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Abstract—Three-dimensional full-wave electromagnetic 

transient (EMT) analysis of switches and faults is shown to be 

possible in the time domain (TD) from numerical solutions of 

Maxwell’s equations in the frequency domain (FD). The electric 

field integral equation is solved by the method of moments for the 

initial fault or switch condition (open/closed). The problem is 

then cast into subsequent FD problems based on the principle of 

superposition. At each stage, the FD solution is converted into TD 

and modified by appropriate functions selected to enforce the 

desired switch operation (closing/opening) in the next stage. This 

is also applicable to applying and clearing faults at desired times. 

In order to navigate between the TD and FD solutions, the fast 

Fourier transforms are applied and a systematic procedure for 

obtaining a numerically convergent solution is introduced. For 

slow transients, results exhibit excellent agreement with 

simulations obtained from an EMT-type program. However, 

when faster transients are considered (e.g. in gas-insulated 

substations), the proposed method is shown to provide more 

realistic results than those computed by the conventional EMT 

simulations.  

 

Keywords: Three-dimensional electromagnetic transient (3-D 

EMT) analysis, method of moments (MoM), electric field integral 

equation (EFIE), breaker, switch, fault, superposition principle.   

I. INTRODUCTION 

LECTROMAGNETIC transient (EMT) analysis is an 

important part of today’s design and optimization of 

electric power systems. While EMT is inherently represented 

in time domain (TD), frequency dependence is an essential 

characteristic of electric power systems and associated 

equipment. Therefore, methods based on both TD and 

frequency domain (FD) have been used for EMT analysis 

using both circuit-theory [1], [2] and field-theory [3], [4] 

approaches. Methods based on circuit theory are fast and 

convenient as they can be applied to many engineering 

problems with already-established general-purpose solvers 

such as EMT-type programs [1]. However, simplifications 

made in circuit-theory-based techniques such as the transverse 

electromagnetic (TEM) assumptions, may impose limitations 

on their applicability to certain engineering problems [1], [3], 

[5]–[7]. For example, typical EMT commercial solvers do not 

consider complex configurations and situations such as non-
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parallel lines, multilayer earth, frequency dependent soil 

parameters, electromagnetic field distortions at the terminals 

of short lines, non-conventional cable geometries, detailed and 

realistic cable configurations and bonding to three-

dimensional (3-D) grounding systems buried in complex soil 

structures (not to a lumped ground impedance) which is 

required for accurate and critical safety-related computation 

results at the surface of the soil. Furthermore, the classical 

transmission line equations are validated up to 1 MHz [8] and 

are known to neglect high-frequency phenomena unless 

extended to high-frequency formulations [7]. Therefore, it 

becomes imperative to validate circuit-based models before 

they can be used in real-life applications. One way to achieve 

this, is to compare simulation results with measurement results 

and use the verified model for further analysis. However, 

measurement results are difficult to setup and interpret and are 

not always available, especially when designing new systems. 

Therefore, the full-wave 3-D modeling of power systems 

based on field theory has gained interest in recent years, as it 

is feasible to obtain such simulations with today’s typical 

personal computers. This is sometimes referred to as 

“numerical electromagnetic analysis” [1], [5] and has been 

used either as the primary modeling tool or as a means to 

validate circuit-based models. It is performed using 

computational electromagnetic techniques [6] such as the 

finite difference time domain (FDTD) method [3], [9] or the 

method of moments (MoM) [4], [10]. Generally, FDTD is 

known for its applicability to a wide range of applications. 

However, it can quickly become a computationally expensive 

task when problem size increases. This is due to the fact that 

FDTD discretizes the entire space and time as it solves the 

differential form of Maxwell’s equations directly in TD. 

Therefore, acceleration techniques such as the use of graphics 

processing units have been suggested when modeling practical 

examples of power systems using the FDTD [9]. In contrast, 

MoM is widely used for solving the integral form of 

Maxwell’s equations in FD which allows for limiting the 

discretization of geometry to its boundaries via surface 

integral equations such as the electric field integral equation 

(EFIE). Moreover, FDTD requires truncating the 3-D domain 

using absorbing boundary conditions or perfect matching 

layers in order to emulate reflection-free radiation. On the 

contrary, MoM can compute the electromagnetic fields 

everywhere in the problem domain through the dyadic Green’s 

functions [4]. Another advantage of solving integral equations 

especially for large-scale problems is that the Green’s function 

propagates electromagnetic fields from one location to another 

accurately. Hence, no grid dispersion errors exist which are 
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typical to numerical differential equation solvers, which also 

suffer consequently from cumulative phase errors of the wave 

velocity. Of course, one can use a finer mesh or higher order 

basis functions at the expense of significant increase of 

computation time. Therefore, despite its FD nature, MoM is an 

attractive candidate for full-wave 3-D EMT analysis by 

computing the results in FD and transforming them into TD 

using efficient TD-FD interfacing techniques [11] such as the 

fast Fourier transform (FFT). This has been extensively used 

for full-wave 3-D modeling of lightning transients [4]. 

However, MoM cannot directly model intrinsically time-

dependent operations such as opening and closing of switches 

or applying and clearing faults which are essential in many 

EMT studies. 

In this paper, we show that it is indeed possible to perform 

a full-wave 3-D EMT analysis of switch operations and faults 

by solving the EFIE. For that purpose, we adopt a commercial 

MoM implementation specifically designed for power systems 

[12]. It can be used for full-wave 3-D modeling of power 

system equipment such as transmission lines, transformers, 

coaxial and pipe-type cables, towers, metallic surfaces and 

enclosures, etc., in the presence of frequency-dependent 

uniform or multilayer soil over frequencies ranging from DC 

to several GHz. It is shown that similarly to the technique used 

for performing switch operations in circuit-based FD methods 

(see for example [2] and the references therein), the principle 

of superposition can be applied for full-wave modeling of 

switching transients using MoM and FFT. Furthermore, a 

systematic procedure is introduced for ensuring accurate 3-D 

EMT results while minimizing the number of MoM runs, 

thereby optimizing the computational efficiency. The 

methodology is verified against simulation results obtained 

from an EMT-type software [13]. It should be noted that in the 

context of circuit-based FD techniques, it is sometimes 

recommended to apply the numerical Laplace transform 

(NLT) [2] and logarithmic FD partitioning [14] to obtain EMT 

results. However, in this paper we focus on the use of the 

standard (uniform) FFT and we investigate such modifications 

in future work. Furthermore, the discussion in this paper is 

limited to switches and faults while nonlinear devices are left 

for future studies.  

II. THE PROPOSED METHODOLOGY 

Elementary switches 

Consider a general switching device (e.g., a breaker) shown 

in Fig. 1 placed in an arbitrary network. Let us first assume for 

simplicity, that this switch can only operate once at an 

arbitrary time ts > 0. That is, it can only open or close but not 

open and/or close multiple times. Based on such 

simplifications, two independent devices can be defined as 

follows. 1) A device that is open at its initial TD stage (0 ≤ t ≤ 

ts) but can be closed at ts and remain in this final stage (t > ts). 

We call this device a “closer”. 2) A device that is closed at its 

initial TD stage (0 ≤ t ≤ ts) but can be opened at ts and remain 

in this final stage (t > ts). We call this device an “opener”.  

 
Fig. 1.  A general switch in an arbitrary network. 

The above definitions are illustrated in Fig. 2 where the key 

characteristics of such devices are shown. In particular, the 

voltage across a closer at its initial TD stage can be obtained 

by assuming that it is an open circuit (gap), while its voltage at 

its final TD stage is known to be zero. Similarly, the current 

going through an opener at its initial TD stage can be obtained 

by assuming that it is a short circuit (short) while its current at 

its final TD stage is known to be zero. As seen in Section II-E, 

such elementary devices facilitate general switch operations. 

 
Fig. 2.  Voltage of a closer and current in an opener at different TD stages. 

MoM excitation for a closer 

In order to obtain the MoM excitation for a closer, a gap is 

first placed instead of the switch in the network and the 

voltage across it is computed in FD using MoM and then 

converted to TD. Depending on the FD components of the 

network’s energization, a single or multiple MoM runs are 

required to obtain such TD signal. In certain applications such 

as lighting studies [4], the network is excited with a lightning 

surge containing multiple FD components which are typically 

obtained by applying the FFT on the TD surge signal. Thus, 

multiple MoM runs in conjunction with the inverse FFT 

(IFFT) are necessary to compute the required TD results. 

However, for studies involving switch operations and fault 

analysis, the network is typically energized at the fundamental 

frequency (50 or 60 Hz) using one or multiple voltage sources 

to represent electric generation sites. It is also possible to 

apply a DC source (0 Hz), particularly when performing short 

and open circuit tests [6]. Therefore, in this paper, we limit the 

network energization(s) to a single frequency (i.e., 0, 50, or 60 

Hz) for which a single MoM run is sufficient. The computed 

gap voltage is represented in TD as 

𝑣0(𝑡) = {
𝐴𝑣 ,                   𝑓 = 0

𝐴𝑣 ∙ 𝑠𝑖𝑛(2π𝑓𝑡 + 𝜑𝑣),    𝑓 > 0
        (1) 

where 𝐴𝑣 and 𝜑𝑣 are the magnitude and phase of the voltage 

difference across the gap produced by MoM with f being the 

source frequency. Note that in (1) and throughout the paper, a 

superscript k indicates that a parameter corresponds to the kth 

switch operation, with 0 referring to the initial or final TD 

stages shown in Fig. 2. From (1), the voltage at the initial 

stage of a closer is obtained in TD. In order to enforce both 

initial and final stages of the closer in FD, the switch is 

replaced by a voltage source in MoM with an excitation that 

enforces both initial and final TD stages of Fig. 2 in FD  

        𝑉1(𝑓) = 𝐹𝐹𝑇{𝜎1(𝑡, 𝑡𝑟) ∙ 𝑣0(𝑡) ∙ 𝜎2(𝑡, 𝑡𝑠)}      (2) 

where 𝑣0(𝑡) is defined in (1) and 

Closer 

voltage

Initial TD stage 

(0 ≤ t ≤ ts)

Opener 

current

Final TD stage 

(t > ts)

FD equivalent for 

both TD stages

+
_

v0(t) in (1) 0 V

i0(t) in (4) 0 A

V1(f) in (2)

+
_

I1(f) in (5)



 

𝜎1(𝑡, 𝑡𝑟) = {
𝑡/𝑡𝑟 , 0 ≤ 𝑡 < 𝑡𝑟

1,   𝑡 ≥ 𝑡𝑟
,  𝜎2(𝑡, 𝑡𝑠) = {

1, 0 ≤ 𝑡 ≤ 𝑡𝑠

0,    𝑡 > 𝑡𝑠
. (3) 

In (2) and (3), tr is the ramp-up time. While 𝜎1(𝑡, 𝑡𝑟) is not 

required by the conditions in Fig. 2, it is included in (2) to 

ensure causality. In EMT-type programs, tr is typically chosen 

to be an integer number of source cycles to improve numerical 

stability (i.e., 𝑡𝑟 = 𝑞/𝑓, 𝑞 ∈ 𝑁) [13]. In (2), inclusion of tr 

makes the expression inside the curly brackets uniquely 

representable by a periodic function. This improves the 

accuracy of computations in a way that can be explained using 

Fig. 5 (Section III). It consists of a TD vs. FD representation 

of a typical excitation based on (1) and (2) at 50 Hz. In the TD 

plot, 𝜎1 ⋅ 𝑣0 ∙ 𝜎2 is influenced by 𝜎1 from 0 to 𝑡𝑟 = 0.02 s 

and is abruptly set to zero after 𝑡𝑠 = 0.03 s as it is multiplied 

by 𝜎2. As seen in the FD plot of Fig. 5, the spectrum of such a 

signal (i.e., a signal that starts and ends at zero magnitude) 

steadily decreases as the frequency increases, with negligible 

oscillations. This makes it less prone to truncation errors in FD 

and thus well-suited for FFT/IFFT operations. It is worth 

noting that (2) is similar to (23) in [2] but with modifications 

that facilitates its application to MoM and the FFT as a 

standard and efficient interfacing technique between TD and 

FD [11]. As exemplified in Fig. 5, 𝑉1(𝑓) in (2) cannot be 

represented by a single frequency and multiple MoM runs are 

required for such excitations. In Section II-D, a systematic 

procedure is introduced for selecting an efficient set of 

discrete frequencies when applying MoM switch excitations.  

MoM excitation for an opener 

The steps for deriving the excitation of an opener are 

similar to those for a closer, with the gap replaced by a short 

and with the voltage source replaced by a current source, 

according to Fig. 2. That is, the current flowing in the short in 

its initial TD stage is 

𝑖0(𝑡) = {
𝐴𝑖 ,                  𝑓 = 0

𝐴𝑖 ∙ 𝑠𝑖𝑛(2π𝑓𝑡 + 𝜑𝑖),    𝑓 > 0
         (4) 

where 𝐴𝑖 and 𝜑𝑖 are the magnitude and phase of the current 

going through the short as computed by the MoM. 

Subsequently, both initial and final TD stages of the opener in 

FD are imposed by replacing the switch with a current source 

and applying the excitation according to Fig. 2 as follows 

        𝐼1(𝑓) = 𝐹𝐹𝑇{𝜎1(𝑡, 𝑡𝑟) ∙ 𝑖0(𝑡) ∙ 𝜎2(𝑡, 𝑡𝑠)}       (5) 

where 𝑖0(𝑡)  and 𝜎1,2(𝑡, 𝑥)  are defined in (4) and (3), 

respectively. Again, this is similar to (24) of [2] but more 

suited for MoM and FFT. When opening a switch, it is 

customary to assume 𝑡𝑠 to be the first zero-crossing of the 

current signal after the time the switch (i.e., a breaker) is 

opened [2], [13]. However, this is not required by the 

superposition principle but is rather user dependent. In fact, as 

exemplified in Fig. 7, a switch is opened at the time a fault is 

cleared, not at the next zero crossing of the current waveform.  

Superposition principle for MoM switch excitations 

The superposition principle is used to perform switch 

operations using MoM. This requires solving the MoM system 

at different frequencies based on the applied excitation. In this 

section, a systematic procedure for such simulations is 

proposed. The procedure is described for elementary switch 

excitations. However, the same procedure is applicable to 

general switches as shown in Section II-E. It consists of the 

following nine steps.    

  Step 1) Selecting the observation time (T): This parameter is 

simply the time duration of interest and must be selected for 

each specific transient study. 

  Step 2) Choosing the maximum allowed TD resolution 

(Δtmax): This value does not directly affect the accuracy of the 

computations as MoM is solved in FD. Therefore, for 

optimized efficiency, Δtmax should only be small enough to 

capture transients of interest (similar to the plot-step in EMT-

type programs). As such, setting Δtmax to values in the range of 

250 µs to 500 µs is appropriate for many EMT applications. 

As seen in Step 6, Δtmax has an indirect impact on the FD 

discretization and on the accuracy of computations, but this 

will be numerically verified in (9).   

  Step 3) Computing the total number of time samples (Nt): 

This parameter should be an integer power of 2 for the FFTs 

to be efficient. It should also ensure a TD resolution Δt such 

that Δt ≤ Δtmax. Thus we have 

        𝑁𝑡 = 2𝑛,   𝑛 = ⌈log2(𝑇/Δ𝑡max)⌉         (6) 

where ⌈∙⌉ denotes the ceiling function. Subsequently we have 

        Δ𝑡 = 𝑇/(𝑁𝑡 − 1).                 (7) 

  Step 4) Obtaining the initial TD results: The initial TD 

stage is required to compute the excitations in (2) or (5). Thus, 

depending on the case being a closer or an opener (1) or (4) is 

computed using T and Δt. This step requires a single MoM run 

as explained in Section II-B for a closer, and in Section II-C 

for an opener. Nevertheless, for reasons that will become clear 

in Step 9, the MoM cases from both sections are computed. 

  Step 5) Obtaining the FD components: Using (2) or (5), the 

FD components of the excitation are computed. As the 

excitation in TD has only real values, a total of Nf = (Nt/2)+1 

unique frequency samples are obtained where 

𝑓𝑚𝑖𝑛 = 0,   𝑓𝑚𝑎𝑥 = 𝑁𝑡/(2𝑇),   Δ𝑓 = 𝑓𝑚𝑎𝑥/(𝑁𝑓 − 1)  (8) 

all in Hz. 

  Step 6) Verifying Δtmax and subsequent parameters: Now 

that the FD components of the switch excitation are available, 

it is possible to verify the discretization parameters obtained in 

Steps 1 to 5. The total observation time T is user dependent. 

Hence the first parameter to be evaluated is Δtmax. As 

explained earlier, the frequency spectrum of switch excitations 

based on (2) and (5) does not oscillate as the frequency 

increases. Thus, the following criteria is used to validate Δtmax 

      |𝑉𝑓𝑚𝑎𝑥
|/|𝑉𝑚𝑎𝑥| = 𝜀  𝑜𝑟  |𝐼𝑓𝑚𝑎𝑥

|/|𝐼𝑚𝑎𝑥| = 𝜀.     (9) 

If ε is small enough (e.g. ε < 5%), the truncation error in FD 

will be small and thus the discretization parameters are 

reliable. However if ε is not sufficiently small, one needs to go 

back to Step 2 and choose a smaller Δtmax until a small enough 

ε is observed. As MoM results in Step 4 are unchanged, this 

process has negligible impact on the overall computation time.  

  Step 7) Performing multiple MoM runs according to (8): 

Once a small enough ε in (9) is observed, the MoM system 

should be solved for the Nf frequencies in (8). However, it is 

important to realize that the frequencies defined in (8), may or 

may not include the fundamental frequency (50, or 60 Hz) at 

which the network energization(s) should be computed. In 



 

order to include these sources regardless of (8), the 

“superposition principle” suggests computing the contribution 

from such sources separately (Step 9) and adding the results to 

those coming from the excitation representing the switch at the 

frequencies defined in (8). That is, the excitation in (2) or (5) 

is applied to the switch location while the network sources(s) 

are set to zero. In order to ensure accurate MoM results, the 

conductors in the model should be subdivided into smaller 

segments based on the wavelength λ such that the maximum 

segment length is in the range of λ/10 to λ/6 [4]. While this 

criterion can be used to optimize computation time at different 

frequencies, usually, the finest discretization based on the 

highest frequency is applied in the software [12]. This allows 

for using the same segmentation in the 3-D model at all 

frequencies. For a typical power system study, this has 

negligible impact on the overall runtime due to the availability 

of parallel computing in software [12] and multiple cores in 

typical hardware. Further, the linear behavior of the EFIE is 

used to completely eliminate the need for creating multiple 3-

D models. That is, the magnitude of switch excitations is set to 

unity (i.e., 1 V or 1 A) and a single model is solved by MoM 

at all frequencies. This solution is sometimes referred to as 

“unmodulated” spectrum [12]. The magnitude of the 

excitation at different frequencies is incorporated by 

multiplying the unmodulated voltage or current with (2) or (5). 

This is sometimes called the “modulated” spectrum. By 

applying IFFT on the modulated solution, the TD signal is 

obtained.  

  Step 8) Ensuring numerically-convergent TD results: It is 

important to realize that while fmax in (8) can be reliably used 

in MoM computations based on (9), Δf in (8) may not 

necessarily ensure accurate EMT results. That is, the 

truncation of the integration domain in IFFT [11] beyond fmax 

will have negligible impact on the resulting TD signal. 

However, Δf may not necessarily be small enough for the 

IFFT to sufficiently sample the integration domain and may 

prevent it from producing accurate TD results. Therefore, in 

order to ensure numerically convergent TD results, the FD 

discretization is refined by halving Δf while keeping the same 

fmax in the next set of MoM runs. This is equivalent to setting 

the observation time to twice that of the one used in Step 1 

(i.e., 2T) while keeping the same Δtmax found in Step 6. The 

rest of the parameters are computed using (6), (7), and (8). 

Since Δf is exactly halved, Nf MoM solutions from Step 7 can 

be reused while the extra (Nf -1) MoM computations need to 

be performed. Subsequently, 2Nf -1 MoM solutions are used in 

IFFT to compute TD results from 0 to 2T. If the maximum 

difference between the TD samples obtained in Steps 7 and 8 

(from 0 to T) is smaller than an acceptable tolerance (e.g. < 

5%), the TD results are accepted and the most updated 

waveform is selected as the final solution. Otherwise, the 

process continues, until results exhibit numerical convergence. 

When comparing TD waveforms, the typical relative error 

may produce unrealistically large errors for samples with near-

zero values. Thus, the following normalized max error is used 

𝑀𝑎𝑥𝐸𝑟𝑟 = max {
|𝑥𝑘−𝑥′𝑘|

𝑚𝑎𝑥{|𝑥′|}
} , 𝑘 = 1, … , 𝑁𝑡      (10) 

where 𝑥 and 𝑥′ represent the vectors of TD samples under 

comparison. It is important to note that the suggested iterative 

process has a twofold impact on the accuracy. Not only it 

improves the accuracy by adding more FD samples into the 

computations as explained above, but it also prevents the IFFT 

from erroneously constructing a non-periodic waveform from 

0 to T by oversampling it beyond T. In fact, expansions up to 

8T have been suggested [15]. As exemplified in Section III, an 

accurate TD solution is typically achieved with a total of 257 

to 1025 MoM computations for slow transients. For faster 

transients, however, the number of required frequencies may 

grow. This is because fast transients can lead to the abrupt 

change of the surrounding electromagnetic fields. Therefore, 

the full-wave numerical modeling of such phenomena can 

become computationally more challenging as high-frequency 

components need to be considered while at the same time 

abrupt changes in the frequency response need to be captured 

(see for example Fig. 10). However, this does not have 

paralyzing effect on the proposed method as it uses an 

iterative procedure to numerically converge to a TD solution. 

Evidently, depending on the severity of such effects, more 

iterations are needed leading to higher computational 

complexity. Nevertheless, as exemplified in Section III-B, the 

TD numerical convergence can indeed be achieved for very 

fast transients with a reasonable number of MoM runs 

(typically 2049 to 8193 simulations). 

  Step 9) Superimposing the TD results: The contribution 

from the network source(s) are equivalent to the final TD 

stage defined in Fig. 2. For a closer, this can be computed by 

σ1•i0(t) and for an opener it is obtained by σ1•v0(t) where σ1, i0, 

and v0 are defined in (3), (4), and (1), respectively. This is the 

reason for computing both MoM solutions in Step 4. The 

resulting TD signal is added to the computed TD signal in 

Step 8 to get the final (superimposed) TD solution.  

Modeling a general switch 

In order to model a general switch (Fig. 1) (with arbitrary 

number of switch operations) using MoM, one needs to apply 

switch excitations in a sequential manner as depicted in Fig. 3. 

Fig. 3.  Performing multiple switch operations based on the initial condition. 

At each stage, a new switch excitation is included into the 

computations where the TD results at the end of each stage are 

obtained for the entire time (0 to T) but with one extra switch 

operation compared to the previous stage. This is somewhat 

unintuitive as EMT results are expected to progress in time 

rather being updated for the entire time as subsequent switch 

maneuvers are incorporated. Nonetheless, this is a common 

practice when superposition principle is used to perform 

switch operations in FD methods [2].  

If the initial condition is open, a closer is first used to close 

the switch as the 1st switch operation at 𝑡𝑠
1. As detailed in 

Section II-D, this computes transient parameters for the entire 

time duration T anywhere in the network assuming a single 

closing operation. The current flowing into the switch from 
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this first stage i1(t) is saved and will be used in the next stage. 

In order to perform the 2nd switch operation (opening) at 𝑡𝑠
2, a 

current source is placed instead of the switch in the network 

with excitation I2(f) that has its initial TD stage as i1(t) but 

with the final TD stage of an opener in Fig. 2. Therefore, we 

have 𝐼2(𝑓) = 𝐹𝐹𝑇{𝑖1(𝑡) ∙ 𝜎2(𝑡, 𝑡𝑠
2)} where σ2 is defined in 

(3). Note that σ1 is not used, as the causality has already been 

enforced in the 1st stage. By applying the procedure in Section 

II-D on I2(f), the TD voltage signal across the switch v2(t) is 

obtained for the entire time duration T, assuming both the 1st 

and 2nd switch operations at 𝑡𝑠
1 and 𝑡𝑠

2, respectively. In order 

to perform the 3rd switch operation (closing) at 𝑡𝑠
3, the switch 

is replaced with a voltage source with the excitation 𝑉3(𝑓) =
𝐹𝐹𝑇{𝑣2(𝑡) ∙ 𝜎2(𝑡, 𝑡𝑠

3)} which can be used in the procedure of 

Section II-D to compute i3(t) and simulate the next opening 

operation as was done in the 2nd switch operation. In general, 

if the initial condition of a switch is open, the MoM 

excitations after the 1st operation are 

      𝐼𝑘(𝑓) = 𝐹𝐹𝑇{𝑖𝑘−1(𝑡) ∙ 𝜎2(𝑡, 𝑡𝑠
𝑘)}, 

   𝑉𝑘+1(𝑓) = 𝐹𝐹𝑇{𝑣𝑘(𝑡) ∙ 𝜎2(𝑡, 𝑡𝑠
𝑘+1)}, 𝑘 = 2,4,6, …  (11) 

At every stage, the applied excitation acts as a reminder that 

enforces all switch operations prior to that stage as well as the 

latest one. This is an important feature of the superposition 

principle because the latest MoM solution can be used in an 

IFFT to obtain the desired transient parameter (voltage, 

current, electric field, magnetic field, etc.) anywhere in the 

network when superimposed with its final TD stage. This 

eliminates the need for preserving results from earlier stages. 

Similarly, for a general switch that is initially closed (see 

Fig. 3), an opener is used to simulate the 1st switch operation 

followed by the following excitations 

      𝑉𝑘(𝑓) = 𝐹𝐹𝑇{𝑣𝑘−1(𝑡) ∙ 𝜎2(𝑡, 𝑡𝑠
𝑘)},    

   𝐼𝑘+1(𝑓) = 𝐹𝐹𝑇{𝑖𝑘(𝑡) ∙ 𝜎2(𝑡, 𝑡𝑠
𝑘+1)}, 𝑘 = 2,4,6, …  (12) 

Modeling multiple general switches 

The methodology used for a single general switch is 

applicable to multiple switches where the switch operations 

are still sequentially performed according to their operation 

time but may be applied at different locations. For example, if 

there are 2 switches at locations A and B in the network and 

they operate at 𝑡𝐴
1, 𝑡𝐴

2  and 𝑡𝐵
1 , 𝑡𝐵

2, 𝑡𝐵
3  such that 𝑡𝐴

1 < 𝑡𝐵
1 <

𝑡𝐴
2 = 𝑡𝐵

2 < 𝑡𝐵
3, there will be a total of 4 stages. At stage 1, the 

switch operation is applied at location A while location B 

remains in its initial stage. At stage 2, the switch operation is 

applied at location B while location A has the excitation from 

its previous stage. At stage 3, both locations are updated 

according to their switch operations. Finally at stage 4, the 

switch operation is applied at location B while location A 

remains at its last stage. The final EMT results are obtained 

from the excitations at location A in stage 3, and the excitation 

at location B in stage 4.    

The EFIE formulation 

In the examples described in this paper, the commercial 

software CDEGS-MultiFields [12] is used to obtain full-wave 

3-D MoM solutions. MultiFields provides a modified EFIE 

formulation that is capable of modeling energized networks 

buried in or placed above a stratified lossy ground in the 

frequency range from 0 Hz to several GHz. The original and 

pioneering formulation which was developed by one of the 

authors in the mid-eighties [16], [17] does not suffer from the 

low-frequency breakdown as a consequence of the decoupling 

of the electric fields and magnetic fields at zero frequency. 

Consequently, it leads to a well-balanced and stable system 

from DC to the kHz range. In fact, the electromagnetic fields 

computations with this original low-frequency focus evolved 

to the MHz range [18]–[21], with present capability in the 

GHz range [22]. Field measurements in a complex substation 

environment demonstrated the low-frequency stability of the 

approach [23]. Detailed information on the derivations and 

related validations of the method are available in [16]–[31]. 

III. RESULTS AND DISCUSSION 

Pipe induced voltage due to aerial line fault 

1) Problem description: In order to demonstrate the proposed 

methodology in the context of a typical power system study, 

we present results for a realistic situation where circuit theory 

and field theory models are used for cross-validation. As 

explained in Section I, the model based on circuit theory is 

created and the results are compared with the full-wave 3-D 

EMT results obtained from MoM using the proposed 

methodology. If matching results are observed, both models 

are verified as they are computed using fundamentally 

different approaches (i.e., circuit theory vs. field theory). 

The problem is depicted in Fig. 4(a). A 20 km 3-phase 

overhead line is energized with a balanced 50 Hz source 

(230 kV RMS) with a 30 Ω load on the other end of the line. 

There is also an underground-coated pipe running parallel to 

the overhead line terminated with 0.1 Ω resistive grounding 

system on both sides. Note that more details and complexities 

such as 3-D grounding systems, observation points for 

electromagnetic fields (electric, magnetic, potential, current) 

anywhere in the 3-D space, non-parallel line and pipe, 

multilayer soil, etc., could have been considered in the 3-D 

full-wave model. However, they are not included to be 

consistent with the circuit-based model.  

The goal is to predict the induced voltage on the metallic 

surface of the pipe if a fault occurs between the top and center 

conductors of the overhead line 10 km away from both sides. 

This is shown in Fig. 4(a) with the fault occurring between 

points A and B. The induced voltage is calculated at point P on 

the pipe. The fault starts at 0.03 s and lasts for 0.01 s. The 

same example is depicted in Fig. 4(b) based on the circuit 

notations used in the commercial EMT-type program, 

PSCAD/EMTDC [13]. While the transmission line parameters 

are computed separately for the TD circuit approach, they are 

obtained indirectly as an integral part of the 3-D EMT method.  

This specific example has been selected as it may 

legitimately raise the following questions when circuit-based 

models are used. 1) The transmission line model is based on 

the TEM assumption which is valid for infinitely long lines. Is 

10 km long enough for the T1 and T2 models in Fig. 4(b) to 

accurately represent the EMT phenomena occurring in this 

fault scenario? 2) The transmission line model is frequency 



 

dependent. Can the frequency parameters (fmax, Δf) used in T1 

and T2 ensure accurate EMT results in this example? 3) The 

mutual couplings between the aerial conductors and the buried 

pipe have a direct impact on the induced voltage Epipe. Can 

classical formulas such as the Lucca approximation [13] 

accurately compute the mutual couplings in this case?  

Such uncertainties are addressed numerically by comparing 

the results to the full-wave computations.  

 

 
Fig. 4.  (a) The problem depicted from an x-z view. The inset is from a y-z 

view showing line/pipe data. (b) Circuit-theory representation of the problem. 

2) Applying the proposed methodology: As the fault is not 

present until 0.03 s, the initial condition for this problem is 

“open”. Thus, according to Section II-E, the fault is first 

applied at 𝑡𝑠
1 = 0.03 s using a closer by following the steps 

in Section II-D as follows. Based on Steps 1 and 2, T = 0.1 s 

and Δtmax = 500 µs are chosen. Based on Step 3, we have n = 

8, Nt = 256, and Δt = 392.15 µs. According to Step 4, (1) 

should be computed where a ramp-up time tr is required. We 

choose tr = 1/f = 0.02 s. The 3-D model in Fig. 4(a) is created 

using [12] with no connection (gap) between points A and B. 

The aerial conductors are energized with single-phase (peak) 

voltage 𝑉𝑠𝑟𝑐 = √2/3 ∙ 230 kV and 120° apart. The MoM is 

run at 50 Hz and the potential at points A and B are computed 

to be 180.623∠-6.6° and 183.282∠-126° kV, respectively. 

Hence, we have Av = 314.196 kV and φv = 23.94° which can be 

used to compute the initial TD stage v0(t) using (1) as plotted 

in Fig. 5.  

Next, the MoM is run with identical parameters, but with a 

low resistivity conductor (e.g. copper) placed between points 

A and B. Subsequently, we get Ai  = 45.631 kA and φi = -57.2° 

which will be used in Step 9. According to Step 5, the FD 

components of the first switch excitation V1 are obtained using 

(2), which is plotted in Fig. 5 in terms of its magnitude |V1|. 

Fig. 5.  TD signal for closing operation (applying fault) and its FD spectrum. 

According to (8), it has Nf  = 129 unique frequency samples 

with fmin = 0 Hz, fmax = 1280 Hz and Δf = 10 Hz. The criteria in 

(9) is ε = 0.25 kV/29.5 kV = 0.84% which is considered small 

enough for the discretization parameters to be reliable for this 

excitation. This allows us to move on to Step 7 and run MoM 

at all 129 frequencies where the network energizations are set 

to zero in Fig. 4(a) (i.e., Vsrc = 0 V), but a unit voltage source 

(V = 1∠0° V) is placed between points A and B. The resulting 

unmodulated solution is multiplied by V1 to get the modulated 

spectrum and subsequently transformed into TD using IFFT. 

This is shown in Fig. 6 as iteration 1. It is clear that this TD 

signal violates causality. Hence, as suggested in Step 8, the FD 

discretization is refined by doubling the time duration until a 

numerically convergent TD signal is observed. Results are 

plotted in Fig. 6 all from 0 to T for better clarity. The 

maximum difference between the 4T and 8T plots based on 

(10) is about 2.24%. Hence, the stopping criteria has been met 

and the TD samples from the 4th iteration are selected as the 

final solution for Step 8. Note that in addition to the 129 MoM 

runs performed in Step 7 (iter1), an additional 128, 256, and 

512 MoM computations are done for the 2nd, 3rd, and 4th 

iterations, respectively. Therefore, 1025 MoM runs have 

produced all plots shown in Fig. 6. It is worth noting that a 

mere DC shift would not correct the 1T and 2T plots for all 

time samples, making such an iterative process essential.  

Fig. 6.  Illustration of TD numerical convergence proposed in Section II-D8. 

Using Ai = 45.631 kA and φi = -57.2° computed in Step 4, the 

final TD stage σ1•i0(t) is computed and added to the 4th 

iteration results. This is plotted as i1 in Fig. 7 which is 

essentially the fault current if the fault occurs from 0.03 s and 

not cleared. In order to clear the fault at 𝑡𝑠
2 = 0.04 s, the 

excitation in (11) is computed as shown in the bottom graph of 

Fig. 7 and used in the procedure of Section II-D.  
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Fig. 7.  TD signal for opening operation (clearing fault) and its FD spectrum. 

The discretization parameters for T = 0.1 s and Δtmax = 500 µs 

are such that ε in (9) is 0.14 kA/5.57 kA = 2.59%. This 

requires 129 MoM runs where the network energizations are 

set to zero in Fig. 4(a) (i.e., Vsrc = 0 V), but a unit current 

source (I = 1∠0° A) is placed between points A and B. In order 

to achieve numerical convergence at Step 8, we monitor the 

induced voltage on the pipe directly as there will be no more 

switch operations in this example. It is found that numerically 

convergent TD results are achieved with 2 iterations, with a 

maximum error (10) of about 1.29%. Therefore, 257 MoM 

computations are sufficient for clearing the fault. By adding 

the (small) contribution from the final TD stage with the 

results obtained from the 2nd iteration, the induced voltage on 

the pipe is computed and plotted in Fig. 8. Comparisons with 

the results produced by the EMT-type program [13] confirm 

that not only the proposed methodology has correctly 

predicted the induced voltage on the pipe, it is also a 

numerical validation of the assumptions made in the circuit-

based model discussed earlier. 

Fig. 8.  Voltage induced on the pipe computed using different techniques. 

Very fast transients in gas-insulated substations 

1) Problem description: In order to demonstrate the 

applicability of the proposed method to EMT analysis with 

high-frequency phenomena, we study very fast transients that 

are known to occur in gas-insulated substations (GIS) [7]. 

Again, in order to be consistent with the circuit-based model 

of the EMT-type program, a simple gas-insulated bus (GIB) is 

considered as depicted in Fig. 9. The GIB is energized by 

closing the switch at 0.1 µs and the voltage on the open end of 

the GIB (Vcore) is monitored.   

2) Applying the proposed methodology: The methodology is 

applied as explained before, except that the final TD stage also 

requires multiple MoM runs. This is because despite the  

Fig. 9. Model of a gas-insulated bus (GIB). 

excitation being DC, the rise time (before tr) and fall time 

(beyond T) will produce higher frequency components. Thus, 

the iterative process explained in Section II-D8 is carried out 

to find the appropriate frequency domain discretization when 

computing the final TD stage. Note that in the procedure, we 

set T = 5 µs and Δtmax = 0.01 µs. Therefore, we have 

fmax = 50.7 MHz and Δt = 0.0098 µs. Subsequently, the 

numerical convergence is achieved after 4 iterations by 

solving the MoM system at a total of 2049 frequencies with 

Δf = 24.75 kHz. Results are plotted in Fig. 10.  

Fig. 10. Core voltage at the open-circuit end. FD results (bottom graph) are 

obtained by taking the FFT of the TD results (top graph) for both methods. 

It can be seen that the EMT-type program [13] and the 

proposed methodology have produced similar results in terms 

of the transient waveform with a dominant frequency of about 

800 kHz. However, the high-frequency oscillating components 

observed in the full-wave approach are not present in the 

results produced by the EMT-type program. This is consistent 

with the findings in [7], where it was shown that high-

frequency components (greater than 10 MHz) in the step 

response of a GIB lead to a “spike-like” behavior at the 

voltage wave-front in TD due to the transition effects from the 

TEM mode at low frequencies to high frequency Sommerfeld–

Goubau (surface wave) propagation mode [32]. In the TD 

results of Fig. 10 such effects are visible in the full-wave 

results, especially before 2 µs. But such spikes are not seen in 

the results produced by the EMT-type program. This can also 

be seen in the FD results of Fig. 10 where the two plots well-

agree at lower frequencies up to about 3 MHz, but they start to 

deviate at higher frequencies. 
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IV. CONCLUSIONS 

A methodology for performing full-wave 3-D EMT 

analysis of switch operations and faults is introduced. It is 

based on the application of superposition principle on MoM 

solution of the EFIE. It is demonstrated that such solutions can 

be used to perform practical and realistic transient studies. 

This method can be used to calibrate and validate modelling 

assumptions in conventional EMT-type programs when 

measurement results are not available. For example, it is 

shown that for slow transients, the full-wave and conventional 

EMT simulations produce well-matching results. However, in 

applications with fast transients, the full-wave approach can 

provide more realistic simulation results. In order to remain 

consistent with the models of the EMT-type programs, the 

“geometrical” 3-D aspects of the proposed methodology was 

not demonstrated (e.g. a 3-D model of a GIS) and parameters 

important in studies involving electromagnetic compatibility 

and interference were not studied. Such capabilities of the 

proposed technique will be investigated in future studies. 

Furthermore, the method will be extended to include 

frequency-dependent multilayer soil parameters and nonlinear 

devices such as metal oxide surge arresters and power 

transformers. Inclusion of logarithmic scale FD discretization 

and the use of the NLT will also be explored. 
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