 100 samples per second. Frequency 

responses, recorded during RE#1, are depicted in Fig. 2, while 

voltage responses, recorded during RE#2, are illustrated in 

Fig. 3. 

Responses of Fig. 2 and Fig. 3 are distorted with additive 

white Gaussian noise (AWGN) to replicate real field 

conditions. Responses acquired at TN buses are distorted 

assuming a signal to noise ratio (SNR) equal to 30 dB; 

responses acquired at ADN buses are distorted with SNR 

equal to 15 dB, since in distribution networks, higher noise 

levels are usually reported [4], [30]. 

To investigate statistically the performance of the examined 

multi-channel techniques, the Monte Carlo (MC) method is 

applied and a group of 100 data sets is generated for each 

ringdown event. MCs are used to represent discrete instances 

of noise [6]. Noisy responses are detrended to remove the 

mean component of the signals and filtered using a low pass 

filter of order 15 and cut-off frequency equal to 10 Hz. The 

filtered signals are then used as inputs to the examined 

methods to estimate the inter-area mode. The analysis 

timeframe is from t = 8s to t = 30s. The analysis does not start 

immediately after the reconnection of the line to eliminate 

nonlinearities and fast-damped modes, thus achieving better 

accuracy in the inter-area estimates [31]. 

The performance of the examined multi-channel 
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techniques is assessed by comparing the estimated inter-area 

mode with the corresponding system eigenvalue, computed 

using the linear model of the test system. The eigen-analysis 

reveals that the inter-area mode has a frequency equal to 

0.5811 Hz and a damping factor equal to -0.1588 s-1, i.e., 

λ=-0,1588 + 2π0,5811. To fully quantify modal estimation 

errors, the median absolute deviation (MAD) is used [4] 

 (| |).= −iMAD median    (17)     

Here, λi denotes the mode estimate of the i-th MC simulation 

and λ is the actual inter-area mode. Note that, MAD value 

equal to zero denotes a perfect modal estimate.   

IV.  NUMERICAL RESULTS 

In the next subsections, two cases are considered. Initially, 

the inter-area mode is determined using signals recorded at 

different buses of the TN. For this purpose, signals depicted in 

Fig. 2a and Fig. 3a are used. As shown in Fig. 2a, generator 

G1 oscillates against generator G4. Single-signal analysis, 

using responses acquired from only one generator, will result 

in varying mode estimates; thus, being very difficult for the 

user to determine the accurate ones. In this case, multi-signal 

analysis can be a valuable tool, since it can be used to analyze 

both signals to obtain one “optimum” common mode value. 

Afterwards, the inter-area mode is determined using signals 

recorded at different buses of the ADN. For this analysis, the 

signals of Fig. 2b and Fig. 3b are used. As shown, all signals 

recorded from ADN buses oscillate with the same frequency. 

Therefore, single-channel analysis will theoretically result in 

the same estimates for the inter-area mode. However, in highly 

noisy environments, the single-channel analysis may lead to 

erroneous estimates. On the other hand, the multi-signal 

analysis can effectively filter out the negative impact of noise, 

resulting in more accurate and robust estimates. 

A.  Multi-channel analysis using TN Responses  

Initially, ringdown frequency responses, recorded at buses 

T1 and T4 of the TN during RE#1, are used to estimate the 

inter-area mode. These responses are denoted as fT1 and fT4. 

Initially, fT1 and fT4 are analyzed separately by applying the 

Prony and MP methods to the time-domain signal; concerning 

VF the spectrum of the ringdown is fitted [24]. To develop 

models of minimum order (minimum required number of 

artificial modes to fit the distorted response [4]) and to ensure 

a common comparative base in the analysis, a fourth order 

approximation is used for all methods. The resulting MAD 

error for all MC simulations is presented in Fig. 4 by means of 

boxplots. As shown, single-channel analysis results in varying 

mode estimates. This is more pronounced for Prony. 

Therefore, to derive more accurate mode estimates, three 

multi-channel analysis techniques are tested. In the first 

approach, single-channel analysis is conducted in fT1 and fT4 

using Prony, VF and MP methods. Afterwards, for each 

method the arithmetic mean of the mode estimates is derived. 

This approach is denoted for the rest of the paper as AM. In 

the second approach, instead of using simple arithmetic mean, 

weighted averaging is applied, assuming as weighting factor 

 
Fig. 4. MAD errors for a) Prony, b) VF and c) MP. The analysis is performed 

using ringdown frequency responses recorded from TN buses during RE#1. 

 

Fig. 5. Variability of mode estimates; single- and multi-signal Prony analysis. 

 

the mode energy. This approach is denoted as WA. Finally,  

the multi-signal implementations of Prony, VF and MP are 

tested. In these implementations, all signals are processed  

simultaneously and a common set of mode estimates is 

derived for each method. This approach is referred for the rest 

of the paper as multi-signal analysis (MSA). 

As shown, in Fig. 4, the performance of the three examined 

identification methods is enhanced using multi-channel 

analysis. Indeed, in all cases, erroneous estimates, derived 

from single-channel analysis, are efficiently cancelled out and 

lower MAD error is obtained following the multi-channel 

analysis. Among the examined multi-channel approaches, the 

MSA provides the most accurate results.  

To further highlight the importance of multi-channel 

analysis, the mode estimates derived using Prony analysis 

through the 100 MC are plotted in Fig. 5. As shown, by 

applying single-channel analysis to frequency responses 

acquired from T1, erroneous estimates are derived. Indeed, the 

mode frequency varies from 0.5725 Hz to 0.576 Hz and mode 

damping from -0.23 s-1 to -0.19 s-1, while the true inter-area 

mode frequency is 0.5811 Hz and the damping is equal to 

-0.1588 s-1. Due to these erroneous estimates, the 

corresponding MAD in Fig. 4 is considerably high. The 

implementation of multi-channel techniques cancels out the 

erroneous estimates, leading to more accurate results. 

The performance of the multi-channel approaches is also 

assessed using the second dataset, i.e., the ringdown voltage 

responses obtained during RE#2. The corresponding results  
 



 

Fig. 6. MAD errors for a) Prony, b) VF and c) MP. The analysis is performed 

using ringdown voltage responses recorded from TN buses during RE#2. 

are summarized in Fig. 6. Also, in this dataset, it is verified 

that the use of the multi-channel approaches enhances the 

performance of the examined identification techniques.    

B.  Multi-channel analysis using ADN Responses  

In this Section, the performance of the multi-channel 

implementations is evaluated using ringdown responses 

acquired at the ADN buses. For this purpose, the inter-area 

mode is estimated using two datasets. The first dataset 

contains the ringdown frequency responses recorded during 

RE#1 at buses D1, D3, D5, and D10 of the ADN. These 

responses are denoted for the rest of the paper as fD1, fD3, fD5, 

and fD10. The second dataset includes ringdown voltage 

responses recorded at the same ADN buses during RE#2. 

These responses are denoted as VD1, VD3, VD5, and VD10. 

The resulting MAD error for the two datasets is 

summarized in Figs. 7 and 8, respectively. By assessing the 

results, it is clear that the variability of mode estimates, due to 

noise, is higher for the single-channel analysis compared to 

multi-channel approaches. This is also evident from Fig. 9 

where the variability of mode estimates using single- and 

multi-signal VF analysis is analyzed. Considering the above, 

among the examined methods, Prony results in the highest 

MAD error. VF and MP practically exhibit the same accuracy, 

leading to MAD error four times lower compared to Prony 

analysis. 

The computational burden of the multi-channel 

implementations is quantified by calculating the required 
 

 

 
Fig. 7. MAD errors for a) Prony, b) VF and c) MP. The analysis is performed 

using ringdown frequency responses recorded from ADN buses during RE#1. 

 

Fig. 8. MAD errors for a) Prony, b) VF and c) MP. The analysis is performed 

using ringdown voltage responses recorded from ADN buses during RE#2. 

 

Fig. 9. Variability of mode estimates; single- and multi-signal VF analysis. 

The analysis is performed using ringdown frequency responses recorded from 

ADN buses during RE#1. 

execution time. For this purpose, the 100 MC simulations 

generated using frequency responses recorded during RE#1, 

are used. The mean execution time for the 100 MC 

simulations is summarized in Fig. 10. All simulations have 

been performed using an i9-9900K, 3.6 GHz, 32 GB RAM 

personal computer. The analysis reveals that the execution 

time highly depends on the number of the available signals. In 

the presented analysis, four signals are considered, and the 

approximation order is set to 4 for all methods. Using these 

settings, the following remarks can be done: Prony exhibits 

the lowest computational burden, while MP the highest. 

Among the examined multi-channel implementations, the 

MSA approach presents the lowest computational burden.  

 

 
Fig. 10. Computational burden of the examined multi-channel 

implementations. 



Indeed, the execution time for MSA of Prony, VF, and MP 

is equal to 1.4 ms, 41.1 ms, and 1.2 s, respectively. However, 

is should be noted that Prony results in considerably higher 

MAD error compared to MP and VF. To increase the accuracy 

of Prony, higher order approximations must be used [4], [32]. 

In this case, the execution time of Prony becomes comparable 

with the execution time of VF method reported in Fig. 10. 

AM and WA approaches present higher computational 

burden compared to the corresponding MSA. This remark can 

be easily explained. In MSA approach all signals are analyzed 

simultaneously. On the other hand, in AM and WA 

approaches each signal is analyzed separately in a sequential 

manner. Afterwards, mode estimates are derived using 

arithmetic mean or weighted averaging. The sequential 

analysis of the available signals increases considerably the 

required execution time. However, the computational burden 

of AM and WA approaches can be efficiently reduced by 

using parallel computing [33]. In this case, the execution time 

required by AM and WA is 75% lower compared to the 

execution time reported in Fig. 10. Supporting of parallel 

computing is an advantage of AM and WA approaches 

compared to MSA. 

Additionally, to investigate the impact of noise on the 

performance of the examined multi-channel implementations, 

MC simulations for SNR levels equal to 20 dB, 15 dB and 10 

dB are performed. For each SNR level, 100 MCs are 

generated using the ringdown responses recorded during 

RE#1. Indicative results are presented for MSA and WA 

approaches in Fig. 11 and Fig. 12, respectively. AM results in 

MAD errors similar to those reported in Fig. 11 and Fig. 12. 

The analysis reveals that both multi-channel implementations 

of MP and VF are practically not influenced from the SNR 

level. On the other hand, noticeable performance degradation 

is observed for Prony when the SNR level reduces. Note that 

in case single-signal analysis is applied, Prony results in 

higher MAD error compared to those presented in Fig. 11 

and 12. To enhance Prony performance in highly noisy 

environments, higher order approximations should be used, 

resulting in increased computational burden. 

Finally, to provide a further insight concerning the 

accuracy of the examined MSA implementations, the 

cumulative distribution functions (CDFs) of the resulting 

MAD error is illustrated in Fig. 13. In this figure, 

representative results for SNR = 15 dB are presented. 

 

 
Fig. 11. MAD errors of MSA implementations under different SNR levels. 

 
Fig. 12. MAD errors of WA implementations under different SNR levels. 

 

 
Fig. 13. CDFs of MAD errors for MSA implementations. SNR = 15 dB. 

 

In 90% of the examined cases, the MSA implementation of 

MP and VF provides MAD error lower than 0.025. Prony 

provides in all cases MAD error higher than 0.025. In 20% of 

the cases, Prony results in MAD error four times higher 

compared to those obtained via VF and MP. 

V.  CONCLUSIONS 

In this paper, the single-channel formulations of three 

well-known system identification techniques, namely the 

Prony, VF, and MP are extended to support multi-channel 

analysis. The developed multi-channel algorithms are tested to 

identify the dominant inter-area modes of modern power 

systems. Their performance is compared with the 

corresponding single-signal counterparts as well as with two 

conventional multi-channel approaches that use the arithmetic 

mean and weighted averaging to determine the dominant 

system modes. 

The analysis is applied on a combined TN-ADN to ensure 

that the performance of the proposed methods is not affected 

from complex TN-ADN interactions as well as to investigate 

mode propagation in ADNs. Results reveal that inter-area 

modes can be identified using responses either from the TN or 

ADNs. Multi-channel techniques are more accurate, 

significantly reducing the impact of noise, canceling out also 

erroneous mode estimates which may occur using 

single-channel analysis. Comparisons reveal that the examined 

multi-channel techniques show in general similar accuracy. 

However, the MSA approach provides slightly improved 

mode estimates compared to AM and WA. Among the 

examined methods, multi-signal implementations of VF and 



MP provide the most accurate estimates, resulting in the 

lowest MAD error. The conducted analysis has revealed that 

the performance of MP and VF multi-channel 

implementations is practically not affected from the SNR 

level. On the other hand, Prony method is highly influenced 

by the noise level.  

Among the examined methods, multi-channel 

implementations of VF are the most suitable for close to 

real-time applications, since they present low computational 

burden and high immunity to noise, resulting also in all cases 

in low MAD error. Parallel AM and WA implementations of 

MP method can also be used for close to real-time 

applications.  

Future work will include systematic investigations on 

online applicability of the examined multi-channel methods, 

considering missing data and non-Gaussian measurement 

error. A monitoring architecture will also be developed based 

on enhanced MSA methods to support the simultaneous 

analysis of TN and ADN signals. This will facilitate the 

analysis of complex TN-ADN interactions. 
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