
Parallelization of MMC Detailed Equivalent Model

A. Stepanov, J. Mahseredjian, H. Saad, U. Karaagac

Abstract—This paper proposes a method to parallelize the

computations of the detailed equivalent model of modular

multilevel converter (MMC) on multicore CPUs in offline

simulations of electromagnetic transients (EMTs). Each arm of

the converter is implemented as a DLL independently from the

main solver and is interfaced with it using standard procedures.

It is also proposed to parallelize the capacitor balancing

algorithm using a similar approach. Depending on the simulated

system, the proposed method allows to accelerate simulations by

five times without affecting accuracy of the results. Results also

demonstrate that parallelization of the capacitor balancing

algorithm plays an important role in improving simulation speed

and can have a larger impact than the parallelization of electrical

circuit equations.

Keywords: detailed equivalent model, parallelization, modular

multilevel converter, simulations.1

I. INTRODUCTION

odular multilevel converter (MMC) is a power

electronic converter that is used in many modern

HVDC transmission projects, Fig. 1. It has several significant

advantages, including easy scalability to high voltage levels,

smooth AC voltage waveform, and relatively low losses, all

due to its modular structure and lower switching frequency.

The MMC generates AC voltages by inserting the appropriate

number of submodules (SMs), which are essentially capacitors

with quasi-constant voltage, each of which represents one

level of the resulting voltage waveform [1].

It is essential to perform electromagnetic transient (EMT)

simulations to ensure safe and reliable operation of HVDC

systems. To do so, accurate time-domain models of various

equipment are required. Owing to the structural complexity of

MMCs, numerous EMT models have been developed, some of

the most used ones are [2-4]:

• The detailed model (DM), that represents IGBTs in each SM

using a piecewise linear v-i characteristic.

• The detailed equivalent model (DEM), that represents

IGBTs as two-value resistances.

• The arm equivalent model, that aggregates all SMs in each

1 This work was supported by the Natural Sciences and Engineering

Research Council (NSERC) of Canada as part of the industrial chair “Multi
time-frame simulation of transients for large scale power systems.”.

A. Stepanov and J. Mahseredjian are with the Department of Electrical

Engineering, Polytechnique Montréal, Montreal, QC, Canada (e-mail of
corresponding author: anton.stepanov@polymtl.ca, jeanm@polymtl.ca).

H. Saad is with Réseau de Transport d’Electricité, Paris, France (e-mail:

hani.saad@rte-france.com).
U. Karaagac is with with the Department of Electrical Engineering, Hong

Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (e-mail:

ulas.karaagac@polyu.edu.hk)

Paper submitted to the International Conference on Power Systems
Transients (IPST2021) in Belo Horizonte, Brazil June 6-10, 2021.

arm into a single equivalent circuit.

• The average value model, that represents all SMs in whole

converter as a single capacitor.

While detailed models provide high accuracy, they are

typically much slower, which restricts their application.

Efforts have been put forward to improve the speed of

simulations involving MMCs in various ways [4-6]. However,

parallelization of MMC model computations has not been

widely researched [7].

Parallelization in EMT simulations has been applied

through network decoupling by transmission lines [8, 9], co-

simulation methods [10], parallel implementation of LU

factorization [11]. CPU or FPGA implementations have been

used to accelerate the simulations of power electronic devices.

Real-time applications are investigated in [7, 12].

This paper proposes a method to parallelize the

computations of the DEM on multicore CPUs in offline

simulations. Among the conventional MMC models, the DEM

is a good candidate for parallelization because:

• It has relatively high computational burden, which offers

potentially significant time-gains.

• The nonlinearities in the DEM are not as complex as in the

DM, which allows for a relatively easier implementation.

• The DEM is often implemented independently from the

main EMT solver, which results in easier interfacing.

• There are at least six DEM blocks per MMC.

• The DEM requires a capacitor balancing algorithm (CBA)

block, which can also be parallelized.

Unlike FPGAs, multicore CPUs are often available in

modern day PCs and laptops. This allows to prioritize CPU

parallelization over other types due to the larger availability of

the appropriate hardware.

vDC

iDC

iua

ib
ic

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

Larm

iub iuc

i a i b i c

Larm Larm

Larm Larm Larm

iava
vb
vcHB-DEM

FB-DEM

RON / ROFF

CSM CSMR1

R2

R3

R4

R1

R2

CSM

Fig. 1. Structure of the detailed equivalent model of MMC.

II. PROCEDURE OVERVIEW

The EMT simulation software considered in this chapter is

EMTP [13], which is based on the request-participation

interface with the constituting modules. The EMTP

computational core (CC) sends requests to each model one by

M

Manuscript

one and they reply with the results of their internal

calculations. The main requests of CC at a single time-point

computation with nonlinear elements such as the DEM are as

follows:

• Request admittances and history currents from all DEMs.

• Solve the main network equations (MNEs) matrix.

• Repeat two previous steps in case of insufficient precision.

• Request capacitor voltages for control system equations.

• Solve control system equations.

• Go to next time-point.

In the default sequential execution case, the internal model

calculations are performed one at a time for each arm when

the CC requests them. The idea researched in this paper is that

internal computations of all DEM blocks are performed at

once in parallel at the beginning of the current time-point and

then the solicited DEMs only retrieve the results when

requested by CC, as shown in Fig. 2 (EMT-core is CC). The

CBA parallelization is performed in a similar manner with the

difference being that it only participates in the control system

equations part, but not in the MNE.

There are similarities between the proposed approach and

the one used in [7]. However, this paper deals with offline

simulations and focuses on the simulation time reduction and

evaluation of various contributing factors. Besides, the

proposed parallelization approach is applicable to computers

with any number of cores and to circuits with any number of

DEM and CBA blocks and any number of SMs.

1
st
 DLL

parallelization
time gain

t

t

2
nd

 DLL

EMT
core

1
st
 arm

calculations

NDEM
th

 DLL

EMT
core

EMT
core

2
nd

 arm
calculations

NDEM
th

 arm
calculations

EMT
core

EMT
core

start end
serial

se
ri

a
l

c
o

m
p

u
ta

ti
o

n
p

a
ra

ll
e
l

c
o

m
p

u
ta

ti
o

n

EMT
core

1-st DLL

save
result

..
.

save
result

compute
2

nd
 arm

compute
1

st
 arm

compute
NDEM

th
 arm

EMT
core

2
nd

 DLL

retrieve
2

nd
 arm

result

NDEM
th

 DLL

retrieve
NDEM

th

arm
result

EMT
core

end
parallel

EMT
core

EMT
core

return
result

read
input

read
input

read
input

Fig. 2. Overview of the proposed parallelization scheme.

III. DEM PARALLELIZATION

Each DEM arm is interfaced with the CC by using its

Norton equivalent circuit. To calculate it, the DEM requires

the IGBT control signals and the input voltage [2, 4]. The

Norton equivalents values supplied by the DEM DLLs to the

CC depend on the control and history values from the previous

time-point, so do not require iterations unless in blocked mode.

Internal DEM actions are divided in the following groups:

• Reading input data (IGBT commands, input arm voltage).

This is reading from memory so can be parallelized.

• Internal computations (updating history currents, calculating

the Norton equivalent, updating capacitor voltage and

current values). They only require local variables so can also

be parallelized.

• Output data exchange (provide the Norton equivalent and

SM voltages to the CC). This has to be performed in series

since calls to internal CC functions are used, that cannot be

guaranteed to be thread-safe.

The DEM is implemented as a DLL using Fortran-2015

and parallelization is performed using OpenMP provided by

the Intel Fortran compiler. Each DEM DLL executes the

algorithm shown in Fig. 3. To be able to study the impact of

the number of threads on the acceleration, the total number of

DEM DLLs
DEMN is divided into several groups. The DLLs

within the same group are launched in parallel. Each DLL

group contains
threadsn blocks and requires as many threads.

Each DLL first checks if it is the first in the group and if so,

launches all group’s computations in parallel. To avoid

multiple computations of the same data, the first DLL raises a

special flag (“first DLL in the group”) that indicates that the

calculations of this group have been performed. The DLLs

also check if they are the last one in the group to reset the

“first DLL in the group” flag that has been raised by the first

DLL in the group so that at the next time-point the first DLL

could be correctly assigned.

set 1st DLL in the group flag

Start

1st DLL in the group?

End

launch group of threads
!$omp parallel num_threads(nthre ads)

reset 1st DLL flag

yes no

synchronisation
!$omp end parallel

retrieve current DLL result

...

...

...

update EMTP with current result

yes no

last DLL in the group?

Compute
1st DEM

save 1st DEM
result

read 1st DEM
input

Compute
2nd DEM

save 2nd DEM
result

read 2nd DEM
input

compute
nthreads

th DEM

save nthreads
th

DEM result

read nthreads
th

DEM input

Fig. 3. Implemented DEM parallelization algorithm.

IV. CBA PARALLELIZATION

The CBA control block, i.e. the block that keeps all SM

voltages close to each other, deals only with control signals.

As with the DEM, all internal functions of the CBA are

divided as follows:

• Reading input data (SM voltages, arm current). It can be

performed in parallel because it is reading from memory.

• Internal computations (sorting SM voltages, selecting the

SMs to insert and to bypass). Only local variables are

required so this can also be parallelized.

• Output data exchange (IGBT gating signals). Performed in

series since it uses calls to the internal functions of the CC

that cannot be guaranteed to be thread-safe.

The CBA is active during normal operation and only

provides blocking signals during the blocked mode. The same

implementation as in Fig. 3 is used with the only difference

being that the DEMs are replaced by the CBAs.

V. PERFORMANCE EVALUATION

The goal of the proposed DEM parallelization scheme is to

reduce the time needed to perform simulations of MMC-

HVDC systems. Therefore, the time gains must be evaluated.

They are evaluated using the acceleration factor, which is

found as

 pacc sf t t (1)

where pt is the computational time with parallelization and

st is the computational time with the default single-threaded

sequential implementation of the DEM.

In the first approximation, the single-threaded and the

multithreaded computing times can be represented by the

following formulas

0 MDE DEMst T T N  (2)

 0 sp DDEM threaEM dt nT T N  (3)

where
0T is the time necessary to perform all sequential

computations such as the resolution of the MNE, line and

machine models, etc.;
DEMT is the time to compute one arm.

Given that the number of DEM blocks in each group

threadsn is between 1 and DEMN , accf is also limited:

  min 1accf  (4)

   0

0

max DE

M

DEM

acc

M

DE

T T N
f

T T





 (5)

If the time required to compute the DEM is large compared

to the rest of the computations (i.e. 0DEMT T), the maximal

acceleration factor will be equal to the total number of DEM

blocks in the simulated electrical circuit DEMN .

It should be noted that the threads are created at the

beginning of each time-step and suppressed at the end of the

time-step and thread management and affinity is performed by

the operating system. Since (4) and (5) do not consider the

time required to create and manage multiple threads, the actual

acceleration factors will be smaller than the theoretical limit.

VI. SIMULATION RESULTS

The parallelization tests are performed in EMTP on a point-

to-point MMC-HVDC link with two MMC stations shown in

Fig. 4 (except subsection VI.A). There are 12 DEM blocks,

yielding the maximum of 12 threads.

MMC1
100 SM
1 GVA

MMC2
100 SM
1 GVA

DC cable

400/320 kV
VDC =320 kV

400/320 kV

P, Q control vDC, Q control
Fig. 4. Simulated MMC-HVDC transmission.

A. Validation

The tests in this subsection validate the implementation,

accuracy and demonstrate dependencies between computing

times and the number of DEM blocks.

In this and the following sections, the execution times are

measured as the average of multiple runs using internal clock

of the simulation software. This allows to consider the effects

of parallelization on the simulation as a whole.

 1) Parallelization validation

A simple electrical circuit shown in Fig. 5 is used for

validation (the circuit does not represent a realistic HVDC

system so the values of currents and resistances are selected

arbitrarily). It contains a DC current source and 12 DEM

blocks with the corresponding CBAs, that exchange gating

signals (
j

S) and capacitor voltages (
SM j

V) between

themselves. Half-bridge SMs are used and all of them are

inserted. Simulation time is 1 s and the time-step is 5 μs. The

tests are performed on a computer with 4 physical and 8

logical cores. The number of SMs per arm is varied.

Computing times depending on the number of threads and

SMs are shown in Table I and Fig. 6. The dependence on the

number of SMs is linear for a given number of threads, which

validates (2) and (3). Extrapolating computing times to

0SMN  yields the value of
0T . With parallelization,

0T is

relatively higher because some additional time is spent on

thread creation and management. No clearly identifiable

dependency of
0T on

threadsn has been observed.

For further analysis, the computing times in Table I are

adjusted for
0T , the value of

0T is subtracted from the

corresponding computing times for a given value of
threadsn .

The adjusted computing times are plotted in Fig. 7 as a

function of the number of DEM blocks computed in series

serial DEM threadsn N n (6)

The results show linear dependency, which confirms the

implemented parallelization scheme. However, it can be

observed that even after the adjustment the extrapolation does

not yield zero computing time for 0serialn  . This remaining

time is due to the actions performed in series for each arm, as

explained in sections III and IV. It is possible to make another

observation: the time necessary to compute the DEM is

proportional to the number of SMs, which also confirms the

correctness of the implementation.

DEM

DLL

CBA

DLLDEM

DLL

CBA

DLLCBA

DLL

DEM

DLL insert all SMs
Sj address

VSM j address

10Ω

1MΩ

1A

Fig. 5. Circuit to validate the implemented parallelization.

NSM

1 thread

0
0

10

30

20

100 200 300 400 500C
o
m

p
u
ti

n
g
 t

im
e

(s
)

2 threads3 threads

4 threads

Fig. 6. Computing times with different number of threads.

100 SMs

200 SMs

500 SMs
400 SMs

300 SMs

C
om

pu
ti

n
g

ti
m

e
(s

)

nserial

0 2 4 6 8 10 120

5

10

15

20

25

Fig. 7. Adjusted computing times.

 2) Power reference step

In this test, the waveforms obtained with the single-thread

simulation are considered as references. The plot lines used

for waveforms in figures of this subsection: 1 thread – solid

black, 6 threads – dash-dotted blue, 12 threads – dashed

orange. The power reference step from 100% to 50% of the

nominal power transfer of 1 GW is applied at 0.5 s. No visible

difference exists between the waveforms of the DC voltage

(Fig. 8) or the total capacitor voltage (Fig. 9).

0.4 0.5 0.6 0.7 0.8 0.9 1
625

630

635

640

645

Time (s)

6 threads 12 threads

1 thread

V
D

C
 (

kV
)

Fig. 8. DC voltage with different number of threads.

0.4 0.5 0.6 0.7 0.8 0.9 1
550

600

650

700

Time (s)

6 threads 12 threads
1 thread

v C
to

t (
kV

)

Fig. 9. Total capacitor voltage in phase A upper arm at MMC1.

 3) DC fault

The DC fault is applied at 0.5 s in the middle of the DC

link. The blocking signal is activated at MMC1 at 0.50044 s,

which causes all half-bridge SMs (for example, the 5th SM in

Fig. 10) to stop conducting immediately. Full-bridge SMs (for

example, the 305th SM in Fig. 11) are able to pass the current

in the negative direction for a brief moment. It is clear that the

waveforms obtained with parallelization match closely the

single-threaded case irrespective of the number of threads.

0.48 0.49 0.5 0.51 0.52
1.4

1.5

1.7

1.8

Time (s)

6 threads
12 threads1 thread

v C
5
 (

kV
)

1.6

Fig. 10. Voltage of the 5th SM in phase A upper arm at MMC1.

0.48 0.49 0.5 0.51 0.52
1.4

1.5

1.7

1.8

Time (s)

6 threads 12 threads

1 threadv C
30

5
 (

kV
)

1.6

Fig. 11. Voltage of the 305th SM in phase A upper arm at MMC1.

 4) Error analysis

Theoretically, parallelization should have no effect on the

precision of the results since the computed equations are

identical (the single-threaded reference waveforms are

obtained using the same implementation of the DLL but each

arm is put in its own group, as per Fig. 3, so no groups of

threads are launched). However, in reality, small relative

difference in the order of 10-12 to 10-10 is perceivable in all

signals. This can be attributed to the potential differences in

the compiled binary code and to the different order of

calculations, which leads to rounding errors in the least

significant digits when representing variables using formats

with finite levels of precision (double-precision floating-point

format).

B. Time gains

Two computers are used: a Lenovo T560 laptop with two

physical and four logical cores and a Lenovo P910

Thinkstation with 24 physical cores and 48 logical cores. The

first configuration demonstrates behavior under the restricted

number of cores and the second one demonstrates the behavior

of the system when the number of cores is higher than the

maximum number of threads. In all performed cases, the

system is simulated for one second in normal operating mode.

Since different computers are used, acceleration factors will

be used for comparisons. This allows to eliminate the

differences that appear due to different clock rates, processors

architectures, and thread management on different computers.

 1) Restricted number of cores

The computing times of the single-thread simulation are

taken as the reference. The simulations are performed with

two different types of CBA: permutation-based and voltage

sorting-based. The former acts on one SM at a time whereas

the latter sorts all SMs and selects the most appropriate ones

[14]. Acceleration factors depending on the number of SMs

are shown in Table II and Table III whereas Fig. 12 and Fig.

13 show the dependence graphically.

The effort required to create multiple threads and manage

them in parallel with a low number of cores has significant

effect on simulation speed: with a relatively low number of

SMs the gains are below 1 and even as the computational

burden increases with the number of SMs (until 500SMN ),

parallelization results in insignificant acceleration.

The acceleration tends to a saturation limit as the number of

SMs increases. This limit represents the proportion of the

computations performed in parallel to the computations that

still have to be performed in series.

It can also be observed that the acceleration factor is not

proportional to the number of threads: when the computational

TABLE I

COMPUTING TIMES WITH DIFFERENT NUMBER OF THREADS (S)

Number of SMs 1 thread 2 threads 3 threads 4 threads

0 (extrapolation) 7.25 9.39 8.15 7.70

100 12.15 11.89 9.96 9.21
200 17.13 14.49 11.76 10.75

300 22.10 17.15 13.57 12.11

400 27.00 19.66 15.45 13.63
500 31.88 22.08 17.16 15.24

burden of the DEM and the CBA is small compared to the rest

of the network (which is the case with the permutation-based

CBA), the smaller number of threads results in a better

acceleration. As the computational burden of the MMC

becomes dominant (with the voltage sorting-based CBA), the

parallelization yields better acceleration factors.

When the number of threads is higher than the number of

cores, some threads must wait until others finish their

execution, which causes additional time losses. Such effects

can be observed when the number of threads is higher than the

number of physical cores (see the curves for two and four

threads in Fig. 12 and Fig. 13, two have better acceleration

factors more often than four).

100 200 300 400 500
0

0.5

1

1.5

f a
c

c

NSM

2 threads 4 threads

12 threads
6 threads

Fig. 12. Acceleration factors with permutation-based CBA.

100 200 300 400 500
0

0.5

1

f a
c

c

NSM

2 threads

4 threads

12 threads
6 threads

1.5

Fig. 13. Acceleration factors with voltage sorting-based CBA.

 2) Unrestricted number of cores

Computing times of the single-threaded simulation are

taken as reference. Simulations are performed with two

different CBAs: permutation-based and voltage sorting-based

[14]. Acceleration factors are shown in Table IV, and Fig. 14.

With high number of cores, acceleration factors are higher.

As in the case with a relatively small number of cores, better

acceleration is achieved when the computational burden of the

MMC is high relatively to the rest of the simulated design.

This is the case with the voltage sorting-based CBA, where the

acceleration factor reaches four.

100 200 300 400 500
0

2

1

3

f a
c

c

NSM

12 threads
6 threads

12 threads
6 threads

4
voltage sorting-

based CBA

permutation-
based CBA

Fig. 14. Acceleration factors with high number of cores.

 3) Two MMC-HVDC links

Two MMC-HVDC links are simulated in this test case. The

maximum number of threads is 24. This is used to demonstrate

the impact of the number of threads on the acceleration factor.

Voltage sorting CBA is used and 400 SMs with 320 full

bridge SMs. Total simulation time is 1 s and the time-step is 5

μs. Performance of the memory pointer implementation of the

DEM is also compared. Memory pointer implementation

refers to the information exchange between the DEM and

CBA blocks directly in the memory without soliciting the CC

(details are given in [5]).

Results are shown in Fig. 15 and Table V (first row

indicates the reference time for each case, relatively to which

acceleration factors are computed). With the voltage sorting-

based CBAs, the system does not exhibit saturation, which

means that the computational load of this CBA is high

compared to the rest of the simulated design. With the

permutation-based CBA the acceleration factor tends to a

saturation when the number of parallel threads is above six.

With six threads, a small dip can be seen in all waveforms.

This can be attributed to the hardware implementation of

multicore processors. In all tests, the memory pointer

implementation improves acceleration.

5

6
memory pointer

voltage sorting-
based CBA

permutation-based CBA

4 8 12 16 20 240

1

2

3

4

1
Number of threads

f a
c

c

default

Fig. 15. Acceleration factors with two HVDC links.

TABLE V

ACCELERATION FACTORS DEPENDING ON THE NUMBER OF THREADS

Thread

count

Permutation CBA Voltage sorting CBA

Default Memory pointer Default Memory pointer

1 (base time) 289.4 s 232.2 s 764.2 s 730.8 s

4 1.5 1.7 2.32 2.6
6 1.59 1.84 2.59 2.97

8 1.64 2.08 3.06 3.77

12 1.67 2.14 3.36 4.3
24 1.72 2.33 3.84 5.51

TABLE IV

ACCELERATION FACTORS WITH HIGH NUMBER OF CORES

Number

of SMs

Permutation CBA Voltage sorting CBA

6 threads 12 threads 6 threads 12 threads

100 1.21 1.36 1.32 1.5

200 1.43 1.57 1.83 2.28
300 1.56 1.74 2.38 2.97

400 1.62 1.84 2.64 3.53

500 1.68 1.93 2.9 4.03

TABLE III

ACCELERATION FACTORS WITH VOLTAGE SORTING CBA

Number of SMs 2 threads 4 threads 6 threads 12 threads

100 1.06 0.98 0.53 0.61

200 1.18 1.17 0.78 0.87
300 1.26 1.3 1.04 1.13

400 1.29 1.37 1.19 1.28

500 1.3 1.4 1.27 1.36

TABLE II

ACCELERATION FACTORS WITH PERMUTATION CBA

Number of SMs 2 threads 4 threads 6 threads 12 threads

100 1.03 0.91 0.52 0.59

200 1.1 1 0.61 0.7
300 1.13 1.06 0.68 0.78

400 1.16 1.07 0.76 0.85

500 1.15 1.11 0.8 0.9

 4) DEM-only parallelization

In some cases, individual blocks of the control system

might not be available for parallelization. This is the case

when the whole control system is provided by a manufacturer

in a form of a black box due to the confidentiality. In such

cases, only the DEM can be parallelized.

The same two MMC-HVDC links as in subsection VI.B.3

are used to demonstrate the effects of DEM-only

parallelization. The results are shown in Table VI and Fig. 16.

When the CBA requires a considerable amount of

computations, which is the case of the voltage sorting-based

CBA, the DEM parallelization has a negligible effect, the

acceleration factors are close to one. With the permutation-

based CBA, the acceleration factors are closer to 1.3. The

saturation limit of
accf is reached with four threads.

voltage sorting-based CBA

permutation-based CBA

4 8 12 16 20 24
0

1

1.5

1
Number of threads

f a
c

c

0.5

Fig. 16. Acceleration factors with DEM-only parallelization.

VII. CONCLUSION

The proposed arm-level parallelization method for the

detailed equivalent model of MMC, which also includes the

CBA parallelization, allows to significantly accelerate offline

EMT simulations. The acceleration factor increases as the

number of SMs increases, owing to the increase in the

computational burden of the parallelizable computations

compared to the rest of the simulated design. If this method is

used in a large network that is solved in parallel using

decoupling lines, significant acceleration gains are expected.

When a large number of cores is available, the acceleration

factor increases with the number of threads until it reaches a

saturation limit. This limit indicates that the time spent to

perform the DEM and CBA computations has become

negligible compared to the rest of the design. However, when

the number of available cores is limited, parallelization can

increase the computing time due to additional efforts required

to create and manage multiple threads.

The CBA has an important role in providing high

acceleration factors, due to significant computational burden.

The highest acceleration factors are achievable when the CBA

has a lot of internal calculations and they are parallelized.

DEM-only parallelization can result in some acceleration if

its computational effort is comparable to the rest of the

simulated circuit. With the permutation-based CBA, the

simulations can be accelerated by about 30%.

VIII. ACKNOWLEDGMENT

A. Stepanov would like to acknowledge the support of

Vanier Canada Graduate Scholarship in his research.

IX. REFERENCES

[1] A. Lesnicar and R. Marquardt, "An innovative modular multilevel

converter topology suitable for a wide power range," in 2003 IEEE
Bologna PowerTech - Conference Proceedings, Bologna, Italy, 2003,

vol. 3: IEEE Computer Society, pp. 272-277, doi:

10.1109/ptc.2003.1304403.
[2] H. Saad, S. Dennetiere, J. Mahseredjian, P. Delarue, X. Guillaud et al.,

"Modular Multilevel Converter Models for Electromagnetic Transients,"

(in English), IEEE Trans. on Power Delivery, vol. 29, no. 3, pp. 1481-
1489, June 2014, doi: 10.1109/tpwrd.2013.2285633.

[3] H. Saad, J. Peralta, S. Dennetiere, J. Mahseredjian, J. Jatskevich et al.,

"Dynamic Averaged and Simplified Models for MMC-Based HVDC
Transmission Systems," (in English), IEEE Trans. on Power Delivery,

vol. 28, no. 3, pp. 1723-1730, July 2013, doi:

10.1109/tpwrd.2013.2251912.
[4] U. N. Gnanarathna, A. M. Gole, and R. P. Jayasinghe, "Efficient

Modeling of Modular Multilevel HVDC Converters (MMC) on

Electromagnetic Transient Simulation Programs," (in English), IEEE
Transactions on Power Delivery, vol. 26, no. 1, pp. 316-324, Jan 2011,

doi: 10.1109/tpwrd.2010.2060737.
[5] A. Stepanov, J. Mahseredjian, U. Karaagac, and H. Saad, "Adaptive

Modular Multilevel Converter Model for Electromagnetic Transient

Simulations," IEEE Transactions on Power Delivery, pp. 1-1, 2020, doi:
10.1109/TPWRD.2020.2993502.

[6] S. Yu, S. Zhang, Y. Wei, Y. Zhu, and Y. Sun, "Efficient and accurate

hybrid model of modular multilevel converters for large MTDC
systems," IET Generation, Transmission & Distribution, vol. 12, no. 7,

pp. 1565-1572, 2017.

[7] H. Saad, T. Ould-Bachir, J. Mahseredjian, C. Dufour, S. Dennetiere, and
S. Nguefeu, "Real-Time Simulation of MMCs Using CPU and FPGA,"

IEEE Transactions on Power Electronics, vol. 30, no. 1, pp. 259-67,

2015, doi: 10.1109/tpel.2013.2282600.
[8] D. M. Falcao, E. Kaszkurewicz, and H. L. S. Almeida, "Application of

parallel processing techniques to the simulation of power system

electromagnetic transients," IEEE Transactions on Power Systems, vol.
8, no. 1, pp. 90-96, 1993, doi: 10.1109/59.221253.

[9] A. Abusalah, O. Saad, J. Mahseredjian, U. Karaagac, and I. Kocar,

"Accelerated Sparse Matrix-Based Computation of Electromagnetic
Transients," IEEE Open Access Journal of Power and Energy, vol. 7,

pp. 13-21, 2020, doi: 10.1109/OAJPE.2019.2952776.

[10] M. Cai, J. Mahseredjian, U. Karaagac, A. El-Akoum, and X. Fu,
"Functional Mock-Up Interface Based Parallel Multistep Approach With

Signal Correction for Electromagnetic Transients Simulations," IEEE

Transactions on Power Systems, vol. 34, no. 3, pp. 2482-2484, 2019,
doi: 10.1109/TPWRS.2019.2902740.

[11] F. Cong and Y. Tao, "Sparse LU Factorization with Partial Pivoting on

Distributed Memory Machines," in Supercomputing '96:Proceedings of
the 1996 ACM/IEEE Conference on Supercomputing, 1-1 Jan. 1996

1996, pp. 31-31, doi: 10.1109/SUPERC.1996.183533.

[12] M. Matar and R. Iravani, "FPGA Implementation of the Power
Electronic Converter Model for Real-Time Simulation of

Electromagnetic Transients," IEEE Transactions on Power Delivery,

vol. 25, no. 2, pp. 852-860, 2010, doi: 10.1109/TPWRD.2009.2033603.
[13] J. Mahseredjian, S. Dennetière, L. Dubé, B. Khodabakhchian, and L.

Gérin-Lajoie, "On a new approach for the simulation of transients in

power systems," (in English), Electric Power Systems Research, vol. 77,
no. 11, pp. 1514-1520, Sep. 2007, doi: 10.1016/j.epsr.2006.08.027.

[14] A. Stepanov, H. Saad, U. Karaagac, and J. Mahseredjian, "Initialization

of Modular Multilevel Converter Models for the Simulation of
Electromagnetic Transients," IEEE Transactions on Power Delivery,

vol. 34, no. 1, pp. 290-300, 2018.

TABLE VI
ACCELERATION FACTORS IN CASE OF DEM-ONLY PARALLELIZATION

Thread count 2 threads 4 threads

1 (base time) 289.4 s 756.5 s

4 1.28 1.03

6 1.27 1.02
8 1.3 1.01

12 1.31 1

24 1.32 1

