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Abstract-- This paper proposes a simple but effective method 

based on shunt passive filters to enforce passivity on a frequency 

dependent transmission line model for multi-conductor cables and 

overhead lines. The passivity enforcement algorithm is applied to 

a widely-used frequency dependent line model in EMT-type 

software, the Universal Line Model. The passivity violating regions 

of the transmission line model are identified using the frequency 

sweep method. The passive shunt series RLC filters are added to 

the nodes of the transmission lines to eliminate passivity violations. 

Examples of multi-conductor underground cable systems are 

presented to demonstrate the validity of the proposed approach. 
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I.  INTRODUCTION 

IDEBAND transmission line models are widely used in 

electromagnetic transient (EMT) studies such as 

temporary over-voltages, switching over-voltages, network 

resonance, lightning over-voltages, etc. These models 

accurately consider frequency dependency as well as 

distributed nature of the line parameters for frequencies ranging 

from 0 Hz to a few MHz. In this paper, transmission line refers 

to both overhead lines and cables.  

The time domain implementation of a transmission line 

involves several steps, which are summarized as follows. First, 

the line parameters such as propagation function and 

characteristic admittance are formulated in frequency domain 

for several frequency samples [1]. Next, by applying the 

“Vector Fitting” technique, the frequency domain 

characteristics are approximated using continuous rational 

functions [2], [3]. Finally, the recursive convolution method is 

applied to represent the transmission line equations as a 

standard EMT-type model. This includes a shunt conductance 

and a parallel current source. 

Transmission lines are passive as a matter of physical reality. 

However, due to the errors in approximating frequency domain 

characteristics using rational functions as well as occasional 

frequency domain approximations, the resulting model may 

become non-passive [4]. It is observed that a non-passive model 

may lead to unstable time domain simulations. One of the major 

challenges of frequency dependent transmission line models is 

to enforce the stability of the time domain simulations.  

Several passivity enforcement algorithms have been 

proposed [4-6]. Some of these methods [4], [5] are based on 
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perturbation of the fitted parameters and passivity is enforced 

as a solution to a constrained optimization problem. However, 

the derivation and implementation of such algorithms are 

complicated, as they require many matrix linearization and 

eigenvalue sensitivity calculations. Furthermore, these methods 

are typically valid for eliminating small passivity violations, 

which are commonly due to approximations in the linearization 

process. In addition, with these methods there is no guarantee 

that the convergence is always achieved, as it depends on 

several factors and for large transmission line systems with 

many conductors, these methods may require significant 

computation time (e.g. several minutes depending on the case).   

Alternatively, passivity can be enforced analytically through 

Hamiltonian matrix [6]. This approach is widely applied to 

admittance-based realization of a frequency dependent 

component or network equivalent. The work in [7], [8] extend 

this method to transmission lines. However, they are limited to 

modal domain models based on constant transformation 

matrices. Note that for underground cables and vertically 

asymmetrical transmission lines, the transformation matrix is 

frequency dependent. Again, the derivation and the 

implementation of this enforcement algorithm is tedious and 

requires significant effort. The computer memory and time 

requirements for the algorithm can be significantly high for 

large transmission line configurations with several 

conductors/cables. 

Reference [9] discusses a filter-based method to enforce 

passivity for a two-layer network equivalent. A passivity 

enforcement method for multi-conductor transmission lines via 

filters is proposed in [10]. However, a drawback of this method 

is that the corrected model eliminates the natural decoupling of 

the transmission line. In EMT-type programs, the natural 

decoupling of frequency dependent transmission line is a 

significant advantage as it divides the system into small 

subsystems, which leads to faster simulations.       

This paper proposes an improved passivity enforcement 

algorithm using passive filters for transmission line models in 

EMT-type software. An improved quality factor estimation for 

passive filters is introduced. Compared to [10], an advantage of 

the proposed method is that the natural de-coupling of the 

transmission line is also maintained. Additionally, the proposed 

method does not require an iterative procedure to converge 

numerically. Rather, it uses successive steps to enforce 

passivity at the local level until passivity is enforced globally. 
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This is different from approaches based on linearization, which 

may lead to numerical divergence. It should be noted that in this 

paper, we use a widely used wideband transmission line model 

in an EMT-type program [13], namely the Universal Line 

Model [2] to demonstrate the effectiveness of the propose 

technique. However, it is expected that the introduced method 

can be used with other transmission line models.   

One possible drawback of the proposed approach is that the 

accuracy of the fitted function may be decreased by adding a 

filter. However, the passivity corrections are limited only to the 

passivity violating regions. Therefore, the inaccuracy of the rest 

of the spectrum is insignificant. Furthermore, if the passivity 

violations are small, the error is negligible as shown in the 

examples studied in Section IV.        

II.  PASSIVITY RELATED TO TRANSMISSION LINE AND CABLES 

A.  Definition of passivity 

The passivity of the transmission line model is guaranteed; 

if and only if its transfer admittance function, Y(s) is positive 

real for any given frequency. The transfer admittance is related 

to the sending and receiving-end voltages and currents as 
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The transfer admittance matrix can also be written in terms 

of the propagation function A(s) and characteristic admittance 

Yc(s) matrices (s = jω) [4, 10]  
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The necessary and sufficient conditions for the transmission 

line model to be passive are [4, 10] 
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The complex poles and residues always appear in conjugate 

pairs in vector fitting algorithms. Hence, the first two conditions 

are always satisfied. To fulfill the third condition, the 

eigenvalues of the Hermitian matrix should be positive for 

every frequency ω. 

B.  Passivity Identification 

The frequency sweep method is used to identify violating 

regions. In this method, the eigenvalues of the Hermitian matrix 

is computed for the frequency range of interest (e.g. 0.001 Hz 

to a few MHz) and negative eigenvalues are monitored to 

identify passivity violating regions. A potential drawback of 

this method is that there can be missing negative eigenvalues 

between two frequency samples. This can be avoided by 

analyzing the eigenvalue characteristics as a function of 

frequency and by taking sufficient number of samples in 

combination of log and linear scales. The frequency range 

should cover the bandwidth of frequencies in time domain 

simulations [4]. 

III.  PASSIVITY ENFORCEMENT FOR TRANSMISSION LINES VIA 

PASSIVE SHUNT FILTERS 

A.  Preliminaries 

The fundamental concept behind the passivity enforcement by 

filters is that the eigenvalues of a matrix can be changed by 

modifying the diagonal elements of the matrix. If every 

diagonal element (Dii) of the matrix is increased by a small 

value (dDii), all eigenvalues are increased by the same value 

(dDii).  

Addition of shunt conductance [4] and the accurate earth 

return impedance and admittance formulas [13] can improve 

passivity conditions in frequency domain parameter 

calculations. However, this may not eliminate all violations due 

to unavoidable error accumulation in the curve-fitting 

procedure.    

 The series RLC filter can be used to enforce passivity [9] and    

they are added as shunt elements to the terminals of the 

transmission line model at both ends as shown in Fig. 1. A shunt 

RLC branch is relatively straightforward to implement in EMT-

Type software using existing routines.  

First, passivity-violating regions are identified using a 

passivity identification method discussed in Section II. 

 
Fig. 1.  Transmission line with passive filters 

 

For each frequency-violating band, the transfer function of the 

filter is defined as 
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where, Q is the quality factor, ω is the angular frequency, λ0 is 

the negative eigenvalue with the largest magnitude in that 

violating band, and ω0 is the angular frequency at which the 

most negative eigenvalue occurs. In (4), the factor K > 1.0 

ensures that the corrected eigenvalues are positive by at least a 

pre-determined (small) amount (e.g. K = 1.0001). The series 

resistance, inductance and capacitance values are computed as 
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B.  Improved estimation of the quality factor (Q) 

Selecting a proper quality factor for the filter is critical for 

successful enforcement of passivity. A small quality factor may 

lead to an over-passivity compensation and a large quality 

factor can lead to an under-passivity compensation. Fig. 2 

shows the effect of quality factor on the magnitude of series 

RLC filter transfer function. 

 
Fig. 2.  Filter characteristics with different quality factors Q 

 

Reference [2] suggests computing the quality factor based 

on inequalities. The quality factor was determined based on the 

magnitude of the filter admittance function [2]. However, it 

should be noted that only the real part of the filter admittance 

contributes to the eigenvalues of the transfer admittance matrix. 

Therefore, the quality factor can be evaluated as 
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where, ωU and ωL are the upper and lower angular frequencies 

between which the eigenvalue curve is negative. The diagonal 

elements of the transfer admittance matrix [Y(ω)] are updated 

to include the admittance contribution of the filter F(ω) 

 

𝑌(𝑖, 𝑖) = 𝐹(𝜔) + 𝑌(𝑖, 𝑖) (7) 

 

C.  Elimination of violations at upper and lower 

bounds 

A low-pass filter (series RC) or high-pass filter (series RL) can 

be used to eliminate violations at the upper or lower frequency 

samples in the frequency spectrum, respectively. The filter 

parameters are derived by substituting the magnitude of the 

negative eigenvalues and frequencies at the beginning and at 

the end of the violating region (i.e. λL, λU, ωL, ωU). Depending 

on the frequencies and the eigenvalues at the boundaries of the 

violating region, the filter parameters (such as R, L, or C) can 

be negative. For a high-pass filter, the following inequality 

criteria is used for positive R and L values.  

 

𝜆𝐿𝜔𝐿
2

𝜔𝑈
2

< 𝜆𝑈 < 𝜆𝐿 

 

(8) 

where λL and λU are the magnitudes of the negative eigenvalue 

at ωL and ωU, respectively, with ωL being the first frequency 

sample. If the above criteria is not met, λU is replaced with (9) 
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Similarly, for a low-pass filter, the requirement for R and C to 

be positive is  
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where, ωU is the last frequency sample. If the above criteria is 

not met, λL is replaced with (11) 
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𝜔𝐿

2

𝜔𝑈
2
+ 1) 

(11) 

D.  Algorithm  

The addition of sufficient shunt conductances to the 

admittance matrix improves the condition of passivity at very 

low frequencies. For a given transmission line model, the 

passivity violations are first determined by evaluating the 

eigenvalues of the Hermitian matrix (based on curve-fitted Yc 

and A) for a set of frequency samples as discussed in Section II. 

For each frequency, the most negative eigenvalue of the 

Hemitian matrix is selected. The passivity violating regions are 

accordingly identified based on the most negative eigenvalues 

in each frequency. For each violating band, the frequency (ω0) 

at which the most negative eigenvalue occurs, is determined.  

Starting with the negative eigenvalue with largest magnitude 

for all violating bands, filters are added one by one until all 

eigenvalues are positive. If the violating band is within the 

lower and upper bounds of the frequency samples, the series 

RLC filters are added to correct the violation as discussed in 

Section III-C. If there are violations at the upper or lower 

frequency samples, a low-pass filter (series RC) or a high-pass 

filter (series RL) is added, respectively. Fig. 3 shows the 

passivity enforcement algorithm in a flow chart. 



 
 

Fig. 3 Flow chart of the passivity enforcement algorithm 

 

IV.  NUMERICAL RESULTS  

A.  Application Example 1 

The proposed passivity enforcement algorithm is 

demonstrated using a 2 km long three-phase underground cable 

system as shown in Fig. 4. The cable layout is flat with 0.1 m 

distance between the cables. The data for the cable system is 

shown in Table I. The frequency dependent phase domain 

model (Universal Line Model) [2] in PSCAD/EMTDC 

commercial software [13] is used for demonstration.   

 
Fig. 4 Three-phase underground cable configuration 

TABLE I 

TRANSMISSION LINE DATA 

Cable data 

Conductor Outer Radius 0.022 m 

Inner Ins. Outer Radius 0.0395 m 

Sheath Outer Radius 0.044 m 

Outer Ins. Outer Radius 0.0475 m 

Inner Ins. Capacitance 0.3 uF/km 

Outer Ins. Relative Permittivity 2.3 

Conductor Dc Resistance 0.046 ohms/km 

Sheath Resistivity 2.826e-8 Ωm 

Outer Ins. Relative Permittivity 2.3 

Other 

Ground resistivity 100 Ωm 

Length of the line 2 km 

 

The orders of the characteristic admittance (Yc) and the 

propagation function (H) are 14 and 58, respectively. There are 

four modes in the propagation function. The fitting rms errors 

corresponding to the Yc and H are 0.0954 % and 0.07314 %, 

respectively. The curve-fitting frequency range is 0.1 Hz to 1 

MHz with 100 frequency samples. The residue/pole ratio of the 

propagation function is 3.64.  

The passivity of the cable system is examined using the 

frequency sweep method for a frequency range from 0.1 mHz 

to 1 MHz. The eigenvalues of the Hermitian matrix are shown 

in Fig. 5 before and after the addition of sufficient shunt 

conductances to the admittance formulation. The presence of 

negative values in the original cable eigenvalues of H indicate 

that the original model is non-passive and therefore may lead to 

numerical instability in time domain simulations. However, 

with the addition of the shunt conductances (e.g. 1.0e-10 Ω.m) 

the large passivity violations at low frequencies are eliminated.  

 
Fig. 5 Eigenvalues of Hemittian matrix H (dotted lines: original cable; solid 

lines: cable with a shunt conductance) 

   

The addition of shunt conductances does not always guarantee 

a passive model. There can be negative eigenvalues at other 

frequencies. These values are then removed by passive filters 

as discussed in Section III. It can be seen that with the addition 

of the filters, the line model becomes passive (see Fig. 6).. 

 

 
Fig. 6 Eigenvalues of Hemittian matrix H (dotted lines: without filters; solid 

lines: with filters) 



 

Five filters with characteristics listed in Table II are added to 

the nodes of the line model. In Table II, F0, λ0, R, L, and C are 

the frequency at the negative eigenvalue λ0, negative eigenvalue 

(magnitude of the largest negative eigenvalue in the violating 

band), resistance, inductance and capacitance of the RLC series 

filter, respectively. 

 
TABLE II 

PASSIVE FILTER DATA 

F0 (Hz) λ0 R (Ω) L (H) C (F) 

59.3  7.3185e-07 1.366257e6 4.739e3 1.5191e-09 

172.6  1.5024e-07 6.655176e6 7.009e3 1.2119e-10 

6.6   9.4675e-08 1.0561364e7 2.34257e5 2.4661e-09 

12.2   4.8082e-08 2.0795796e7 1.40435e6 1.1971e-10 

569.313   2.7594e-08 3.6236519e7 3.4450e4 2.2685e-12 

 

Fig. 7 compares the transfer admittance function (Y) of the line 

model before and after the addition of the filters. The maximum 

error is around 6e-7. This demonstrates that the error due to the 

addition of passive filters is very small in the frequency domain.  

 

 
Fig. 7 Top graph: Magnitude of diagonals of the original (solid curve) and 

modified (dotted curve) transfer admittance between 1 Hz to 1 MHz; 

Bottom graph: Difference between actual and modified transfer admittance 

 

 

The sending-end of the cable is energized with 225 kV (L-L) 

RMS three-phase voltage source and all other conductors are 

kept open. A breaker is connected between the cable and the 

source. The breaker is initially closed but opened at t = 1.0 s. 

The receiving-end voltage of phase A is shown in Fig. 8. It is 

clear that without the proposed passivity enforcement 

technique, the simulation is unstable. When the breaker is open, 

the receiving-end voltage should approach zero, as there is no 

source acting on cable. This can be seen from the waveform 

corresponding to the passive model. However, the waveform 

corresponding to the non-passive model deviates from the 

solution after the breaker is opened and exhibits numerical 

instability towards the end of the simulation.  

A non-passive model can give stable or unstable simulations 

depending on many parameters including external circuit 

parameters, time step and circuit breaker operation, etc. 

 

 
Fig. 8 The receiving-end voltage of phase A (Solid line: with passivity 

enforcement; dotted line: without passivity enforcement)  

 

A short circuit test is conducted to verify the accuracy of the 

simulation in time domain (see Fig 9). The phase A at the 

sending-end of the cable is energized with step voltage (1 V) 

and all other conductors are grounded through a 0.01 Ω 

resistance. 

The receiving-end voltage is compared with a solution obtained 

via Numerical Laplace Transform (NLT) technique [14] (see 

Fig 10). The time domain results from the simulation show a 

close agreement with the NLT. This demonstrates the accuracy 

of the proposed passivity enforcement algorithm. 

 

 
Fig. 9 Short circuit configuration for the cable system 

 

 



 
Fig. 10 The receiving-end voltage of phase A (Solid line: time domain 

simulation with passivity enforcement; dotted line: NLT solution without 

filters) 

 

B.  Application Example II  

In this section, the passivity enforcement method is 

demonstrated with an example having two cable circuits in 

parallel. The horizontal distance between the circuits is 1.0 m 

and between the cables is 0.2 m (flat configuration). The depth 

of the cables is 2.0 m. The cable system data is shown in Table 

III.  
TABLE III 

TRANSMISSION LINE DATA 

Cable data 

Conductor Outer Radius 0.030 m 

Inner Ins. Outer Radius 0.056 m 

Sheath Outer Radius 0.060 m 

Outer Ins. Outer Radius 0.065 m 

Inner Ins. Capacitance 0.205 uF/km 

Outer Ins. Relative Permittivity 2.3 

Conductor Resistivity 1.7241e-08 Ωm 

Sheath Resistivity 2.8264e-08 Ωm 

Outer Ins. Relative Permittivity 2.3 

Other 

Ground resistivity 100 Ωm 

Length of the line 10 km 

Shunt conductance  1.0e-9 Ohms.m 

 

The plot of eigenvalues of the Hermittian matrix is shown in 

Fig. 11. It can be seen that the passivity is successfully enforced 

and there are no negative eigenvalues after the passivity 

enforcement procedure.  

 

 
Fig. 11 Eigenvalues of Hemittian matrix H (dotted lines: without filters; 

solid lines: with filters) 

 

Two filters are added to compensate for passivity violations and 

the filter parameters are as shown in Table IV. 

 
TABLE IV 

PASSIVE FILTER DATA 

F0 (Hz) λ0 R (Ω) L (H) C (F) 

26.7353 5.6527e-06 176890.0166 2580.2026 1.3735e-08 

12.2749 2.1085e-06 474221.4298 21457.765 7.8347e-09 

 

In this example, all conductors of the cable system are kept 

open. The first conductor of the sending-end is energized with 

step voltage with initial ramp. The time step is 1.0 µs and the 

length of the simulation is 0.1 s. The voltage at the first 

conductor of the receiving-end is observed. Figs. 12 and 13 

show voltage waveforms with and without the proposed 

passivity enforcement algorithm, respectively. With passive 

filters, the voltage waveform is stable.  

 

 
Fig. 12 Receiving-end voltage of core-conductor of first cable with passivity 

enforcement 

 



 
Fig. 13 Receiving-end voltage of core-conductor of first cable without passivity 

enforcement 

V.  CONCLUSION 

This paper proposes an improved filter-based passivity 

enforcement algorithm to ensure the stability of transmission 

line models in EMT-type software. The inclusion of adequate 

shunt conductance and the use of accurate earth return formula 

can enhance the condition of passivity at very low and very high 

frequencies respectively. The remaining passivity violations 

(generated by curve-fitting procedure) are eliminated by adding 

RLC, RC or RL series filters. The band-pass filter eliminates 

passivity violations with improved quality factor estimation. 

The physical characteristics of the low- and high-pass filters are 

enforced. 

Numerical results show that the stability of the time domain 

simulations involving a three-phase underground cable system 

can be ensured using the proposed method. This method can be 

easily implemented in EMT-type software to improve stability 

of the transmission line models.  
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