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Abstract--In recent years, strategies for load monitoring have 

been proposed to mitigate power consumption. It has been found, in 
several reported studies, that as more information is provided for 
consumers about their electricity consumption, more power energy 
conservation will occur. In this way, Non-Intrusive Load 
Monitoring (NILM) has been studied and applied in real-life 
applications. It consists of detecting and classifying appliances 
on/off states by measuring electrical signals only at one location of 
the residential consumer. Several studies have been made using 
different techniques to improve the accuracy of this strategy. In this 
paper electromagnetic transients are taking into account and, a 
performance analysis between cutting-edge artificial classifiers is 
made. It has been found that 1D convolutional neural networks 
perform better for this case and electrical current signals are more 
suitable for NILM, once it carries more features than voltage and 
power signals.  
 
Keywords: NILM; Electromagnetic Transients; Deep learning; 

Artificial Intelligence; Energy management. 

I.  INTRODUCTION 
he conservation of electric energy, as it currently stands, is a 
technical challenge for power systems engineers, which 
have proposed new energy conservation programs, 

technologies or methods towards consumption of electric energy 
minimization. Within this study, one can highlight the Brazilian 
residential sector, which in 2017 was responsible for 28.86% of 
the total electric energy consumed in the country [1]. This is a 
growing concern, since energy resources are limited and the 
increase in consumption within the electric energy sector has a 
direct impact, that is normally negative, on the natural 
environment, as for example emissions of CO2 [2]. 

A significant reduction in the consumption of electric energy 
can be obtained through detailed information sent to consumers 
of their own energy use. This can be seen through collected and 
published material that took into consideration more than 60 
studies [3]. [3] makes a case that the maximum consumer 
economy of electric energy can be reached if details of real-time 
consumption are made available, different to traditional monthly 
billing of electric energy [3]. 

The existing techniques that allow for this real-time 
monitoring of consumption of electric energy can be applied by 
means of so-called smart meters. These meters are becoming 
more widely used for the real-time analysis of electric 
parameters. In addition to collecting data in real-time, they can 
also send data by means of wireless technologies to data 
processing centers, as well as being able to receive information 
and process it, i.e., they possess bidirectional communication 
technology [4]. 

Among the techniques for real-time monitoring of electric 

energy consumption, two can be highlighted. One is the 
technique denominated Intrusive Load Monitoring (ILM) and the 
other Non-Intrusive Load Monitoring  (NILM).  

The intrusive monitoring of loads based methods, requires a 
number of meters that is at least equal to the number of loads that 
will be monitored. This technique holds the advantage of one 
possessing, without errors, the individual consumption of each 
individual piece of electrical equipment or device being 
monitored. However, there exists the disadvantage of high cost, 
due to the quantity of meters and meter locations that need to be 
used and identified. Conversely, the technique of disaggregation 
by non-intrusive monitoring, needs only 1 measuring location. 
Further, techniques with disaggregation of loads manage to 
separate and classify which are being at a time instant. It is 
possible still, through the use of NILM, to derive what is known 
as the “load signature” [5].  

As such, the loads can be divided into 4 groups [6]:  
● Type I: Single state – On / Off – Examples: lamps, 

toasters, etc. 
● Type II: Multi-State – Examples: washing machines, 

electric ovens, etc. 
● Type III: Continually varying – Examples: drills and 

dimmable lamps. 
● Type IV: Permanent consumption loads: televisions on 

stand-by, DVD appliances, etc. 
 

Type 1 loads are easier to detect, but depending on their 
nominal power and consumption of electric energy, the technique 
applied for disaggregation might be unable to reach a conclusion 
as to which electrical equipment is being used at a specific time 
instant. Due to individual features pertaining to each electric 
equipment (current harmonics, power, characteristic of use, 
electromagnetic transients, among others), researchers have 
faced difficulties in disaggregating loads on a low power level. 
These difficulties are due to very similar features of operation, 
that are found in some equipment, as illustrated in Fig. 1. 
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Fig. 1. Nominal power features of different appliances. 

 
Among the techniques used for non-intrusive disaggregation 

of electric loads, the following can be highlighted: 
● Optimization algorithms [7]-[8]; 
● Artificial neural networks [9]-[10]; 
● Hidden Markov Chains [11]-[12] 
● Support Vector Machines [13]-[15]. 
  
Despite recent advances considering NILM techniques  [2], 

there is no standard in regards to a solution be used, considering 
the state of the art. In this work, towards a thorough analysis of 
presented solutions, a comparative study of the state-of-the-art, 
considering artificial intelligence NILM based approaches, 
including electromagnetic transients, is presented. The end goal 
is to obtain, through statistical analysis of different evaluation 
metrics, considering synthetic and real-life data, a unbiased 
performance analysis, highlighting potential limitations and 
strengths of presented state of the art methods. 

The main contributions of this study are: 
● A comparative study between 3 (three) state-of-art 

artificial intelligence techniques for classifying 
disaggregation of residential electric loads through the 
non-intrusive monitoring method;  

● The presenting of a convolutional neural network that 
results in higher rates of accuracy compared to previously 
published studies. 

 
The remaining of the paper is divided as follows. Section II 

presents a background in machine learning solutions used for 
MILM. Section III presents details of the synthetic a real-life data 
used for the comparative study. Section IV presents a case study. 
Section V presents a comparative analysis with other studies. 
Section VI presents the main findings of this work.   

 
II. MACHINE LEARNING SOLUTIONS 

A.  Artificial Neural Networks   
In order to construct an artificial neural network, it is 

necessary to interconnect various artificial neurons, forming as 
such a type of graph. The format that these connections take 
determines that more commonly known as the architecture of the 
network.    

In this paper, the network architecture known as Multilayer 
Perceptron (MLP) was used. In this type of network, all the 

neurons of each layer are connected to the neurons in the 
following layer, as shown in Fig. 2. 
 

 
Fig. 2. Example of an MLP neural network 

 
In figure 2, xk represents the input data, yc the output data and 

aM the neurons from the hidden layers. 
In order that the best results are reached for the classification 

proposed herein by means of the dense neural network, the 
Fourier transform was applied to the input signal, in order that 
features were extracted from the current signal used, and these 
employed in the training of the network.  

B.  Long short-term memory network (LSTM) 

Recurrent Neural Network (RNN) has difficulties in learning 
long-term dependencies. To resolve this problem, the LSTM was 
designed. The LSTM neural network consists of LSTM units that 
contain three special gates, which are designed to control the 
flow of information inside each memory block [16]. The 
structure of the LSTM, denominated as cell, is seen in Fig. 3. 
 

 
Fig. 3 Structure of the LSTM network. 

The first gate is called the forget gate, Ft, which supplies a 
weight to the state of forgetfulness and has the function of 
deciding how much previous memory can be thrown out of the 
state cell. This can be calculated in the following way: 

            𝐹! = 𝜎(𝑊" × [ℎ!#$, 𝑋!] + 𝑏")              (1) 

Where 𝜎(∙)  is a nonlinear elementwise function, usually 
called the activation function, 𝑊" and 𝑏" are the weights and 
forget gate matrix bias, respectively; ℎ!#$  is the last moment 
hidden layer output and 𝑋! is the actual input moment. 

The next step consists of calculating the input value of gate 
𝐼! , which decides the amount of new information that will be 



stored in the state cell. This step has two parts: in the first, the 
sigmoid layer of the gate filters some information from ℎ!#$, 𝑋! 
and 𝐶!#$, after a Tanhyperbolic layer creates the value of the 
new candidates 𝑆!: 

 
 𝑖! = 𝜎(𝑊% × [ℎ!#$, 𝑋!] + 𝑏%) (2) 

 
            𝑆! = 𝑡𝑎𝑛ℎ(𝑊& × [ℎ!#$, 𝑋!] + 𝑏&)       (3) 

 
Where 𝑊%, 𝑊&, 𝑏% and 𝑏& are the corresponding weights 

and bias.  
Therefore, the cell state 𝐶! can be calculated as: 
 
              𝐶! = 𝐹! ∙ 𝐶!#$ + 𝑖! ∙ 𝑆!                   (4) 

 
Finally, the output gate 𝑂!  is calculated to control the 

amount of information that will flow to the outside of the cell (5). 
After, the values of the cell are normalized between -1 and 1, by 
means of the Tanhyperbolic layer and then multiplied by the 
output sigmoid layer. The output is defined as (6): 

            𝑂! = 𝜎(𝑊% × [ℎ!#$, 𝑋!] + 𝑏%)              (5) 

               ℎ! = 𝑂! ∙𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ	(𝐶!)                (6) 

C. Convolutional Neural Network (CNN) 
 

The CNN is an artificial neural network able to learn features 
and classes, in it’s different layers. Further this architecture 
allows the continuous adjustment of the parameters at running 
time, based on accuracy, giving more value to one layer than 
another, considering the problem at hand. 

The CNN relies on the natural stationary property of an 
image, i.e., the statistics of one part of the image are considered 
the same as any other part ,and information extracted at one part 
can also be employed to other parts. Furthermore, deep CNNs 
usually obtain different levels of abstraction for the data, ranging 
from local low-level information in the initial layers (e.g., 
corners and edges), to more semantic descriptors, mid-level 
information (e.g., object parts) in intermediate layers and high-
level information (e.g., whole objects) in the final layers. 

CNNs are very similar to conventional neural networks, as 
the MLP network. These are constituted of neurons that have 
weights (or parameters) that “learn”. Each neuron receives input 
and produces a scalar product, with the option of being followed 
by a nonlinear activation function.  

In particular, the layers from a CNN possess neurons 
organized in three dimensions: width, height and depth (in this 
case, depth refers to the third dimension of an activation volume 
and not the depth of the network architecture, which is 
determined through the number of hidden layers). 

A network with convolutional architecture is constituted of a 
sequence of layers, where each layer transforms an activation 
volume into another through a differentiable function. The three 
main layers used in the construction of the convolutional 
architecture are Convolutional Layer, Pooling Layer and Dense 
layer. Fig. 4 illustrates an example of convolutional architecture. 
 

 
Fig. 4. Example of convolutional architecture  
 

 The function of each layer in the architecture can be 
summarized as:  

• Convolutional layers: These possess the function of 
extracting the best features from the inputt signal in an 
automated fashion, without the need, for example, to 
perform signal filtering..  

• Pooling layers: These are used to scale and map the data 
after convolution, thus reducing the data dimension, 
highlighting only important information. 

• Batch Normalization Layers: These are used to improve 
speed, performance and stability of deep architectures 
(i.e., architectures that possess many hidden layers) during 
network training. Furthermore, these possess the function 
of reducing overfitting on training data. 

• Dense output layer: This is responsible for attributing a 
class of input signal, and depends on the number of 
classes. 

 
One of the benefits of using CNN architecture, is that 

electromagnetic transients can be detected by this classifier and 
learned, thus not interfering on its further detection and 
classification. 

For this study, the CNN architecture used is presented  in 
Fig. 5. 

 
Fig. 5. Convolutional based architecture. 

III. DATABASE 
The data used during training, validation and testing of the 

models are referred to the database Reference Energy 
Disaggregation Dataset (REDD) [17]. This database contains 
information for the energy consumption of a whole house and of 
the circuit/device. In the version of the database used in this 
study, there exists information that refers to six residences. For 
each one, data was stored pertinent to apparent power Volt-Amps 
(VA) at the main circuit level of the residence, sampling at a rate 
of 1 Hz and the circuit/device level at a rate of 0.33 Hz. Each 
residence possesses two main circuits, denominated as Main 1 
and Main 2. However, for two of these six residences, signals 
were also captured for voltage and current at the main circuit of 
the residence, both sampled at a rate of 15 kHz.  



In order to perform this study, the data referring to the 
current signals of electrical devices was used. Only data from the 
two residences was used, house number 3, as this possessed the 
highest quantity of data. As with power, there exist current 
signals for Main 1 as well as for Main 2. 

Electrical current data is sampled at a rate of 15 KHz, 
therefore, as explained by [17], data compression is used, in 
which the waveforms and data that indicate their timestamps are 
stored. The Timestamp is a type of data capable of storing 
information for the year, month, day, hour, minute and second. 
Through such, the files current1.dat and current2.dat with 
measurements added from the main circuits Mains 1 and 2, 
possess lines each with the following information: 

1. A decimal timestamp value that allows for the fractional 
part; 

2. A whole number, counter for the duration of the 
waveform cycles; 

3. 275 real values, indicating the waveform value (in 
amperes), which are equally spaced within the cycle.   

Fig. 6 presents the data measurement format for current 
available on the database REDD. 
 

 
Fig. 6. Example of data contained in files from REDD. 

A. Data pre-processing 

The acquisition of test and validation data and construction 
of a database with this information is a complex task, which 
further involves privacy constraints. This task can be time 
consuming, thus, the option was made for using an already 
existing database (REDD). Nevertheless, it was still necessary 
to perform data pre-processing, in order that the data can in fact 
be used in the training of the classifiers.   

The apparent power and current values of each measured 
circuit cannot be added directly, since each circuit possesses a 
different power factor. However, the nominal active powers 
(W) from electrical devices can be, obtaining as such, the level 
of active demand from the main circuit, in accordance with this 
sum.   

During this step of the study, labelling was performed for 
current signals obtained by measuring the main circuits in the 
residence, based on the operational period of each device using 
the respective active power signal. Labelling consisted of 
assigning an integer to a whole number for a given current 
signal, based on the combination of active devices during the 
period where the signal was measured, in such a way that for 
each device combination found in the database, there exists a 
single whole number that identifies this combination.     

This step was subdivided into 4 parts: identification of 
devices connected to the circuits; identification of the active 
period of devices; numbering of combinations and labelling of 
signals. Table I illustrates the post-processing information used, 
regarding the quantity labelled current signals.   

TABLE I 

INFORMATION REFERRING TO THE QUANTITY OF LABELLED CURRENT SIGNALS.  
Description Main 1 Main 2 

Number of connected devices 12 8 

Number of device combinations 187 64 

Labelled current waveforms 858420 853040 

 

In order to carry out evaluation of the state-of-the-art 
strategies used in NILM, researchers frequently make use of 
specific metrics. In this study, four (4) of these metrics were 
considered in order that the classifiers used herein could be 
assessed. These metrics are Recall (8), Precision (9), Accuracy 
(10) and F1-Score (11) (Liu, 2019):      

 
𝑅𝑒𝑐𝑎𝑙𝑙	(𝑅) =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 

(8) 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	(𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (9) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(𝐴𝐶𝐶. ) =
𝑇𝑃 + 𝐹𝑁
𝑃 +𝑁  (10) 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 	
2 × 𝑃 × 𝑅
𝑃 + 𝑅  (11) 

Where, Recall is the rate of true positives or TP sensitivity 
(correctly predicted that the equipment was switched on), FP are 
the false positives (predicted device switched on, but was 
switched off), FN are the false negatives (device switched on, but 
predicted as switched off). Precision refers to the predicted 
positive values. Accuracy is the proportion of real results in all 
cases. F1-Score is the harmonic mean between Precision and 
Recall. 

IV. RESULTS AND DISCUSSIONS 

In this section, a case study is presented. Results analysis and 
discussed are further presented.    

A. Comparative analysis  

First, 858,420 examples for Main 1 and 853,040 examples for 
Main 2 were generated. Considering training of the ML-based 
solutions, presented previously, the 10-fold cross-validation 
method was used [ref]. 22.5% of the data were selected randomly 
for validation, 67.5% for training and 10% for testing. Table II 
summarizes the data allocation. Table III summarizes the 
structures of the models used. 

 
TABLE II 

DATA USED IN THIS STUDY 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

Data type Main 1 Main 2 

Train set 579,433 575,802 

Validation set 193,145 191,934 

Test set 85,842 85,304 



TABLE III 
 STRUCTURE OF THE CLASSIFIERS FOR NILM. 

 
The tests were performed on a PC with an Intel ®CoreTMi7,  
3.40 GHz X 4, 16GB RAM processor and video card from 

®NVIDIA GEFORCE GTX1080 8G GPU. The accuracy values 
and losses for training and validation are shown in Figs. 6 and 7, 
respectively. 

At each epoch, the accuracy of the models in the validation 
set will be detected when it is improved. Thus, the models with 
the best performances in the validation and training set are 
selected as the final model. The final models and their properties 
are shown on Table IV and V.  

The mean performances for Main are shown on Tables VI and 
VII. Table VIII shows the general average performance for 
residence 3. On all tables, the best results are in bold. 

 
Fig. 7. Accuracy and loss values during training. 

 

Fig. 8. Accuracy and loss values during validation. 
 
 
 

TABLE IV  
THE TRAINING MODELS AND THEIR PERFORMANCES. 

  
 

TABLE V 
THE TRAINING MODELS AND THEIR PERFORMANCES.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE VI 

MEAN PERFORMANCE FOR MAIN 1 
Main 1 - Average 

ANN R P ACC F1-Score 

CNN 96.37% 96.55% 99.40% 96.46% 
LSTM 76.51% 85.57% 96.67% 79.69% 
MLP 94.58% 95.18% 99.18% 94.87% 

  
TABLE VII  

MEAN PERFORMANCE FOR MAIN 2 

Main 2 - Average 

ANN R P ACC F1-Score 

CNN 98.24% 98.32% 99.78% 98.28% 
LSTM 81.27% 88.33% 98.14% 84.33% 
MLP 97.69% 97.54% 99.63% 97.58% 
 

TABLE VIII 
 GENERAL PERFORMANCE FOR RESIDENCE 3 

General Average 

ANN R P ACC F1-Score 

CNN 97.30% 97.43% 99.59% 97.37% 
LSTM 78.89% 86.95% 97.40% 82.01% 
MLP 96.13% 96.36% 99.40% 96.22% 

 

Name of network  Number of layers (without including BN 
and Dropout layers) 

Type 

MLP 
Layers: 2 
Dense layers: 4 
Activation function: ReLu 

ANN 

LSTM 
Layer LSTM: 3,  
Unit number: 32  
Activation function: tanh 

RNN 

CNN 
Layer 1D conventional: 6 
Dense layer: 3 
Activation function: ReLu 

CNN 

Type of 
ANN 

Highest loss in 
validation set 

Best accuracy in 
validation set Elapsed epoch 

Main 1 Main 2 Main 1 Main 2 
Main 

1 
Main 

2 

CNN 0.144 0.054 0.944 0.984 144 140 

LSTM 0.526 0.235 0.834 0.940 142 138 

MLP 0.263 0.086 0.913 0.970 149 149 

Type of 
ANN 

Training time Number of parameters 

Main 1 Main 2 Main 1 Main 2 

CNN 330 
min 310 min 121,819 105,952 

LSTM 1590 
min 1560 min 19,227 15,168 

MLP 55 min 48 min 34,171 30,112 



Noteworthy here is that the indicators for Main 1 were 
inferior when compared to those of Main 2 for all the classifiers 
tested. This can be explained through the fact that some circuits, 
in light of the low quantity of circuits for classifier training, have 
difficulty in learning and recognizing these devices during the 
validation tests. However, for circuit Main 2, the lower quantity 
of devices for identification and the higher quantity of 
information from these were facilitating points, which allowed 
the classifiers to obtain better performance indexes.   

From among the classifiers, one notes that LSTM obtained 
the worst performance results. CNN was the network with the 
best performance results. Despite the MLP neural network 
obtaining a performance very close to that of CNN, its 
disadvantage is found in the need for using prior feature 
extraction (load pattern, electromagnetic transients, among 
others) techniques on the signal analyzed, and only after can the 
MLP network be trained. This does not occur on CNN, one 
reason is that in its very own structure these characteristics are 
extracted in order to improve the performance of the network. In 
spite of this, due to its simpler structure, the MLP obtained the 

lowest time for training when compared to the others.   
Further, among the techniques analyzed for classification 

considering NILM, the convolutional neural network CNN, was 
that which obtained the best performance indexes. 

V. COMPARATIVE ANALYSIS WITH OTHER STUDIES 
 

As seen from Table IX, the convolutional network ConvNet 
presents a better performance over recently published methods. 
This comparison is performed only with studies that investigate 
NILM for residence 3 from the databank REDD.  The small 
differences that can be found are due, as an example, to the fact 
that some authors use only values referring to one day, three 
days, or only some devices found in the databanks, while the 
classifiers tested herein use all devices. However, one notes that 
the accuracy of ConvNet was higher than that found for all cases 
researched in the literature. Furthermore, if one analyses only the 
devices that belong to circuit Main 2, the performance indicators 
are superior to all those encountered in other studies. 

 
 

TABLE IX. COMPARISON WITH OTHER STUDIES. 

Authors Classifier 
Manipulated 

Parameter 

Feature extraction 

technique 
R (%) P (%) ACC (%) F1-Score (%) 

Liu et. al. (2019) [18] FCAM Power 
Significance 

Threshold 
95.58 97.74 97.90 97.83 

Tabatabaei, Dick and Xu 

(2017) [19] 
MLCA Power Wavelet Transform - - - 95.90 

Kong et al. (2018) [20] HMM Power Iterative k-means - - 83.50 - 

Bhotto, Makonin and 

Bajic (2016) [21] 

Aided Linear 

Integer 

Programming 

Power None - - 96.00 - 

ConvNet general CNN Current Auto 97.30 97.43 99.59 97.37 

ConvNet Main 2 CNN Current Auto 98.24 98.22 99.78 98.28 

*FCMA – Fuzzy Multi-Clustering Algorithm; MLCA – Multi-La 
 
Moreover, the automatic selection of features performed by 

the CNN can improve the classification accuracy on the NILM, 
since the CNN extracts the most critical features from the 
different combinations of devices analyzed.    

Finally, it becomes evident that the use of electric current 
signals to those of power load more features from the signals, 
this fact was crucial toward improving the performance of the 
classifier when compared to previous studies.  

 
VI. CONCLUSION 

 
This paper presented a comparative study of ML-based 

solutions of NILM methods. Three solutions were presented 

and analyzed, a MLP, LSTM and CNN based solutions. NILM 
has as one important goal the disaggregation of electric loads. 
For such, the ML-based solutions are put forward for the use of 
electric current data instead of power for the training and 
learning of classifiers. To this end, a labelling methodology was 
used. Three classification techniques that use state-of-the-art 
artificial intelligence were tested: an MLP network, a CNN and 
a recurrent network of the LSTM type.  

The results show that the CNN proves to have best 
performance indexes for use in cases of NILM. Further, since 
the CNN based solution possesses, in its infrastructure, filters 
that are adaptable to the automatic extraction of signal features 
(as load behavior, electromagnetic transients, among others), 



this decreases much the cost of data pre-processing.      
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