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Abstract—This paper proposes a method to parallelize the 

computations of the detailed equivalent model of modular 

multilevel converter (MMC) on multicore CPUs in offline 

simulations of electromagnetic transients (EMTs). Each arm of 

the converter is implemented as a DLL independently from the 

main solver and is interfaced with it using standard procedures. 

It is also proposed to parallelize the capacitor balancing 

algorithm using a similar approach. Depending on the simulated 

system, the proposed method allows to accelerate simulations by 

five times without affecting accuracy of the results. Results also 

demonstrate that parallelization of the capacitor balancing 

algorithm plays an important role in improving simulation speed 

and can have a larger impact than the parallelization of electrical 

circuit equations. 

 

Keywords: detailed equivalent model, parallelization, modular 

multilevel converter, simulations.1 

I.  INTRODUCTION 

odular multilevel converter (MMC) is a power 

electronic converter that is used in many modern 

HVDC transmission projects, Fig. 1. It has several significant 

advantages, including easy scalability to high voltage levels, 

smooth AC voltage waveform, and relatively low losses, all 

due to its modular structure and lower switching frequency. 

The MMC generates AC voltages by inserting the appropriate 

number of submodules (SMs), which are essentially capacitors 

with quasi-constant voltage, each of which represents one 

level of the resulting voltage waveform [1].  

It is essential to perform electromagnetic transient (EMT) 

simulations to ensure safe and reliable operation of HVDC 

systems. To do so, accurate time-domain models of various 

equipment are required. Owing to the structural complexity of 

MMCs, numerous EMT models have been developed, some of 

the most used ones are [2-4]: 

• The detailed model (DM), that represents IGBTs in each SM 

using a piecewise linear v-i characteristic. 

• The detailed equivalent model (DEM), that represents 

IGBTs as two-value resistances. 

• The arm equivalent model, that aggregates all SMs in each 
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arm into a single equivalent circuit. 

• The average value model, that represents all SMs in whole 

converter as a single capacitor. 

While detailed models provide high accuracy, they are 

typically much slower, which restricts their application. 

Efforts have been put forward to improve the speed of 

simulations involving MMCs in various ways [4-6]. However, 

parallelization of MMC model computations has not been 

widely researched [7].  

Parallelization in EMT simulations has been applied 

through network decoupling by transmission lines [8, 9], co-

simulation methods [10], parallel implementation of LU 

factorization [11]. CPU or FPGA implementations have been 

used to accelerate the simulations of power electronic devices. 

Real-time applications are investigated in [7, 12]. 

This paper proposes a method to parallelize the 

computations of the DEM on multicore CPUs in offline 

simulations. Among the conventional MMC models, the DEM 

is a good candidate for parallelization because:  

• It has relatively high computational burden, which offers 

potentially significant time-gains. 

• The nonlinearities in the DEM are not as complex as in the 

DM, which allows for a relatively easier implementation. 

• The DEM is often implemented independently from the 

main EMT solver, which results in easier interfacing. 

• There are at least six DEM blocks per MMC. 

• The DEM requires a capacitor balancing algorithm (CBA) 

block, which can also be parallelized. 

Unlike FPGAs, multicore CPUs are often available in 

modern day PCs and laptops. This allows to prioritize CPU 

parallelization over other types due to the larger availability of 

the appropriate hardware. 
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Fig. 1.  Structure of the detailed equivalent model of MMC. 

II.  PROCEDURE OVERVIEW 

The EMT simulation software considered in this chapter is 

EMTP [13], which is based on the request-participation 

interface with the constituting modules. The EMTP 

computational core (CC) sends requests to each model one by 
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one and they reply with the results of their internal 

calculations. The main requests of CC at a single time-point 

computation with nonlinear elements such as the DEM are as 

follows: 

• Request admittances and history currents from all DEMs. 

• Solve the main network equations (MNEs) matrix. 

• Repeat two previous steps in case of insufficient precision. 

• Request capacitor voltages for control system equations. 

• Solve control system equations. 

• Go to next time-point. 

In the default sequential execution case, the internal model 

calculations are performed one at a time for each arm when 

the CC requests them. The idea researched in this paper is that 

internal computations of all DEM blocks are performed at 

once in parallel at the beginning of the current time-point and 

then the solicited DEMs only retrieve the results when 

requested by CC, as shown in Fig. 2 (EMT-core is CC). The 

CBA parallelization is performed in a similar manner with the 

difference being that it only participates in the control system 

equations part, but not in the MNE. 

There are similarities between the proposed approach and 

the one used in [7]. However, this paper deals with offline 

simulations and focuses on the simulation time reduction and 

evaluation of various contributing factors. Besides, the 

proposed parallelization approach is applicable to computers 

with any number of cores and to circuits with any number of 

DEM and CBA blocks and any number of SMs. 
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Fig. 2.  Overview of the proposed parallelization scheme. 

III.  DEM PARALLELIZATION 

Each DEM arm is interfaced with the CC by using its 

Norton equivalent circuit. To calculate it, the DEM requires 

the IGBT control signals and the input voltage [2, 4]. The 

Norton equivalents values supplied by the DEM DLLs to the 

CC depend on the control and history values from the previous 

time-point, so do not require iterations unless in blocked mode. 

Internal DEM actions are divided in the following groups: 

• Reading input data (IGBT commands, input arm voltage). 

This is reading from memory so can be parallelized. 

• Internal computations (updating history currents, calculating 

the Norton equivalent, updating capacitor voltage and 

current values). They only require local variables so can also 

be parallelized. 

• Output data exchange (provide the Norton equivalent and 

SM voltages to the CC). This has to be performed in series 

since calls to internal CC functions are used, that cannot be 

guaranteed to be thread-safe. 

The DEM is implemented as a DLL using Fortran-2015 

and parallelization is performed using OpenMP provided by 

the Intel Fortran compiler. Each DEM DLL executes the 

algorithm shown in Fig. 3. To be able to study the impact of 

the number of threads on the acceleration, the total number of 

DEM DLLs 
DEMN  is divided into several groups. The DLLs 

within the same group are launched in parallel. Each DLL 

group contains 
threadsn  blocks and requires as many threads. 

Each DLL first checks if it is the first in the group and if so, 

launches all group’s computations in parallel. To avoid 

multiple computations of the same data, the first DLL raises a 

special flag (“first DLL in the group”) that indicates that the 

calculations of this group have been performed. The DLLs 

also check if they are the last one in the group to reset the 

“first DLL in the group” flag that has been raised by the first 

DLL in the group so that at the next time-point the first DLL 

could be correctly assigned. 
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Fig. 3.  Implemented DEM parallelization algorithm. 

IV.  CBA PARALLELIZATION 

The CBA control block, i.e. the block that keeps all SM 

voltages close to each other, deals only with control signals. 

As with the DEM, all internal functions of the CBA are 

divided as follows: 

• Reading input data (SM voltages, arm current). It can be 

performed in parallel because it is reading from memory. 

• Internal computations (sorting SM voltages, selecting the 

SMs to insert and to bypass). Only local variables are 

required so this can also be parallelized. 



• Output data exchange (IGBT gating signals). Performed in 

series since it uses calls to the internal functions of the CC 

that cannot be guaranteed to be thread-safe. 

The CBA is active during normal operation and only 

provides blocking signals during the blocked mode. The same 

implementation as in Fig. 3 is used with the only difference 

being that the DEMs are replaced by the CBAs. 

V.  PERFORMANCE EVALUATION 

The goal of the proposed DEM parallelization scheme is to 

reduce the time needed to perform simulations of MMC-

HVDC systems. Therefore, the time gains must be evaluated. 

They are evaluated using the acceleration factor, which is 

found as 

 pacc sf t t  (1) 

where pt  is the computational time with parallelization and

st  is the computational time with the default single-threaded 

sequential implementation of the DEM. 

In the first approximation, the single-threaded and the 

multithreaded computing times can be represented by the 

following formulas 

 
0 MDE DEMst T T N   (2) 

 0 sp DDEM threaEM dt nT T N   (3) 

where 
0T  is the time necessary to perform all sequential 

computations such as the resolution of the MNE, line and 

machine models, etc.; 
DEMT  is the time to compute one arm. 

Given that the number of DEM blocks in each group 

threadsn  is between 1 and DEMN , accf is also limited: 

  min 1accf   (4) 

   0

0

max DE

M

DEM

acc

M

DE

T T N
f

T T





 (5) 

If the time required to compute the DEM is large compared 

to the rest of the computations (i.e. 0DEMT T ), the maximal 

acceleration factor will be equal to the total number of DEM 

blocks in the simulated electrical circuit DEMN . 

It should be noted that the threads are created at the 

beginning of each time-step and suppressed at the end of the 

time-step and thread management and affinity is performed by 

the operating system. Since (4) and (5) do not consider the 

time required to create and manage multiple threads, the actual 

acceleration factors will be smaller than the theoretical limit. 

VI.  SIMULATION RESULTS 

The parallelization tests are performed in EMTP on a point-

to-point MMC-HVDC link with two MMC stations shown in 

Fig. 4 (except subsection VI.A). There are 12 DEM blocks, 

yielding the maximum of 12 threads. 

MMC1
100 SM
1 GVA

MMC2
100 SM
1 GVA

DC cable

400/320 kV
VDC =320 kV

400/320 kV

P, Q control vDC, Q control  
Fig. 4.  Simulated MMC-HVDC transmission. 

A.  Validation 

The tests in this subsection validate the implementation, 

accuracy and demonstrate dependencies between computing 

times and the number of DEM blocks. 

In this and the following sections, the execution times are 

measured as the average of multiple runs using internal clock 

of the simulation software. This allows to consider the effects 

of parallelization on the simulation as a whole. 

    1)  Parallelization validation 

A simple electrical circuit shown in Fig. 5 is used for 

validation (the circuit does not represent a realistic HVDC 

system so the values of currents and resistances are selected 

arbitrarily). It contains a DC current source and 12 DEM 

blocks with the corresponding CBAs, that exchange gating 

signals (
j

S ) and capacitor voltages (
SM j

V ) between 

themselves. Half-bridge SMs are used and all of them are 

inserted. Simulation time is 1 s and the time-step is 5 μs. The 

tests are performed on a computer with 4 physical and 8 

logical cores. The number of SMs per arm is varied. 

Computing times depending on the number of threads and 

SMs are shown in Table I and Fig. 6. The dependence on the 

number of SMs is linear for a given number of threads, which 

validates (2) and (3). Extrapolating computing times to 

0SMN   yields the value of 
0T . With parallelization, 

0T  is 

relatively higher because some additional time is spent on 

thread creation and management. No clearly identifiable 

dependency of 
0T  on 

threadsn  has been observed. 

For further analysis, the computing times in Table I are 

adjusted for 
0T , the value of 

0T  is subtracted from the 

corresponding computing times for a given value of 
threadsn . 

The adjusted computing times are plotted in Fig. 7 as a 

function of the number of DEM blocks computed in series 

 
serial DEM threadsn N n  (6) 

The results show linear dependency, which confirms the 

implemented parallelization scheme. However, it can be 

observed that even after the adjustment the extrapolation does 

not yield zero computing time for 0serialn  . This remaining 

time is due to the actions performed in series for each arm, as 

explained in sections III and IV. It is possible to make another 

observation: the time necessary to compute the DEM is 

proportional to the number of SMs, which also confirms the 

correctness of the implementation. 
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Fig. 5.  Circuit to validate the implemented parallelization. 
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Fig. 6.  Computing times with different number of threads. 
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Fig. 7.  Adjusted computing times. 

 
    2)  Power reference step 

In this test, the waveforms obtained with the single-thread 

simulation are considered as references. The plot lines used 

for waveforms in figures of this subsection: 1 thread – solid 

black, 6 threads – dash-dotted blue, 12 threads – dashed 

orange. The power reference step from 100% to 50% of the 

nominal power transfer of 1 GW is applied at 0.5 s. No visible 

difference exists between the waveforms of the DC voltage 

(Fig. 8) or the total capacitor voltage (Fig. 9). 
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Fig. 8.  DC voltage with different number of threads. 
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Fig. 9.  Total capacitor voltage in phase A upper arm at MMC1. 
 

    3)  DC fault 

The DC fault is applied at 0.5 s in the middle of the DC 

link. The blocking signal is activated at MMC1 at 0.50044 s, 

which causes all half-bridge SMs (for example, the 5th SM in 

Fig. 10) to stop conducting immediately. Full-bridge SMs (for 

example, the 305th SM in Fig. 11) are able to pass the current 

in the negative direction for a brief moment. It is clear that the 

waveforms obtained with parallelization match closely the 

single-threaded case irrespective of the number of threads. 
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Fig. 10.  Voltage of the 5th SM in phase A upper arm at MMC1. 
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Fig. 11.  Voltage of the 305th SM in phase A upper arm at MMC1. 
 

    4)  Error analysis 

Theoretically, parallelization should have no effect on the 

precision of the results since the computed equations are 

identical (the single-threaded reference waveforms are 

obtained using the same implementation of the DLL but each 

arm is put in its own group, as per Fig. 3, so no groups of 

threads are launched). However, in reality, small relative 

difference in the order of 10-12 to 10-10 is perceivable in all 

signals. This can be attributed to the potential differences in 

the compiled binary code and to the different order of 

calculations, which leads to rounding errors in the least 

significant digits when representing variables using formats 

with finite levels of precision (double-precision floating-point 

format). 

B.  Time gains 

Two computers are used: a Lenovo T560 laptop with two 

physical and four logical cores and a Lenovo P910 

Thinkstation with 24 physical cores and 48 logical cores. The 

first configuration demonstrates behavior under the restricted 

number of cores and the second one demonstrates the behavior 

of the system when the number of cores is higher than the 

maximum number of threads. In all performed cases, the 

system is simulated for one second in normal operating mode. 

Since different computers are used, acceleration factors will 

be used for comparisons. This allows to eliminate the 

differences that appear due to different clock rates, processors 

architectures, and thread management on different computers. 

    1)  Restricted number of cores 

The computing times of the single-thread simulation are 

taken as the reference. The simulations are performed with 

two different types of CBA: permutation-based and voltage 

sorting-based. The former acts on one SM at a time whereas 

the latter sorts all SMs and selects the most appropriate ones 

[14]. Acceleration factors depending on the number of SMs 

are shown in Table II and Table III whereas Fig. 12 and Fig. 

13 show the dependence graphically. 

The effort required to create multiple threads and manage 

them in parallel with a low number of cores has significant 

effect on simulation speed: with a relatively low number of 

SMs the gains are below 1 and even as the computational 

burden increases with the number of SMs (until 500SMN  ), 

parallelization results in insignificant acceleration. 

The acceleration tends to a saturation limit as the number of 

SMs increases. This limit represents the proportion of the 

computations performed in parallel to the computations that 

still have to be performed in series. 

It can also be observed that the acceleration factor is not 

proportional to the number of threads: when the computational 

TABLE I 

COMPUTING TIMES WITH DIFFERENT NUMBER OF THREADS (S) 

Number of SMs 1 thread 2 threads 3 threads 4 threads 

0 (extrapolation) 7.25 9.39 8.15 7.70 

100 12.15 11.89 9.96 9.21 
200 17.13 14.49 11.76 10.75 

300 22.10 17.15 13.57 12.11 

400 27.00 19.66 15.45 13.63 
500 31.88 22.08 17.16 15.24 

 



burden of the DEM and the CBA is small compared to the rest 

of the network (which is the case with the permutation-based 

CBA), the smaller number of threads results in a better 

acceleration. As the computational burden of the MMC 

becomes dominant (with the voltage sorting-based CBA), the 

parallelization yields better acceleration factors. 

When the number of threads is higher than the number of 

cores, some threads must wait until others finish their 

execution, which causes additional time losses. Such effects 

can be observed when the number of threads is higher than the 

number of physical cores (see the curves for two and four 

threads in Fig. 12 and Fig. 13, two have better acceleration 

factors more often than four). 
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Fig. 12.  Acceleration factors with permutation-based CBA. 
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Fig. 13.  Acceleration factors with voltage sorting-based CBA. 
 

    2)  Unrestricted number of cores 

Computing times of the single-threaded simulation are 

taken as reference. Simulations are performed with two 

different CBAs: permutation-based and voltage sorting-based 

[14]. Acceleration factors are shown in Table IV, and Fig. 14. 

With high number of cores, acceleration factors are higher. 

As in the case with a relatively small number of cores, better 

acceleration is achieved when the computational burden of the 

MMC is high relatively to the rest of the simulated design. 

This is the case with the voltage sorting-based CBA, where the 

acceleration factor reaches four. 
 

 
 

100 200 300 400 500
0

2

1

3

f a
c

c

NSM

12 threads
6 threads

12 threads
6 threads

4
voltage sorting-

based CBA

permutation-
based CBA

 
Fig. 14.  Acceleration factors with high number of cores. 
 

    3)  Two MMC-HVDC links 

Two MMC-HVDC links are simulated in this test case. The 

maximum number of threads is 24. This is used to demonstrate 

the impact of the number of threads on the acceleration factor. 

Voltage sorting CBA is used and 400 SMs with 320 full 

bridge SMs. Total simulation time is 1 s and the time-step is 5 

μs. Performance of the memory pointer implementation of the 

DEM is also compared. Memory pointer implementation 

refers to the information exchange between the DEM and 

CBA blocks directly in the memory without soliciting the CC 

(details are given in [5]). 

Results are shown in Fig. 15 and Table V (first row 

indicates the reference time for each case, relatively to which 

acceleration factors are computed). With the voltage sorting-

based CBAs, the system does not exhibit saturation, which 

means that the computational load of this CBA is high 

compared to the rest of the simulated design. With the 

permutation-based CBA the acceleration factor tends to a 

saturation when the number of parallel threads is above six. 

With six threads, a small dip can be seen in all waveforms. 

This can be attributed to the hardware implementation of 

multicore processors. In all tests, the memory pointer 

implementation improves acceleration. 
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Fig. 15.  Acceleration factors with two HVDC links. 
 

TABLE V 

ACCELERATION FACTORS DEPENDING ON THE NUMBER OF THREADS 

Thread  

count 

Permutation CBA Voltage sorting CBA 

Default Memory pointer Default Memory pointer 

1 (base time) 289.4 s 232.2 s 764.2 s 730.8 s 

4 1.5 1.7 2.32 2.6 
6 1.59 1.84 2.59 2.97 

8 1.64 2.08 3.06 3.77 

12 1.67 2.14 3.36 4.3 
24 1.72 2.33 3.84 5.51 

 

TABLE IV 

ACCELERATION FACTORS WITH HIGH NUMBER OF CORES 

Number 

of SMs 

Permutation CBA Voltage sorting CBA 

6 threads 12 threads 6 threads 12 threads 

100 1.21 1.36 1.32 1.5 

200 1.43 1.57 1.83 2.28 
300 1.56 1.74 2.38 2.97 

400 1.62 1.84 2.64 3.53 

500 1.68 1.93 2.9 4.03 

 

TABLE III 

ACCELERATION FACTORS WITH VOLTAGE SORTING CBA 

Number of SMs 2 threads 4 threads 6 threads 12 threads 

100 1.06 0.98 0.53 0.61 

200 1.18 1.17 0.78 0.87 
300 1.26 1.3 1.04 1.13 

400 1.29 1.37 1.19 1.28 

500 1.3 1.4 1.27 1.36 

 

TABLE II 

ACCELERATION FACTORS WITH PERMUTATION CBA 

Number of SMs 2 threads 4 threads 6 threads 12 threads 

100 1.03 0.91 0.52 0.59 

200 1.1 1 0.61 0.7 
300 1.13 1.06 0.68 0.78 

400 1.16 1.07 0.76 0.85 

500 1.15 1.11 0.8 0.9 

 



    4)  DEM-only parallelization 

In some cases, individual blocks of the control system 

might not be available for parallelization. This is the case 

when the whole control system is provided by a manufacturer 

in a form of a black box due to the confidentiality. In such 

cases, only the DEM can be parallelized. 

The same two MMC-HVDC links as in subsection VI.B.3 

are used to demonstrate the effects of DEM-only 

parallelization. The results are shown in Table VI and Fig. 16. 

When the CBA requires a considerable amount of 

computations, which is the case of the voltage sorting-based 

CBA, the DEM parallelization has a negligible effect, the 

acceleration factors are close to one. With the permutation-

based CBA, the acceleration factors are closer to 1.3. The 

saturation limit of 
accf  is reached with four threads. 
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Fig. 16.  Acceleration factors with DEM-only parallelization. 

 

 

VII.  CONCLUSION 

The proposed arm-level parallelization method for the 

detailed equivalent model of MMC, which also includes the 

CBA parallelization, allows to significantly accelerate offline 

EMT simulations. The acceleration factor increases as the 

number of SMs increases, owing to the increase in the 

computational burden of the parallelizable computations 

compared to the rest of the simulated design. If this method is 

used in a large network that is solved in parallel using 

decoupling lines, significant acceleration gains are expected. 

When a large number of cores is available, the acceleration 

factor increases with the number of threads until it reaches a 

saturation limit. This limit indicates that the time spent to 

perform the DEM and CBA computations has become 

negligible compared to the rest of the design. However, when 

the number of available cores is limited, parallelization can 

increase the computing time due to additional efforts required 

to create and manage multiple threads. 

The CBA has an important role in providing high 

acceleration factors, due to significant computational burden. 

The highest acceleration factors are achievable when the CBA 

has a lot of internal calculations and they are parallelized. 

DEM-only parallelization can result in some acceleration if 

its computational effort is comparable to the rest of the 

simulated circuit. With the permutation-based CBA, the 

simulations can be accelerated by about 30%. 
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TABLE VI 
ACCELERATION FACTORS IN CASE OF DEM-ONLY PARALLELIZATION 

Thread count 2 threads 4 threads 

1 (base time) 289.4 s 756.5 s 

4 1.28 1.03 

6 1.27 1.02 
8 1.3 1.01 

12 1.31 1 

24 1.32 1 

 


