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Abstract—Typically, the modeling of underground cables 

systems for electromagnetic transient simulations is carried out 

disregarding the effects of the ground return admittance. 

However, recent studies have presented precise models for the 

representation of the earth return admittance and demonstrated 

the importance of considering its effects on transient overvoltages 

along the cable and at sheaths crossbonding, especially if short 

minor sections are involved. In this paper, a study on the effects 

of the ground return admittance when considering an 

underground cross-bonded cable system is presented for 1 km 

and 300 m for the minor section length where the effects of earth 

return admittance are to be more pronounced. The inclusion of 

the ground-return admittance leads to a higher damping, which 

indicates that the conventional approach may lead to over 

conservative results. 
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I.  INTRODUCTION 

HE conventional approach for evaluating the transient 

responses of underground cables does not consider the 

inclusion of displacement current. For taking account this 

phenomenon, one needs to include the ground return 

admittance in the evaluation of the per unit length (pul) 

parameters. This can be carried out by using a modified 

expression for ground return impedance when compared with 

the traditional expressions proposed by Pollaczek [1] and the 

inclusion of ground return admittance. In the last two decades, 

the topic of wideband modelling of overhead transmission 

lines and underground cables considering ground 

displacement current has received some attention [2]-[19]. 

The evaluation of overvoltages in cable system when 

sheaths crossbonding is involved has been a topic that 

remained in the interest of the technical literature [12]-[18]. 

Recently, it was shown that intersheath modes circulating 

between grounding points [18]. Thus, this topology is suitable 

for the assessment of the impact of including the ground-

return admittance in the transient voltage and current profiles 
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of a given cable system using crossbonding.   

To obtain an accurate expression for the ground return 

impedance and admittance, one may need to consider distinct 

formulations. Reference [19]  proposes expressions for the 

ground return impedance and admittance based on quasi-TEM 

(transverse electromagnetic) approximation of a full-wave 

model for a buried insulated cable [20]. One common 

challenge found to obtain ground return impedance and 

admittance is the numerical evaluation of the associated 

infinite integrals as this approach is the rather time-consuming 

and Gauss quadrature schemes are needed for the solution of 

the integrals [5][20]. To overcome this issue in [21] is 

proposed to use closed-form expressions for ground return 

admittance. In this reference it was shown that the proposed 

closed-form for the admittance together with the closed-form 

expression for ground return impedance proposed in [23] leads 

to a very accurate formulation with minimal mismatches for 

frequencies below a few MHz.  

The results in [20] indicate that for shorter underground 

cables in high resistivity soils, the inclusion of the ground 

admittance plays a more significant effect. Thus, in this work 

we propose to investigate the impact of considering a ground 

return admittance in the transient response of a crossbonded 

cable configuration. The paper is organized as follows: the 

mathematical formulation of the pul parameter considering 

both the ground return impedance and andmittance is 

presented in Section II. Section III shows the results for a 

given configuration of a crossbonded cable where a 

comparison between the conventional approach, i.e., 

neglecting ground displacement currents and the one proposed 

here is carried. To obtain the time responses a Numerical 

Laplace Transform (NLT) was applied [24]. The main 

conclusions are drawn in Section IV. The Appendices presents 

some details on deriving the pul parameters expression and a 

few results when a lower resistivity soil is considered.  

II.  MATHEMATICAL MODELING  

A.  Quasi-TEM approximation 

Consider a system of insulated cables buried in a 

homogeneous soil with 𝛾 = √𝑗𝜔0𝜇(𝜎 + 𝑗𝜔𝜀𝑟𝜖0)  where 𝜎 

is its conductivity, 𝜀𝑟 is the relative permittivity, and 𝜇0 and 

𝜖0 are the vacuum permeability and permittivity respectively. 

The mutual ground impedance between cables i and j is given 

by  

𝑍𝑔𝑖𝑗
=
𝑗𝜔𝜇0
2𝜋 

(Λ𝑖𝑗 + 𝑆𝑖𝑗) 
(1) 

and the mutual ground return admittance between the same 

cables is 

T 
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𝑌𝑔𝑖𝑗
= 2𝜋(𝜎 + 𝑗𝜔𝜀𝑟𝜖0)(Λ𝑖𝑗 − 𝑇𝑖𝑗) (2) 

and where 

Λ𝑖𝑗 = 𝐾0(𝑑𝑖𝑗𝛾) − 𝐾0(𝐷𝑖𝑗𝛾) (3) 

𝑆𝑖𝑗 = ∫
𝑒−𝑢1(ℎ𝑖+ℎ𝑗)

𝑢1 + 𝑢2
𝑒−𝑥𝑖𝑗𝜆

∞

−∞

𝑑𝜆 
(4) 

𝑇𝑖𝑗 = ∫
𝑢1
𝑢2

𝑒−
𝑢1(ℎ𝑖+ℎ𝑗)

2 −𝑒−𝑢1(ℎ𝑖+ℎ𝑗)

𝑛2 𝑢1 + 𝑢2
𝑒−𝑥𝑖𝑗𝜆

∞

−∞

 

 

(5) 

being 𝐾0 the modified Bessel function of second kind and 

order zero, n is the reflection coefficient between ground and 

air, 𝑢1 = √𝜆
2 + 𝛾𝑠

2  , 𝛾0 = 𝑗𝜔𝜇0𝜖0 , 𝑢2 = √𝜆
2 + 𝛾0

2 , 𝑑𝑖𝑗  is 

the distance between cables i and j and 𝐷𝑖𝑗  is the distance 

between the image of conductor i and conductor j.  

The matrices are then assembled as 

𝒁 = 𝒁𝑖 + 𝒁𝑔 (6) 

𝒀 = (𝒀𝒊
−𝟏 + 𝒀𝒈

−𝟏)
−𝟏

 (7) 

where 𝒀𝑖  and 𝒁𝑖  are the internal admittance and impedance 

matrices for the cable system used in the traditional approach 

where the ground displacement currents are neglected.   

B.  Closed-form approximation  

For the closed-form approximation we consider the following: 

𝑍𝑔𝑖𝑗 = 
𝑗𝜔𝜇

2𝜋
(𝐾0(𝛾 𝑑𝑖𝑗 ) +

ℓ2 − 𝑥𝑖𝑗
2

𝐷𝑖𝑗
+ 𝐾2(𝛾 𝑑𝑖𝑗 )

− 2
ℓ2 − 𝑥𝑖𝑗

2

𝛾2𝐷𝑖𝑗
4 (1 + 𝛾ℓ 𝑒−𝛾ℓ)) 

(8) 

𝑌𝑔𝑖𝑗  = 2𝜋(𝜎 + 𝑗𝜔𝜀𝑟𝜖0)(Λ𝑖𝑗 − �̅�𝑖𝑗) (9) 

where Λ𝑖𝑗 is the same as before ℓ = h𝑖 + h𝑗  and �̅�𝑖𝑗  is 

�̅�𝑖𝑗

= 
2𝛾2

𝛾0
2 + 𝛾2

log

(

 
 
2𝛾0

2 + 𝛾2 (2 + 𝛾0√(ℎ𝑖 + ℎ𝑗)
2
+ 𝑥𝑖𝑗

2)

𝛾0
2 + 𝛾2 (1 + 𝛾0√(ℎ𝑖 + ℎ𝑗)

2
+ 𝑥𝑖𝑗

2)
)

 
 

 

(10

) 

The procedure to obtain the pul matrices is then identical to 

the one carried out considering infinite integrals.  

III.  TEST CASES  

For the analysis of the transient response consider cable 

system configuration and cable data depicted in Fig. 1(a). In 

all tests, a relative ground permittivity of 10 was considered. 

The crossbonding configuration is presented in Fig. 2(a). A 

step voltage is applied between sheathes, i.e., between nodes 4 

and 6 as shown in Fig. 2. This connection scheme refers to 

inter-sheath mode excitation as presented in [19] and [21] and 

may be of interest for studies of incipient cable faults where a 

signal source is connected to cable sheath as presented in [28]. 

We have considered two possibilities for the lengths of the 

minor section, either 300 m or 1 km. Two values of the ground 

resistivity were considered, namely, 𝜌 = 500 Ω𝑚 and 𝜌 =
1000 Ω𝑚.  In Appendix B, it is presented a few results that 

indicate that for soil resistivities below 200 Ω𝑚, the ground 

return admittance play very little impact 

The whole system was simulated using the Wolfram 

Language considering Modified Nodal Analysis where the 

system matrix becomes a combination of the nodal admittance 

matrix and incident matrices and if needed some transfer 

functions. Therefore, the system matrix to be solved is better 

characterized as an immittance matrix. This can be understood 

as a generalization and a frequency domain counterpart of the 

MatEMTP [29]. As mentioned before, the NLT was used to 

obtain the time responses. To avoid aliasing a Hamming filter 

was used and 2048 frequency samples were considered. 

Figure 2(b) depicts the structure of the generalized imittance 

matrix used to solve the system.  

In the following pictures, the label w/ Yext stands for the 

configuration where the ground-return admittance is 

considered, i.e., using (1) and (2) in the evaluation of ground-

return admittance and impedance matrices.  The conventional 

approach, i.e., neglecting ground displacement currents is 

presented with the label w/o Yext, which implies in 

considering 𝒀= 𝒀𝒊 a block diagonal matrix.  

 

 
Fig. 1. Underground cable configuration and layout. 

 

The impact of the inclusion of the ground-return admittance 

is evaluated considering initially a minor length of 1 km and 

then 300 m. Figures 3 and 4 depicts the voltages at node #7 

(sending end of the first core) for both minor section lengths. 

Figures 5 and 6 depict the voltage at node #19 (sending end of 

the last core conductor) also considering both minor lengths. 

In is worth mentioning that there are some small but 

noticeable differences between the results obtained. These 

results indicate that even when core overvoltages are 

considered the presence of the ground-return admittance may 

slightly affect the results.  

It is important to notice that for the conventional approach, 

we have considered the impact of the ground permittivity in 

the evaluation of the impedance as it is straightforward to do 

so. Conventional EMT modeling would not allow such 

formulation as it assumes the ground to be a good conductor, 

i.e., 𝜎 ≫ 𝜔𝜀𝑟𝜖 instead of a dispersive medium.  

Figures 5 and 6 present the behavior of the voltage at the 

same nodes but considering a minor length of 300 m. It can be 

observed that with shorter length, the mismatches are more 

pronounced even for a more conductivity soil. 

 



 

 

 

 
 

(a) Cross-bonding configuration. (b)  Generalized imittance matrix 

Fig. 2. Circuit arrangement and structure of the generalized system matrix. 

 

 

 

 

  
500 Ω.𝑚 1000 Ω.𝑚 

Fig. 3. Overvoltage at terminal #7 for a minor section of 1 km.  

  
500 Ω.𝑚 1000 Ω.𝑚 

Fig. 4. Overvoltage at terminal #7 for a minor section of 300 m.  

 

Figures 7 and 8 show the behavior of the voltage at node 

#12 (first sheath crossbonding “point”). It is worth mentioning 

that for this configuration if a minor section of 1 km is 

considered, the impact of the inclusion of ground displacement 

current is less pronounced than the one found in the core 

voltages.  

 

  
500 Ω.𝑚 1000 Ω.𝑚 

Fig. 5. Overvoltage at terminal #19 for a minor section of 1 km.  

 

  
500 Ω.𝑚 1000 Ω.𝑚 

Fig. 6. Overvoltage at terminals #19 for a minor section of 300 m.  

 

  
500 Ω.𝑚 1000 Ω.𝑚 

Fig. 7. Overvoltage at terminal #12 for a minor section of 1 km.  
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500 Ω.𝑚 1000 Ω.𝑚 

Fig. 8. Overvoltage at terminal #12 for a minor section of 300 m.  

 

Figures 9 and 10 depict the overvoltage at the bonding of 

all sheaths (nodes #20, #22and #24), i.e., it is the point where 

all sheathes are interconnect. This connection tends to 

minimize the effect of ground mode currents, as the sheathes 

are ungrounded. Thus, it can be noticed that only a very small 

mismatch appears.  
 

  
500 Ω.𝑚 1000 Ω.𝑚 

Fig. 9. Overvoltage at terminal #24 for a minor section of 1000 m.  

 

  
500 Ω.𝑚 1000 Ω.𝑚 

Fig. 10. Overvoltage at terminal #24 for a minor section of 300 m.  

IV.  CONCLUSIONS 

This work has focused on the assessment of the impact of 

including the ground-return admittance in underground cable 

systems when crossbonding is considered. As in the 

conventional approach, it was found that the internal nodes are 

the ones subjected to the highest overvoltages. The inclusion 

of the ground-return admittance leads to a higher damping, 

which indicates that the conventional approach may lead to 

over conservative results.  

The effect of the inclusion of ground-return admittance is 

more pronounced when shorter minor sections are considered 

and the soil has a higher resistivity, typically around  

500 Ω𝑚  or higher. Thus, configuration with short minor 

section in high resistivity soils should consider the effect of 

𝒀𝒈  in the evaluation of pul parameters. 

V.  APPENDIX A DERIVATION OF PUL GROUND RETURN 

EXPRESSIONS  

There are a number of possibilities to derive the integral 

equation to obtain that characterize a full-wave model for a 

infinite length conductor at a constant height in a two media 

system. We may consider using electric and magnetic vector 

potential, or the magnetic vector potential and the electric 

scalar potential or alternatively use Hertz vectors of magnetic 

and electric type. Regardless of the approach, the so-called 

modal equation reached is the same, see [30] for the details. 

Here, we consider the electric scalar potential and the 

magnetic vector potential. Thus, consider an infinitely long 

insulated conductor with outer radius 𝑟𝑒  and at a constant 

height h parallel to the ground-air interface. The system of 

coordinates is such that the center of conductor is (𝑥𝑐, 𝑦𝑐). 
The injected current density vector is given by  

 

𝑱𝒔 = 𝐽𝑠 �̂� =  𝑰𝟎 exp(−𝛾𝑠𝑧) 𝛿(𝑥 − 𝑥𝑐) 𝛿(𝑦 − 𝑦𝑐) �̂� (11) 
 

where 𝛾𝑠 is the unknown propagation constant, 𝑰𝟎  is an 

arbitrary complex constant. It is assumed that time-

dependency is exp(𝑗𝜔𝑡). Each medium i has a propagation 

constant given by 𝛾𝑖 = √𝑗𝜔𝜇0(𝜎𝑖 + 𝑗𝜔𝜀𝜖𝑟. The electric and 

magnetic field in medium i can written as 

 

   (∇2 + 𝜂1
2)𝐴 1 = −𝜇0𝐽𝑠  

 

(12) 

 

(∇2 + 𝜂2
2)𝐴1 =  0.0 

                         (∇2 + 𝜂1
2)𝜑1 = −

𝛾𝑠
𝜎1 + 𝑗𝜔𝜀𝑟𝜖

𝜇0𝐽𝑠 

   (∇2 + 𝜂2
2)𝜑2 = 0.0   

 

where 𝜂𝑖 = √𝛾𝑖
2 − 𝛾𝑠

2 , 𝐴𝑖 , 𝛾𝑖  are related to medium i. A 

solution to (12) is possible using a double spatial Fourier 

Transform. There are two boundary conditions, the electric 

field at the conductor outermost coordinate, and the tangential 

components in 𝐸1  and 𝐸2  must be equal at the surface 

(𝑥, 0).  After solving for the potentials one has to evaluate the 

electric field at the outermost layer of the conductor, i.e.,  

𝐸1𝑧(𝑟, ℎ) =  −
𝜇0𝐽𝑠
2𝜋

⌊Λ + 𝑆1 −
𝛾𝑠
𝛾1
(𝜆 + 𝑆2)⌋ 

(13) 

 

Solving (13) leads to the determination of the propagation 

constant which in turn can be used to obtain all the other 

components of the electric and magnetic fields. Thus, the 

characteristic impedance 𝒁𝑐 is defined as the ratio between 

the injected current and the conductor voltage with respect to 

the ground. This voltage can then be expressed as  

𝑼 =  ∫ 𝐸1𝑦

ℎ

0

(𝑟, 𝜉) 𝑑𝜉 
(14) 

then  

𝒁𝒄  = (𝜑1ℎ − 𝜑10) + 𝑗𝜔 ∫ 𝐴1𝑦

ℎ

0

(𝑟, 𝜉) 𝑑𝜉 
(15) 

where 𝜑1ℎ  is the electric scalar potential evaluated at the 

outermost coordinate of the cable i.e., (𝑟𝑒 , ℎ). The ground-

return pul parameters can be written as  

𝑍 = 𝛾𝑆 𝒁𝒄  (16) 



𝑌 = 𝛾𝑆/𝒁𝒄 (17) 

which then leads to the expression presented in Section II. 

Note that when the displacement current is disregarded the 

impedance and admittance formulations returns to the 

Pollaczek model. The displacement current is considered in 

the Maxwell`s equations and the impedance and admittance 

are obtained from the determination of the boundary 

conditions of the electromagnetic fields at the boundaries 

between the outermost layers of the cable and the surrounding 

media and the boundary conditions of the electromagnetic 

fields at the air/soil interface. The procedure is described in 

[22] for the full-wave and quasi-TEM formulations of single 

conductor and in [19] for multi conductor sistems. 

VI.  APPENDIX B SHEATH OVERVOLTAGE FOR LOW 

RESISTIVITY SOIL   

In this appendix, it is shown the results for the sheath 

overvoltages for the same configuration, i.e., the one depicted 

in Fig. 2(a) but considering a soil resistivity of 100 Ω𝑚 and 

the two possibilities for the minor section length, 300 m and 

1 km respectively.  
 

  
300 𝑚 1000 𝑚 

Fig. 11. Overvoltage at node #12 for a soil resistivity of 100 Ω.𝑚  
considering a minor section of 300 m and 1 km. 
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