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Abstract—This paper describes an efficient numerical 

integration technique for the extended overhead line earth return 

impedance and admittance formula. In-appropriate handling of 

the infinite integral in the formula can lead to erroneous calculated 

earth-return parameters at extreme frequencies, and a significant 

increase in computational effort. In this paper, an efficient 

technique based on an analytical approach is introduced to enforce 

proper discretization of the extended transmission line equations. 

Firstly, the line equations are analyzed, and a common cause of 

improper discretization is identified. Then the equations are 

further broken down numerically, based on which a procedure to 

suitably select a discretization interval and step is developed. 

Validation was conducted by calculating the earth return 

parameters of overhead-line cases using the proposed method and 

equal distance discretization. The proposed technique shows 

accurate results while using fewer discretization points than equal 

distance discretization. 

 

Keywords:  Electromagnetic transient modelling, Earth return 
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I.  INTRODUCTION 

LECTROMAGNETIC transient study of power system 

requires transmission line’s earth return parameters to be 

accurately evaluated in a wide range of frequencies [1-4]. The 

frequency of interest can vary from 0 Hz for DC operation [5], 

to serval MHz for lightning transient, and Gas insulated 

substation studies [6-7].  

 

        Carson/Pollaczek’s earth-return impedance and space 

admittance (classical transmission line (TL) approach) are 

widely used in EMT programs [8],[9]. The recent extended TL 

approach with accurate earth-return impedance and admittance 

[10],[11] improves the accuracy for a wide frequency range and 

more importantly enhances the stability of the time domain 

simulation [7].  

 

        Numerous amounts of previous studies on proper 

implementation of the classic TL formula has been conducted, 

but not for the extended TL formula. Although they are 

technically different, it is still possible to develop similar 

implementation methods by correlating with pervious works. 

This is due to the similarity of complexity in the formula 

themselves (i.e. integrand components). Previous studies have 

developed serval different approaches to the classic TL 

formulas. These includes generalized discretization variable 
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[12], solving the infinite integral via series expansion [1],  Taku 

Noda’s integral transformation techniques [13], asymmetric 

extraction method [2], or custom partitioning of integrand and 

applying various suitable integration method to each partitions 

[14].  However, most of the time the evaluation of integration 

variables such as truncation length, and discretization step size 

is not straightforward. This leads to the use of recursive 

algorithms which enforces convergence by recalculating using 

different integration parameters repeatedly. To avoid recursive 

methods, past researchers have developed analytical based 

approach for Pollaczek’s underground cable earth impedance 

[15], however, no similar methods has yet been conducted for 

the extended TL formula for overhead line. 

 

        This paper proposes a systematic procedure derived 

analytically to compute the earth return parameters extended 

TL formulas accurately, numerically efficiently, and without 

recursive steps.  

 

II.  REVIEW OF OVERHEAD LINE EQUATIONS  

A.The approximate overhead line earth return formula 
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Figure 1.  Transmission line configuration with overhead lines and cables 

 

        In this paper, Z, Y, R, L, G, C, 𝑓, 𝜔 represents per unit length 

impedance, admittance, resistance, inductance, conductance, 

capacitance, frequency, angular frequency respectively. 

 

        Figure 1 shows a typical two conductors overhead 

transmission line system. Where, 𝜎𝑒 , 𝜇𝑒, 𝜖𝑒 , 𝑦, ℎ represent earth 

resistivity, permeability, permittivity, line separation, and 
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height above ground respectively. Traditionally, the overhead 

line earth return value is solved using formulas developed by J. 

R. Carson in 1926 [8]. One difficulty arises when adopting the 

Carson formula is the high computation effort required to 

evaluate its infinite integral. Hence, later an approximate 

formula to represent Carson’s integral is derived by Gary [16], 

[17].  The closed form approximate was further worked on and 

refined by many engineers such as Alvarado [18], Noda [19]. 

To accommodate for displacement this paper will use the 

approximate modified Carson’s formula given in (1) [20]. 

   

𝑍 = j𝜔(μ0 2π⁄ ) ln(𝑆𝑖𝑗 𝑑𝑖𝑗⁄ )   [
Ω

𝑚
] 

(1) 

 

        where,  
𝜔 = 2π𝑓 (2) 

𝑆𝑖𝑗 = (ℎ𝑖 + ℎ𝑗 + 2ℎ𝑒)2 + 𝑦2 (3) 

ℎ𝑒 =
1

√j𝜔μ0(𝜎𝑒 + j𝜔ϵ0(𝜖𝑟 − 1))

 
(4) 

𝑑𝑖𝑗 = (ℎ𝑖 − ℎ𝑗)
2 

+ 𝑦2 (5) 

 

        This approximate formula has the benefit of taking in 

consideration of displacement current which most other closed 

form approximate does not consider. The closed form 

approximate formula for earth return admittance is calculated 

using the well-known formula in (6). The closed form 

approximate was further improved by other researchers such as 

D’Amore [21] 

 

𝑌 =
j𝜔μ0

2π
ln (

𝑆𝑖𝑗

𝑑𝑖𝑗

)    [
𝑆

𝑚
] 

(6) 

 

B.The extended overhead line formula 

        The extended earth-return impedance of a multi-phase 

overhead line is given as (7) [10],[22]. The extended earth-

return admittance by Nakagawa is given in (8) which is the 

same as that derived by Wise [11],[23]. 

 

Z𝑖𝑗 = j𝜔 (
μ0

2π
) [P0 + (Q − jR)] (7) 

Pij =
P0 + M + jN

2πϵ0

 
(8) 

 

        where, 

P0 = ln (
Dij

dij

) 
 (9) 

Q − jR = 2 ∫ F1(s) ds
∞

0

 
 

(10) 

F1(𝑠) =
e−(hi+hj)𝑠 cos(𝑦s)

𝑠 + √𝑠2 + 𝜔2μ0ϵ0(1 − 𝜇𝑟𝜖𝑟) + j𝜔𝜇𝑒𝜎𝑒

 

M + jN = 2 ∫ F2(𝑠) 𝑑𝑠
∞

0

 

 

(11) 

 

(12) 

𝐹2(𝑠) =
e−(ℎ𝑖+ℎ𝑗)𝑠 cos(𝑦𝑠)

√𝑠2 + 𝜔2μ0ϵ0(1 − 𝜇𝑟𝜖𝑟) + j𝜔𝜇𝑒𝜎𝑒 +
(𝜎𝑒 + j𝜔𝜖𝑒)𝑠

j𝜔ϵ0

 
 

(13) 

        Where, μ0 is the vacuum permeability,  𝜇𝑟 is the relative 

permeability, 𝜖0  is the vacuum permittivity, 𝜖𝑟  is the relative 

permittivity.        

  

        The earth return admittance can be calculated as Yeij =

j𝜔[C], [C] = [Pij]
−1

. Note for the case of only a single conductor 

where 𝑖 = 𝑗, 𝑦 = radius of conductor. 

 

        One difficulty associated with the overhead line equations 

is the evaluation of the infinite integral. For any numerical 

integration, two important parameters need to be determined are 

point of truncation and discretization step.  

 

        Often the improper selection of truncation point will lead 

to improper discretization step, and thus erroneous earth-return 

parameters are computed.  

 

        Usually, the selection of truncation point can be roughly 

estimated by considering the exponential decay term in (11) and 

(13). A logical choice is to select the truncation point as 
−ln 0.001

ℎ𝑖+ℎ𝑗
, which corresponds to a 99.9% magnitude decay of 

initial value (i.e. 𝑓(𝑠 = 0)). Next, for a given discretization 

interval, the discretization step can be determined. A simplistic 

approach is to use a recursive method such that discretization 

step is decremented during each iteration until a convergent 

solution is obtained. However, this method can be numerically 

expensive. The number of samples required for the earth-return 

parameters to converge tend to be unreasonably high for cases 

with extreme frequency and long line separation. 

 

        An example is shown by calculating the earth return 

parameters of overhead-line arrangement shown in Fig. 1. The 

accurate earth return values are computed for the input 

parameters tabulated below. 

 
TABLE I. TRANSMISSION LINE DATA 

ℎ1, ℎ2 [5,10,20,50,100,150,200]𝑚𝑒𝑡𝑒𝑟𝑠 

𝑦 [10−3, 10−2, 10−1, 1, 5, 10, 100, 1000 ]𝑚𝑒𝑡𝑒𝑟𝑠 

𝜇𝑟 [1, 5, 10] 

𝜖𝑟 [1, 5, 10] 

𝜎𝑒 [10−1, 2 × 10−2, 10−3, 5 × 10−4, 3.3 × 10−4, 2.5 × 10−4]
1

Ω𝑚
  

𝑓 [
10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1

100, 101, 102, 103, 104, 105, 106, 107, 108 ] 𝐻𝑧 

 

        The earth return values for 63,504 input parameter 

combinations using table I are calculated. A percentage error 

analysis of calculated earth return parameter values vs 

converged earth return parameter values are tabulated in Table 

II. Error is defined as when any of the calculated values (i.e. 

R,L,G,C) showed more than 10% difference in magnitude 

comparing to the converged values. As a summary, a recursive 

solver as ones shown below with a logical initial guess for 

truncation will still require many iterations prior to obtaining an 

acceptable solution for majority of the cases in Table I.  

 

 

 



TABLE II. CONVERGENCE VS DISCRETIZATION 

Number of 

samples 

5 × 101 5 × 102 5 × 103 5 × 104 

Percentage 

Error 

78.97% 73.55% 60.07% 33.875% 

 

        In order to efficiently discretize and perform integration 

for the extended TL equations, a systematic procedure is 

developed analytically and described in the section III. 

III.  ANALYTICAL BREAK DOWN OF EXTENDED TL EQUATION  

A. Analysis of error 

        The extended TL equations can be interpreted as two 

exponential decaying sinusoidal (i.e. one for impedance, one for 

admittance). This is further separated into a message term and 

three envelope terms as shown below: 

 
fmsg(𝑠) = cos(𝑦𝑠) (14) 

fev1(𝑠) = e−(ℎ𝑖+ℎ𝑗)𝑠 (15) 

fev2
z (𝑠) =

1

𝑠 + √𝑠2 + 𝜔2𝜇0𝜖0(1 − 𝜇𝑟𝜖𝑟) + j𝜔𝜇𝑒𝜎𝑒

 
 

(16) 

fev2
y (𝑠) =

1

(𝜎𝑒 + j𝜔𝜖𝑒)𝑠
j𝜔𝜖0

+ √𝑠2 + 𝜔2μ0ϵ0(1 − 𝜇𝑟𝜖𝑟) + j𝜔𝜇𝑒𝜎𝑒

 
 

(17) 

 

        Where, 𝑓𝑒𝑣2
𝑧  𝑎𝑛𝑑 𝑓𝑒𝑣2

𝑦
 represent the complex square root 

envelope term in (11), and (13) respectively. An important 

property of the envelopes is lim
s→∞

𝑓𝑒𝑣1(𝑠) = 0, and lim
s→∞

𝑓𝑒𝑣2(𝑠) = 0. 

Hence, with proper discretization, the convergence of the 

integration is guaranteed.  

 

        As shown in the previous section, the increase in 

discretization frequency leads to reduction of calculation error 

for the resulting earth-return values. This is due to the 

exponential decay nature of the line equations themselves. The 

error in the integration can be explained using the following 

example. The real and imaginary parts of (11), and (13) using 

line parameters of ℎ1, ℎ2 =  100, 𝑦 = 100, 𝜇𝑟 =  1, 𝜖𝑟 =  10, 𝜎𝑒 =

 2.5 × 10−4, 𝑓 =  0.001𝐻𝑧 are shown in Fig. 2.  

 

 
Figure 2.  Real and Imaginary part of earth-return integrand 

 

        It can be observed that the majority of the integrand 

information is retained in the first 1% of the discretization ( x 

axis). This is due to the complex square root envelope of (16), 

and (17) having higher a decay effect than the exponential 

decay term of (15). Therefore, grossly erroneous result will be 

obtained when discretization is solely based on the exponential 

decay term. 

 

        To further clarify the problem (16), (17) is extracted from 

Fig. 2 and plotted in Fig. 3. It can be observed in Fig. 3 that the 

real and imaginary component of (16), and (17) have widely 

different behaviors (i.e. maxima, magnitude, magnitude 

polarity change). Hence, a truncation point should not be 

generalized for (7), and (8). From this example, it can be 

deduced that the improper integration is due to:  

 

1) Selection of discretization parameter without 

considering both real and imaginary parts. 

 

2) Neglecting the effects of the square root envelope in  

(15), and (16). (i.e. magnitude, polarity change).  

 

 
Figure 3.  Real and imaginary part of the Eq. (6), and (7) 
 

B. The solution procedure 

        To evaluate the extended TL earth return equations 

effectively, the point of truncation and discretization step for 

integration needs to be calculated analytically and assessed 

logically. As concluded in the previous section, the integration 

variables need to be determined for both real and imaginary part 

of (6), and (7). In order to do this one needs to: 

 

1) Isolate the real/imaginary component from (16), (17). 

2) Determine the equation maxima and its overall effect. 

3) Determine the equation frequency and its overall 

effect. 

 

    1)  Isolate the real/imaginary component 

        Using mathematical manipulation (16), and (17) are split 

into their corresponding real and imaginary parts as shown 

below.  

 

real(fev2
z (𝑠)) =

𝑠 + α

𝑠2 + α2 + 2α𝑠 + 𝛽2
 

(18) 

𝑭𝟏(𝒔) 

𝑭𝟐(𝒔) 

𝒔 𝒔 

𝒔 𝒔 

𝒇𝒆𝒏𝒗𝟐
𝒛 (𝒔) 

𝒇𝒆𝒏𝒗𝟐
𝒚 (𝒔) 

𝒔 𝒔 

𝒔 𝒔 



imag(fev2
z (𝑠)) =

−β

𝑠2 + α2 + 2α𝑠 + 𝛽2
 

(19) 

real (fev2
y (𝑠)) =

a𝑠 + α

(a2 + b2)𝑠2 + 2(aα + bβ)𝑠 + α2 + β2
 

(20) 

imag (fev2
y (𝑠)) =

−b𝑠 − β

(a2 + b2)𝑠2 + 2(aα + bβ)𝑠 + α2 + β2
 

(21) 

         

        Where: 

 

α = √0.5√√(𝑠2 + k1)2 + k2
2 + (𝑠2 + k1), a = 𝜇𝑟𝜖𝑟 

(22) 

β = √0.5√√(𝑠2 + k1)2 + k2
2 − (𝑠2 + k1), b =  −

𝜇𝑟𝜎𝑒

𝜔ϵ0

 

 

(23) 

k1 =  𝜔2μ0ϵ0(1 − 𝜇𝑟𝜖𝑟), k2 =  𝜔𝜇𝑒𝜎𝑒  
 

(24) 

        Now that integral is divided into real and imaginary 

components, each individual envelope’s impact on integral 

decay can be assessed. This information is then used to 

determine the point of truncation. This can be described using 

the logic shown in (25). 

 
Ptruncation = min(pt1, pt2) (25) 

 

        Where, pt1, and pt2 each represents the 99.9% magnitude 

decay of the exponential decay and complex square root decay 

respectively. The analytical solution of pt1 is shown below, 

 

pt1 =
−ln 0.001

ℎ𝑖 + ℎ𝑗

 

 

(26) 

    2)  Determine equation maxima and its overall effect 

 

        The evaluation of pt2 is not as straightforward since the 

effect of maxima also needs to be determined. This can be 

demonstrated using the imaginary part of (17) as shown in Fig. 

3. If truncation was determined directly by solving position s 

such that fenv2
y (s) =

abs(f(s=0))

f(s=0)
0.001  , then the resulting 

truncation point will occur prior to the envelope maxima. This 

will produce a large truncation error due to early truncation. 

Therefore, the maxima need to first be identified and then used 

to determine the truncation point (i.e. solve for fenv2
y

=
abs(fmaxima(s))

fmaxima(s)
0.001). 

 

        In this paper, the maximas are found numerically using the 

golden section search [24]. Other numerical methods can also 

be adopted.    

 

        Golden section search requires an initial lower and upper 

bound. While the initial lower bound can be directly taken as 

the initial point of corresponding integral (i.e. 𝑓(𝑠 = 0)), the 

initial upper bound needs to be solved. Using (20) as an 

example, the upper bound can be solved using (27) by equating 

k3  to the initial point of the integral. This is equivalent of 

finding when the initial point will reoccur down the integrand 

path. Note this needs to be performed for (18),(19),(21) as well 

in similar manner. 

 

 
a𝑠 + α

(a2 + b2)𝑠2 + 2(aα + bβ)𝑠 + α2 + β2
− k3 = 0 

(27) 

 

 

        The analytical solution of (27) is obtained as (28) through 

mathematical manipulation. This also needs to be solved for 

(18), (19), (21), the solution is attached in appendix.  

 

        The root of the (28) can be found as the eigenvalue of its 

companion matrix [25]. It should be noted that (28) has 8 sets 

of eigenvalues. Therefore, one will need to take all the positive 

real ones and substitute back into (20) to determine if it is the 

appropriate one. 
0 = (L1

2 )𝑠8 + (2L1L2)𝑠7 + (2L1L3 + L2L2)𝑠6

+ (2L1L4 + 2L2L3)𝑠5

+ (2L1k4 + 2L2L4 + L3L3

− 0.25)𝑠4

+ (L2k4 + 2L3L4 + k4L2)𝑠3

+ (2L3k4 + L4L4 − 0.5k1)𝑠2

+ (2L4k4)𝑠 + k4k4

− 0.25(k1k1 + k2k2) 

(28) 

 

        where,  

 

L1 =  2a2k3
2 − 2b2k3

2 − k3
2a4 − k3

2b4 − 2k3
2a2b2 − k3

2 

L2 =  −2ak3 + 2k3a3 + 2k3ab2 

L3 =  0.5 + 2a2k3
2k1 − 2b2k3

2k1 + 4abk3
2k2 − 2k3

2k1 − a2 

L4 = −2ak3k1 − 2bk3k2 

k4 =  0.5k1 − k1
2k3

2 − k2
2k3

2 

 

        After obtaining the maxima, the magnitude at truncation 

point is determined as k3 =
abs(f(s=max))

f(s=max)
0.001. pt2 can then be 

solved by applying the new k3 to (26) . This will yield the pt2 

for (20). The pt2 will need to be calculated for (18), (19), (21) 

in a similar manner.  

 

    3)  Determine the equation frequency and its overall effect. 

 

        With the truncation point determined, one remaining 

variable that needs to be solved is the discretization step. The 

integrand of the earth return equations has either an exponential 

decay characteristic, or an even faster decaying characteristic 

with an initial overshoot. Therefore, the use of logarithmic 

discretization is much appropriate in this scenario. Logarithmic 

discretization is applied by splitting the discretization axis into 

serval decades and then apply equal distance discretization to 

each decade separately. However, a special case arises where 

the message term of (14) has a much higher oscillation period 

then the calculated logarithmic discretization step. This can be 

demonstrated in Fig. 4.  



 
Figure 4.  Real and imaginary part of the earth-return integrand 

 

        Fig. 4 is constructed using transmission line parameters of: 

ℎ1, ℎ2 = 5, 𝑦 = 1000, 𝜇𝑟 = 1, 𝜖𝑟 = 10, 𝜎𝑒 = 0.01, 𝑓 = 1𝑀𝐻𝑧. 
It shows the complete integrand of (7),(8) described by (11), 

(13). It is observed that the oscillatory component has a 

dominant effect over the entire discretization interval. Hence, if 

the discretization step was calculated to be smaller than the 

oscillation period of (14) then Shannon’s sampling theorem is 

violated and integral will yield erroneous results. Therefore, an 

upper bound needs to be enforced for logarithmic discretization 

step calculation. The following logic is used in this paper to 

enforce the upper bound. 

 

ds = min (Pdecade,
π

5y
) 

(29) 

 

        Where ds is the discretization step and Pdecade is the 

calculated discretization step. (29) enforces discretization step 

such that it cannot be larger than 10% of the message term’s 

oscillatory period. 

 

C. Summary of the solution 

        This concludes the calculation of all discretization 

parameters needed. A chronological procedure to discretize the 

extended TL formula is shown below. 

 

1) Determine 4 truncation point pt1 due to exponential 

term using (26).  

2) Split (16), (17) into real and imaginary parts 

respectively using (18), (19), (20), and (21). 

3) Determine the maxima and its effect for (18), (20), 

(21) using the analytical solution (28), and respective 

ones from appendix. You do not need to do this for 

(19) as it does not have a maxima.  

4) Determine the 4 k3 using the found maxima. If 

maxima does not exist use 𝑘3 =  𝑓(𝑠 = 0)   
5) Solve for the 4 pt2s by applying the 4 k3 obtained in 

step 4. To the analytical solutions again in step 3. 

6) Determine the 4 truncation points based on the 4 pt1 

from step 1 and 4 pt2 from step 5. 

7) Determine the logarithmic discretization axis and 

enforce the upper bound of (29). This paper adopted 

𝑐𝑒𝑖𝑙 (
𝑚𝑎𝑥𝑖𝑚𝑎

0.01
) decades for each integral.  

8) Solve the infinite integral using any numerical method 

of choice. 

 

        The numerical integration of the extended TL equation is 

straightforward now that both discretization interval and 

discretization axis confirmed. Also, since both parameters are 

analytical/numerically derived there will be no need for 

iterative step to ensure correct convergence.  

IV.  VALIDATION 

        For validation, Fig. 2 is numerically integrated using equal 

distance discretization and the proposed integration technique. 

The results are plotted in Fig. 5. 

 

 

 
Figure 5.  Earth return parameters vs frequency 

 

        The proposed method used 9~11 decade for logarithmic 

integration for a total of maximum 1267 discretization points. 

While on the other hand, equal distance discretization used 

50,000  to 5,000,000  discretization point per integral. 

integration results suggest that the proposed method will always 

yield a more accurate solution using fewer amount of 

discretization points. It should be noted even if logarithmic 



sampling is not used, adopting the calculated truncation point 

will significantly improve the accuracy of the equal distance 

discretization method.  

 

        A benefit of the extended TL earth return formula vs 

approximate TL earth return formula can also be observed. The 

approximate formula used is based on modified Carson’s 

formula to take in the consideration of displacement current 

[17]. As shown in the frequency response, the high frequency 

mode transition phenomena past 100kHz can be characterized 

by the extended formula [17].  

V.  CONCLUSIONS 

        In this paper, a numerically efficient integration technique 

to evaluate the extended TL earth return formula is developed. 

Its analytical formulations and chronological procedures are 

described. Discretization parameters are computed based on the 

impact of the real/imaginary part of the earth-return equations. 

As a result, the proposed technique was able to compute the 

earth-return equation using much fewer discretization points 

while yielding highly accurate results.  

VI.  APPENDIX 

         (9), (10), (11), (12) are expanded from (7), and (8) using 

the following relation. Given any complex square root with a 

real part of 𝑥1 , and imaginary part of 𝑥2 , its solution can be 

computed as 𝑥3 + 𝑗𝑥4. 

 

√𝑥1 + 𝑗𝑥2 = 𝑥3 + 𝑗𝑥4  

𝑥3 = 0.707√𝑥1 + √𝑥1
2 + 𝑥2

2 

 

𝑥4 = 0.707√√𝑥1
2 + 𝑥2

2 − 𝑥1 

 

 

 

        Analytical solution for (18).  
 

0 = 2L3L4s3 + (2L3k4 + L4
2 − 0.5k1)s2 + 2L4k4s + k4

2 − 0.25k1
2

− 0.25k2
2 

        Where: 
L3 =  −0.5 

L4 =  2k2k3 

k4 = −0.5k1 − k3
2k1

2 − k3
2k2

2 

 

        Analytical solution for (19).  

 
0 = 2L3L4s3 + (2L3k4 + L4

2 − 0.5k1)s2 + 2L4k4s + k4
2 − 0.25k1

2

− 0.25k2
2 

        Where: 
L3 =  −0.5 

L4 =  −2k1k3 

k4 = −0.5k1 − k3
2k1

2 − k3
2k2

2 
 

        Analytical solution for (21).  

0 = (L1
2 )s8 + (2L1L2)s7 + (2L1L3 + L2L2)s6 + (2L1L4 + 2L2L3)s5

+ (2L1k4 + 2L2L4 + L3L3 − 0.25)s4

+ (L2k4 + 2L3L4 + k4L2)s3

+ (2L3k4 + L4L4 − 0.5k1)s2 + (2L4k4)s
+ k4k4 − 0.25(k1k1 + k2k2) 

        Where: 

L1 =  2a2k3
2 − 2b2k3

2 − k3
2a4 − k3

2b4 − 2k3
2a2b2 − k3

2 

L2 =  −2bk3 − 2k3a2b − 2k3b3 

L3 =  2a2k1k3
2 − 0.5 − 2b2k1k3

2 + 4abk2k3
2 − 2k3

2k1 − b2 

L4 = 2ak2k3 − 2bk1k3 

k4 =  −0.5k1 − k1
2k3

2 + k2
2k3

2 
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