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Abstract—The paper examines a number of methods for
extracting dynamic phasors from samples of natural waveforms
that are generated using electromagnetic transient (EMT)
simulators. It delves into the theory underlying each phasor
extraction method and the numerical routines used for their
implementation. The paper performs an in-depth analysis of the
properties of the extracted phasors for general power system
signals that may include electromechanical oscillations, dc and
harmonic components, imbalances, and arbitrary transients.
Simulation results are presented to demonstrate any limitations
of these methods and to assess the resulting harmonic spectra of
the phasors. An EMT-dynamic phasor co-simulation example is
also included, in which various phasor extraction methods are
implemented. The paper’s findings are essential in selecting and
implementing phasor extraction methods used in co-simulations
of large power systems using EMT and dynamic phasors solvers.

Keywords—Base-frequency dynamic phasors, generalized
averaging, shifted frequency analysis, time-varying phasors.

I. INTRODUCTION

ASSESSMENT of transients is vital for design and
operation of a power system. The study of transients

relies chiefly on simulation tools, such as electromagnetic
transient (EMT) and transient stability (TS) simulators.
In the analysis of slow transients, conventional phasors
have been used to represent the network dynamics based
upon the quasi-steady state assumption [1]. The uptake of
fast-acting systems such as HVDC, FACTS, and converter-tied
distribution generation, has resulted in transients with a wider
frequency spectrum for which quasi-steady state assumptions
are no longer valid. Although EMT-type simulators [2], [3]
are able to provide detailed representations of wide-band
transients, they are computationally inefficient for large system
studies.

The notion of a dynamic phasor is an alternative to
the quasi-stationary phasors and improves the bandwidth of
pahsor-type transient simulations [4]–[6]. A dynamic phasor
provides low-pass, frequency-domain representations of a
band-pass, time-domain, natural signal. As a result, dynamic
phasors substantially reduce the computational burden of
discrete-time transient simulations by allowing sampling at
a lower rate while retaining accuracy. In recent years,
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co-simulations using upon EMT and phasor-type solvers
has been shown to be a viable solution for accurate,
computationally efficient modeling and simulation of large
networks.

Conversion of signals from time-domain to dynamic
phasors is a necessary step in interfacing co-simulation
solvers [7]–[12]. This task involves creating a phasor, or
a series of phasors if harmonics are included, to represent
a natural waveform or a subset of its harmonics using
instantaneous time-domain samples of the natural waveform.
Several methods to perform this task are available. This paper
provides an in-depth look into their underlying principles and
studies the properties of the markedly different phasors they
extract.

II. STEADY-STATE PHASOR REPRESENTATION

All currents and voltages in an AC linear circuit in
steady state are sinusoidal, and can be characterized by their
magnitudes and phase angles on a common frequency equal
to the frequency of the excitation. The aim of phasor analysis
is to gain computational convenience and efficiency [13].

Consider a time-domain sinusoid x(t) with a frequency of
ω0, magnitude of A, and phase angle of δ as follows.

x(t) = A cos(ω0t+ δ) (1)

Using Euler’s identity, one can represent this signal as

x(t)= Re
{
Aej(ω0t+δ)

}
= Re

{
~X ejω0t

}
(2)

where, ~X = Aejδ is a time-invariant complex quantity and is
called the “phasor” corresponding to x(t). One of the main
benefits that phasors offer is that the time-domain differential
equations that describe the behaviour of elements such as
inductors and capacitors become algebraic equations in the
phasor domain. This is due to the following relationship
between a time-domain signal and its phasor:

d
dt
x(t)←→ jω0

~X (3)

Note that the frequency of the signal is not included in its
phasor; therefore, conventional phasor analysis applies only
when the frequency remains unchanged and when the circuit
is in steady state. In order to improve the frequency-bandwidth
of frequency-domain representation, the concept of a dynamic
phasor is developed.

III. FAST TIME-VARYING PHASORS

A concept referred to as “fast time-varying phasors”
was one of the earliest instances of dynamic phasors in
power system applications [5]. The following provides the
mathematical basis of this concept.
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A. Phasor Transformation

Consider an arbitrary set of balanced three-phase quantities
x(t) with a time-varying amplitude and a time-varying phase
angle at a carrier frequency of ω0 as in (4).

x(t) =

 √
2A(t) cos(ω0t+ δ(t))√

2A(t) cos(ω0t+ δ(t)− 2π
3 )√

2A(t) cos(ω0t+ δ(t) + 2π
3 )

 (4)

The fast time-varying phasor for x(t) is defined as

~X(t) = A(t)ejδ(t) (5)

This definition for a time-varying phasor is based on
the conventional phasor definition. However, conversion
to a time-varying phasor is not a trivial task; therefore,
a mathematical transformation to extract phasors from
time-domain signals is also introduced. For this, the
three-phase signal x(t) is rewritten in the following form:

x(t) =
√

3B(t)

(
A(t) cos(δ(t))
A(t) sin(δ(t))

0

)
(6)

where

B(t) =

√
2

3

 cos(ω0t) − sin(ω0t)
1√
2

cos(ω0t− 2π
3 ) − sin(ω0t− 2π

3 ) 1√
2

cos(ω0t+ 2π
3 ) − sin(ω0t+ 2π

3 ) 1√
2

 (7)

is an orthonormal matrix and referred to as the Blondel
transformation. Then a phasor transformation operator, P(.),
which maps the time-domain balanced three-phase signals to
the time-varying phasor, is defined as

P
(
x(t)

)
=

1√
3

(1 j 0)B−1(t)x(t) (8)

Using (4), (7), and (8) it is readily seen that

P
(
x(t)

)
= ~X(t) = A(t)ejδ(t) (9)

The phasor transformation in (8) takes balanced three-phase
quantities, and decomposes them into symmetrical components
to represent them as time-varying complex values. When
the three-phase system is unbalanced, the transformation
produces a non-zero zero-sequence component in addition
to the time-varying phasor. This increases the complexity of
phasor analysis; therefore, applications of this concept are
strictly limited to balanced three-phase systems.

Although (8) uses the Blondel transformation matrix, it
is possible to use alternative transformations as well. For
example, in [14], αβ-transformation, which is based on Clark’s
transformation [15], is used to produce dynamic phasors.

B. Time-Varying Phasor Properties

The following properties of time-varying phasors prove to
be useful in the analysis of dynamic systems.

1) The operator P(·) is a linear transformation, i.e.,

P
(
x(t) + y(t)

)
= P

(
x(t)

)
+ P

(
y(t)

)
(10)

P
(
αx(t)

)
= αP

(
x(t)

)
(11)

2) The operator P(·) is bijective, i.e., each real signal is
paired with a unique time-varying phasor, and vice versa.

3) The phasor transformation of the derivative is given by

P
(

d
dt

x(t)

)
=

d
dt
P
(
x(t)

)
+ jω0P

(
x(t)

)
(12)

It is seen from (12) that the conventional phasor is a subclass
of dynamic phasors wherein the derivative term on the
right-hand side is absent because it is either zero or negligible.

IV. GENERALIZED AVERAGING METHOD

“Generalized (state space) averaging method” (GAM), first
introduced in [4] in the early 1990’s, is based on the notion
that a real signal can be represented by a series of time-varying
Fourier coefficients assuming quasi-periodicity of the signal.

A. Mathematical Background
Consider an arbitrary time-domain signal, x(t), with a

fundamental period of T over the time window (t−T, t). The
Fourier series of the signal at a particular time is as follows.

x(t− T + s) =

+∞∑
k=−∞

〈
x
〉
k
(t)ejkω0(t−T+s) (13)

where s ∈ (0, T ], k is the harmonic order, and ω0 = 2π/T is
the carrier frequency. The kth Fourier coefficient of x(t) is〈

x
〉
k
(t) =

1

T

∫ T

0

x(t− T + s)e−jkω0(t−T+s)ds (14)

The coefficient
〈
x
〉
k
(t) is a time-dependent complex value

and referred to as the dynamic phasor of the kth harmonic
of x(t). Unlike the previous method, this method is able to
represent all the harmonics of the waveform. Note that this
method may be computationally expensive when including
a large number of harmonic components as it requires to
compute each coefficient individually using (14). This should
be weighted, however, against the selectivity of this method
to include or exclude any number of frequency components
based on the desired level of accuracy. Owing to this, this
notion of a dynamic phasor is used in many power system
and power electronic modeling applications where several
frequency components exist.

B. Extracting Dynamic Phasor Coefficients
Assuming that the signal consists of N samples per window,

the definition in (14) can be readily discretized as〈
x
〉
k
(t) =

1

N

N−1∑
i=0

x(t− i∆t)e−jkω0(t−i∆t) (15)

which needs N additions and N multiplications to extract a
single coefficient at a given time. This window then slides
along the time axis in discrete steps repeating the same
computation. This can be done more efficiently utilizing the
overlap of windows when moving from one point to the next
as illustrated in Fig. 1.

Consider that the dynamic phasor coefficient at t−∆t was
previously calculated and is known. Then, the dynamic phasor
coefficient for the present time, t, can be extracted as〈

x
〉
k
(t) =

〈
x
〉
k
(t−∆t)

+
1

N

(
x(t)e−jkω0t − x(t−N∆t)e−jkω0(t−N∆t)

)
(16)

which requires only two additions and two multiplications.



Time

x(t)

t−N∆t t−(N−1)∆t t−∆t t

T
T

Window is moving

N × ∆t ≈ T

Fig. 1. Coefficient extraction using GAM.

C. GAM Properties
The following properties of GAM can be readily proved [4].
1) The time-derivative of the kth Fourier coefficient is

d
dt
〈
x
〉
k
(t) =

〈
d
dt
x

〉
k

(t)− jkω0

〈
x
〉
k
(t) (17)

2) The dynamic phasors of the product of the two signals:〈
xy
〉
k

=
+∞∑
i=−∞

〈
x
〉
k−i

〈
y
〉
i

(18)

3) Negative-frequency coefficients:〈
x
〉
−k(t) =

〈
x
〉∗
k
(t) (19)

where * is the complex conjugate. This method also preserves
all the properties of dynamic phasors given in section III-B.

V. SHIFTED-FREQUENCY ANALYSIS

The relationship between “analytic signals” and dynamic
phasors is well explained in [16] and later formalized in
“shifted-frequency analysis” (SFA) solution framework [6],
[10].

A. Mathematical Background
Power system waveforms, in general, are band-pass and

centered around frequencies ω0 and −ω0. They can be
represented in terms of two low-pass signals and two
sinusoidal carriers using Fourier decomposition as:

x(t) = uI(t) cos(ω0t)− uQ(t) sin(ω0t) (20)

where uI and uQ are referred to as in-phase and quadrature
components of x(t), respectively. These two low-pass
signals provide all the information about x(t) with a
frequency-spectrum shifted down by ω0 to around zero.
Therefore, the dynamic phasor of x(t) can be described as
follows.

D
[
x(t)

]
= uI(t) + juQ(t) (21)

Another representation of x(t) is by its analytic signal:

z(t) = D
[
x(t)

]
ejω0t (22)

Substituting (21) in (22) and further simplifying yields:

z(t) = x(t) + jH[x(t)] (23)

where
H[x(t)] =

1

π

∫ ∞
−∞

x(τ)

t− τ
dτ (24)

is the Hilbert transformation [17] of x(t). The SFA procedure
is illustrated in Fig. 2 wherein F denotes the Fourier
decomposition.

t

|A|
x(t)

F [x(t)]
(I)

ω

0

F [x(t)]

−ω0 ω0

|A|
2

(II)

x(t) +H[x(t)]

ω

0

F [z(t)]

−ω0 ω0

|A|
z(t) · e−jω0t

(III)

ω

0

F [z(t)ejω0t]

−ω0 ω0

|A|

(IV)

Fig. 2. Shifted-frequency analysis illustration.

B. Extracting the Analytic Signal

In power system simulations, all signals are unknown
initially and are generated during the course of the simulation;
therefore, the Hilbert transformation of the signal has to be
calculated starting from steady-state initial conditions and
system equations assuming that all signals are sinusoidal and
have only the fundamental frequency at steady-state, as is the
case virtually in all AC power system simulations [16].

Contrary to the fast time-varying phasors, SFA can be
applied to any arbitrary number of signals or phases. However,
since the vast majority of applications are three-phase systems,
this paper explains a method that can be used for any
three-phase signal to extract its corresponding analytic signal.

Consider a three-phase signal xabc = [xa, xb, xc]
′. Denote

the corresponding analytic signal as zabc = [za, zb, zc]
′ and

the signal in dq0-domain as xdq0 = [xd, xq, x0]′. It is readily
obvious that that

Re{zabc} = xabc (25)

Im{zabc} = H
[
xabc

]
= H

[
Re{zabc}

]
(26)

Taking the original signal to the dq0-domain yields:

xdq0 = K(t) xabc (27)

where

K(t) =
2

3

cos(ω0t) cos(ω0t− 2π
3 ) cos(ω0t+ 2π

3 )
sin(ω0t) sin(ω0t− 2π

3 ) sin(ω0t+ 2π
3 )

1/2 1/2 1/2

 (28)

Combining (25) and (27) yields the following relationship.

Re{zabc} = xabc = K−1(t)xdq0 (29)

In steady-state, xd and xq are constants. Assuming that
the signal consists of only the fundamental component in
steady-state, the Hilbert transformation of xabc can be derived
as:

Im{zabc} = H
[
Re{zabc}

]
=

 sin(ω0t) − cos(ω0t) 0
sin(ω0t− 2π

3 ) − cos(ω0t− 2π
3 ) 0

sin(ω0t+ 2π
3 ) − cos(ω0t+ 2π

3 ) 0

 xqd0
(30)



Note that the Hilbert transformation of a constant is zero; thus,
the zero-sequence component is cancelled out in (30). Then
the analytic signal can be derived as:

zabc = Re
{

zabc

}
+ j Im

{
zabc

}
= xabc + j

 sin(ω0t) − cos(ω0t) 0
sin(ω0t− 2π

3 ) − cos(ω0t− 2π
3 ) 0

sin(ω0t+ 2π
3 ) − cos(ω0t+ 2π

3 ) 0

 xqd0

= xabc + j

 sin(ω0t) − cos(ω0t) 0
sin(ω0t− 2π

3 ) − cos(ω0t− 2π
3 ) 0

sin(ω0t+ 2π
3 ) − cos(ω0t+ 2π

3 ) 0

K(t)xabc

(31)

Substituting K(t) and further simplifying (31) yields

zabc =
[̂
I + j

1√
3
M
]

xabc (32)

where Î is the identity matrix and M =

(
0 1 −1
−1 0 1

1 −1 0

)
. At

this point one can readily shift the analytic signal, zabc, by
multiplying it by e−jω0t to form a dynamic phasor.

SFA provides a framework to analyze real signals with
bandwidths around the carrier frequency, in shifted-frequency
domain. This concept can be extended to signals consisting
of multiple harmonics by calculating respective Fourier
coefficients as described in section VI.

VI. BASE-FREQUENCY DYNAMIC PHASORS

“Base-frequency dynamic phasor” (BFDP) is a concept
established on the notion that all the coefficients in the GAM
can be combined to represent the entire frequency spectrum
of a time-domain signal using a single dynamic phasor at the
fundamental frequency [18]. This method, similar to the SFA,
produces a low-bandwidth dynamic phasor through shifting
each frequency component of the time-domain signal to a
lower frequency.

A. Mathematical Background

The Fourier series in (13) may be rewritten as follows:

x(t− T + s) =
〈
x
〉

0
(t) + Re

{
2

+∞∑
k=1

〈
x
〉
k
(t)ejkω0(t−T+s)

}
(33)

This can be represented as a single dynamic phasor at the
fundamental frequency as:

x(t− T + s) = Re
{〈

X
〉

B(t)ejω0(t−T+s)
}

(34)

where

〈
X
〉

B(t) =

(〈
x
〉

0
(t) + 2

+∞∑
k=1

〈
x
〉
k
(t)ejkω0(t−T+s)

)
e−jω0(t−T+s) (35)

is termed the BFDP and represents the entire frequency range
of x(t). This method ensures that the network needs to be
modeled only for its fundamental frequency rather than for
each harmonic, as is the case with GAM; therefore, it offers
both efficiency and accuracy. Two algorithms for extracting
the BFDP from real signals as described next.

1
T

∫ T

0 (·)e−jkω0(t−T +s)ds

1
T

∫ T

0 (·)e−jkω0(t−T +s)ds

1
T

∫ T

0 (·)e−jkω0(t−T +s)ds

2(·)ejkω0(t−T +s)

2(·)ejkω0(t−T +s)

∑
(·)e−jω0(t−T +s)

x(t) k = 0

k = 1

k = h

〈
x
〉

0(t)

〈
x
〉

1(t)

〈
x
〉

h
(t)

〈
X
〉

B(t)

EMT DP

Fig. 3. BFDP extraction: method-I.

B. Extracting a Base-Frequency Dynamic Phasor

1) Method-I: An obvious method for BFDP calculation is
to extract the coefficients corresponding to positive-frequency
and dc components of the signal individually and then merge
them before shifting the spectrum down as in (35). This is
depicted in Fig. 3. Recursive integration to obtain coefficients
can be effectively done using (16). The drawback of this
method is that the frequency contents of the real signal are
generally unknown beforehand, which may cause difficulty
when deciding the number of coefficients required to achieve
the desired accuracy.

2) Method-II: One can express the series given in (33)
in the following form separating the fundamental component
from the rest:

x(t− T + s)

= Re
{

2
〈
x
〉

1
(t)ejω0(t−T+s)

}
+

+∞∑
k=−∞
k 6=−1,1

〈
x
〉
k
(t)ejkω0(t−T+s)

= Re
{

2
〈
x
〉

1
(t)ejω0(t−T+s)

}
+ Xh(t)ejω0(t−T+s) (36)

where

Xh(t) =

+∞∑
k=−∞
k 6=−1,1

〈
x
〉
k
(t)ej(k−1)ω0(t−T+s) (37)

is a complex signal that comprises dc component and
all harmonic contents of x(t) except for the fundamental
component. The steps for extracting BFDP can be described
using (36) as follows and the procedure illustrated in Fig. 4.

First, the fundamental component,
〈
x
〉

1(t), is calculated
using (16) with k = 1. It is then used to form the first term
on the right-hand side of (36), which is then subtracted from
the original signal, x(t). This yields the second term on the
right-hand side of (36), from which Xh(t) is readily obtained.
Finally, the BFDP is computed as:〈

X
〉

B(t) = 2
〈
x
〉

1
(t) + Xh(t) (38)

While this method provides both efficiency and accuracy,
if the network consists of higher order harmonics, it shifts
negative frequency components of Xh(t) further away from
the imaginary axis, generating a high-frequency oscillating
complex signal, which is less useful in large time-step
simulations. Therefore, for systems with harmonics that need
to be retained, it is recommended to extract BFDPs using
method-I.



1
T

∫ T

0 (·)e−jω0(t−T +s)ds Re
{

(·)ejω0(t−T +s)} ∑

(·)e−jω0(t−T +s)∑

x(t)
+2

〈
x
〉

1(t) −

+ Xh(t)
+

〈
X
〉

B(t)

EMT DP

Fig. 4. BFDP extraction: method-II.

Fig. 5. DP representations of a real signal consisting of fundamental and
electromechanical oscillation frequencies.

VII. ILLUSTRATIVE EXAMPLES

This section demonstrates the dynamic phasor extraction
methods using representative power system waveforms.
Firstly, a time-domain signal that illustrates a wide range of
typical power system waveforms is defined as:

x(t) = a0(t) +
(
a(t) + ae(t) cos(2πfet)

)
cos(ω0t+ δ(t))

+ ah cos(hω0t) (39)

where a0, a, ae, and ah are magnitudes of the dc, fundamental,
electromechanical, and higher order harmonic components,
respectively. ω0 is the fundamental frequency, fe is the
frequency of the electromechanical component, and δ is the
phase angle. During a disturbance, more than one scenario
may be exhibited in (39); however, for better understanding,
each scenario is considered separately. In the following, each
dynamic phasor is extracted in a causal manner; i.e., only using
present and past values of the natural signal, as is the case with
power system simulations.

A. Electromechanical Oscillation

One of the most common scenarios in power systems
is electromechanical oscillations, which typically befall in
the frequency range of 0.1-3 Hz. Fig. 5 displays the
representations of a decaying electromechanical oscillation
with a = 20, ae, max = 15, fe = 3 Hz, and δ = π/6 rad
using various dynamic phasor extraction techniques.

It can be seen that for a signal with a frequency
contents around the fundamental component, f0 (= ω0/2π),
all extraction methods produce essentially identical

Fig. 6. Frequency spectrum of DPs when the real signal consists of
fundamental and electromechanical oscillation frequencies.

representations of the envelope waveform. For GAM
several frequency components are computed, which are
unnecessary in this case as slow dynamics are attributed
to the fundamental coefficient only. It is clear from the
frequency spectra in Fig. 6 that the frequency spectrum of
x(t), which is originally in f0 ± fe and −f0 ± fe is now
shifted to 0± fe yielding a low-pass signal.

B. DC Offset and Harmonics

DC offsets and harmonics commonly occur in power
electronic converters and can be expected in a power system
during a disturbance. Fig. 7 shows the result of each extraction
technique to replicate such information in the frequency
domain. The signal x(t) has a dc offset with a0 = 5, during
t ∈ [0, 0.1] s and a second-order harmonic with a magnitude
of ah = 10 during t ∈ [0.15, 0.25] s. Fourier decomposition of
dynamic phasor waveforms when the original signal consists
of dc and harmonics are shown in Figs. 8 and 9, respectively.

A dc offset results in a zero sequence component; thus,
a time-varying phasor, which focuses only on the positive
sequence, completely ignores it and generates an envelope
corresponding to the fundamental component. In GAM, the
dc component is readily captured by calculating the coefficient
corresponding to k = 0. The frequency shifting in SFA and
both BFDP methods mean that the dc component of magnitude
a0(t) in the time domain results in a0(t)e−jω0t in the phasor
domain (a shift of −f0); hence, oscillations at the fundamental
frequency in the envelope waveforms generated by these latter
methods are observed in Fig. 7.

When the real signal consists of harmonics with different
phase sequences, a fast time-varying phasor faces difficulty
as it is tied with positive-sequence signals only. GAM, on
the other hand, shifts all its harmonic components to around
zero, which makes it suitable in modeling power electronic
systems where multiple harmonics may exist. However, each
frequency component must be evaluated separately, which
makes it computationally cumbersome. The analytic signal
generated using (32) has a positive-frequency spectrum only
when the natural signal is a periodic fundamental-frequency
sinusoid. For other signals, it may generate negative-frequency
components as well. Note that (32) is a computationally
efficient and causal method to approximate an analytic signal



Fig. 7. DP representations of a real signal consisting of dc offset and harmonics.

Fig. 8. Frequency spectrum of DPs when the real signal contains a dc offset.

Fig. 9. Frequency spectrum of DPs when the real signal contains harmonics.

during a simulation, and as such is not a universal replacement
for (23). The BFDP method-I uses only the positive-frequency
coefficients; this implies that the frequency shifting process
always creates a low-pass spectrum in frequency domain

Fig. 10. DP representations when the real signal undergoes a frequency ramp

compared to the original signal and does not yield any negative
frequency component, thus, making it a favourable method for
large time-step simulation of harmonic-rich systems in a single
frequency frame. The BFDP method-II creates a third-order
harmonic component of the dynamic phasor envelope due to
the frequency shifting process of Xh.

C. Frequency Variation

Consider a signal with a time-varying amplitude and phase
angle at the frequency of ω0 + ∆ω.

x(t) = A(t) cos((ω0 + ∆ω)t+ δ(t)) (40)

The change in the frequency of the natural signal can
represented as a phase shift to the dynamic phasor obtained
in the frame of its carrier frequency as

~X
′
(t) = A(t)ej(δ(t)+∆ωt) = ~X(t)ej∆ωt (41)

This can be further verified by the following example.
Consider the signal given in (42) with a frequency ramp,
∆ω(t) = mt, where m denotes the slope of the ramp.

x(t) = 20 cos((ω0 +mt)t+ δ(t))

= 20 cos(ω0t+mt2 + δ(t))
(42)

Let m = −0.5π during the interval t ∈ [0.2, 0.4] and
m = 0 otherwise. Real and imaginary parts of dynamic phasor
representations of (42) is illustrated in Fig. 10. It can be seen
that during the frequency ramp, the real and imaginary parts of
each method’s phasor change to imitate the frequency change.
Despite the changes in the phase angle, the magnitude of each
dynamic phasor remains constant.

D. Unbalanced Operation

Fast time-varying phasors are not readily applicable to
unbalanced system representations as unbalanced conditions
produce negative- and zero-sequence components. On the
contrary, all other methods are defined in such a way that
they can be independently used with any arbitrary number of
phases. As such, they are capable of accurately replicating any
unbalanced three-phase signal in the frequency domain.
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Fig. 11. Co-simulation test system.

TABLE I
CO-SIMULATION TEST SYSTEM SPECIFICATIONS.

Component Value
s1 230 kV, 60 Hz, ∠11.5◦

s2 230 kV, 60 Hz, ∠0◦

rs1, rs2, g, r 0.375 Ω, 0.375 Ω, 0.01 S, 0.05 Ω

r1, r2, r3, r4 0.6083 Ω, 1.7774 Ω, 0.8887 Ω, 0.8887 Ω

l1, l2, l3, l4 0.0128 H, 0.0414 H, 0.0137 H, 0.0187 H
c1, c2, c3 0.0459 µF, 0.1850 µF, 0.1191 µF
c4, c5, c6 0.0495 µF, 0.1389 µF, 0.0695 µF

VIII. CO-SIMULATION EXAMPLE

The performance of dynamic phasor extraction methods
in co-simulation applications is further demonstrated with
the simple test system given in Fig. 11, for which system
parameters are listed in Table I. The system is partitioned
into two subsystems; one subsystem is modeled with
dynamic phasors while the other subsystem is modeled using
time-domain EMT models. The interface between the two
subsystems is formed using dependent current and voltage
sources that are updated as follows.

~H(t) =~Im(t−∆t) + g~Vk(t−∆t) (43)
u(t) = vk(t−∆t)− rim(t−∆t) (44)

where ~Im denotes the dynamic phasors of im and vk is the
time-domain representation of the dynamic phasor ~Vk. In each
time-step,~Im is extracted from the time-domain EMT samples
of im, while ~Vk is converted to time-domain to yield vk.
Note that both the EMT and DP subsystems are modeled
as three-phase systems; however, when the fast-time varying
phasors are used to extract ~Im, only the positive-sequence is
modeled for the DP subsystem.

A disturbance is given to the network by applying a
line-to-ground unbalanced fault at location F in the EMT
subsystem at t = 1 s. The simulation is repeated several
times by changing the dynamic phasor extraction technique
used to acquire ~Im at the interface. The resultant DP-side
interface current,~Ik, for each method is shown in Fig. 12. For
validation purposes, the co-simulation results are compared
against standalone EMT simulation results obtained using
PSCAD/EMTDC.

As it can be seen, the steady-state dynamic phasor
representations of ~Ik are identical in all methods as the
waveform consists of only the fundamental component. The
applied disturbance causes a change in the magnitude of the
fundamental component, and also introduces a decaying dc
component in the magnitude of the interface current. The
clearing of the fault causes a high-frequency transient for a

Fast Time-Varying Phasors EMT DP

Generalized Averaging Method EMT DP

Shifted-Frequency Analysis EMT DP

BFDP - method I EMT DP

Time (s)

BFDP - method II EMT DP

Fig. 12. DP subsystem interface current (~Ik(t)).

Fast Time-Varying Phasors EMT Reconstructed

Generalized Averaging Method EMT Reconstructed

Shifted-Frequency Analysis EMT Reconstructed

BFDP - method I EMT Reconstructed

Time (s)

BFDP - method II EMT Reconstructed

Fig. 13. Reconstructed time-domain waveforms of ~Ik(t).

small period of time. It is clear from Fig. 12 that different
extraction techniques provide dissimilar representations of the
transient depending on their capabilities. The accuracy of
each method can be examined by reconstructing the natural
waveform using the simulated dynamic phasors as shown in
the Fig. 13.

The inability to capture dc and high frequency contents,
and to represent unbalanced scenarios using the fast-varying
phasor method causes severe errors at the interface. This is
clearly visible from the EMT-side interface currents shown in
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Phase-B EMT Co-simulation

Time (s)

Phase-C EMT Co-simulation

Fig. 14. EMT-side interface current when fast time-varying phasors are used
for DP subsystem.

Fig. 14. Other methods do not demonstrate such an issue since
they include all three phases explicitly. For the GAM, only
the fundamental frequency component is extracted as the DP
subsystem is modeled in a single frequency frame. As such,
the dc component and the post-fault high frequencies are not
simulated in the dynamic phasor waveform. The proper way
to include them is to model the DP subsystem for different
frequencies and then combine them using superposition. For
the BFDP-method I, the dc component and harmonics up
to the third order are considered; therefore, it simulates the
fault transient with a reasonable accuracy but the post-fault
fast dynamics are not captured fully. This can be made more
accurate by including more frequency components to the
BFDP coefficients. The method used in (32) for SFA and the
BFDP-method II are able to simulate all the frequency contents
of the ~Ik waveform, which make them the most accurate
methods. However, as depicted in Fig. 9, they need to contain
non-positive high-frequency components in dynamic phasor
waveforms to represent harmonics.

IX. CONCLUSIONS

This paper investigated the underlying theory of several
dynamic phasor extraction methods. Merits and drawbacks
of each method were assessed based on the ability to
replicate general power system conditions that included
electromechanical frequencies, harmonics, dc offsets,
imbalance, and other transient conditions such as magnitude
and frequency variations. The paper demonstrated the
underlying differences that the resulting phasors have, and
proved that under certain conditions phasors may emerge
that do not necessarily contain positive-only frequency
components as is expected from a bona fide phasor.
The co-simulation example included in the paper further
demonstrated these observations using a power system
transient study. The findings of this paper are instrumental in
enabling an in-depth, quantitative analysis of various phasor
extraction methods that form the underlying component
of EMT-dynamic phasor co-simulations of large electric
networks.
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