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Abstract--This paper presents a tool developed in EMTP to 

automatically determine model parameters for matching existing 

field measurements. The tool uses the particle swarm 

optimization (PSO) algorithm to calibrate or update existing 

models. To enhance the performance of the tool, a technique used 

to improve PSO efficiency is also proposed. 

Two test cases are presented. The first case aims to determine 

the parameters of the reactive power control loop in a PV park 

controller model. The second case finds the unknown parameters 

in an exciter model of a synchronous machine connected to a 

grid. 

Keywords: Digital-twin, Electromagnetic Transients, EMTP, 

Particle Swarm Optimization, Renewables.  

1. INTRODUCTION

odern simulation tools, such as EMTP [1], are capable

of predicting network performance under various

operating conditions and assist engineers in taking informed 

decisions. Accurate predictions and analysis require accurate 

models of simulated grids. Some models may require a large 

number of parameters (model data). Due to unavailability of 

data from equipment manufacturers, it is common to assign 

typical values to some unknown parameters. This process can 

be based on engineering judgement or typically available data. 

Model accuracy can be further improved through availability 

of measurements in the actual grid. 

The concept is to use the response of the actual network 

component and tune its model parameters to accurately 

reproduce it. For example, the measured waveform of the 

reactive power generated by a PV, corresponding to a step 

change, can be utilized to calculate the settings of the reactive 

power control loop gains in the park controller model. 

This paper presents a tool based on particle swarm 

optimization (PSO) for matching simulation and measurement 

results. PSO is an algorithm that finds the optimal solution of 

a problem using an iterative process in which a candidate 

solution is improved with respect to a quality criterion. PSO 

has been applied in [2]. Optimization enabled EMT 

simulations were initially presented in [3] and [4]. They have 

been also used in [5] for the design of power systems. 

Contrary to these works, the research in this paper focuses on 

the operational level of power systems. It presents a 

contribution for tuning parameters of existing power system 
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components with limited availability of data. The 

implementation of PSO is also improved by proposing a 

recalibration approach for search intervals. It is also 

demonstrated in a real existing case context and can be easily 

extended to other real cases. Our work subscribes in the field 

of digital twin research where the model must be recalibrated 

to imitate field measurements. 

This paper implements the PSO method for calculating 

unknown parameters in an EMT-type software for Inverter 

Based Resource models and synchronous generators. It can be 

effectively extended to other models in EMT-type simulations. 

Section II of this paper recalls the concept of PSO, section 

III describes how this concept is implemented inside the 

EMTP tool, with proposed features, including a technique to 

improve the efficiency of the traditional PSO method. In 

sections IV and V, demonstration examples are presented to 

evaluate the proposed tool’s performance. 

2. PARTICLE SWARM OPTIMIZATION METHOD

2.1. Overview 

Particle Swarm Optimization was introduced in [6],[7]. 

Initially, it was used to simulate social behavior [8]. The 

reference [9] describes some important aspects of PSO and 

swarm intelligence in general. A survey of PSO applications is 

presented in [10] and [11]. Reference [12] shows a review on 

some PSO based works. 

Basically, the PSO technique uses a population of n 

particles. For each  ,1 nj  and at each time t, the j-th

particle ( )
j

X t , which is a candidate solution to the problem to 

be solved, is represented by an m-dimensional real-valued 

vector: 

,1 ,2 ,
( ) ( ), ( ),..., ( )

j j j j m
X t x t x t x t    (1) 

where m is the number of optimized parameters, 
,

( )
j k

x t is the 

value of the k-th parameter in the j-th candidate solution and 

 ,1 mk  . Each optimized parameter is constrained to vary in

a predefined range: 

,

min max
( ) ,

j k k kx t x x    (2) 

where 
min

kx and 
max

kx are lower and upper limits of the k-th 

parameter to optimize. 

In PSO, particles move in a multidimensional search space 

at given velocities. The velocity of the j-th particle is: 

M 
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,1 ,2 ,

( ) ( ), ( ),..., ( )
j j j j m

t t v t v tV v     (3) 

where 
,

( )
j k

tv is the velocity component of the j-th particle for 

the k-th parameter. 
,

( )
j k

tv must always be limited to enhance 

the local exploration of the problem space by some maximum 

[8]. Therefore: 

 
,

max max
( ) ,

j k k ktv v v     (4) 

 

max min

max k k

k

x x
v

N


  (5) 

where N is a number of intervals selected for the k-th 

parameter. Particles change their positions after updating their 

velocities. Any velocity update involves three components: 

inertia, cognition and social [2], [8].  

The contribution of the inertia component is controlled by a 

coefficient called the inertia weight ( )w t . More explanations 

are given in [13]. It is customary to decrease the value of 

( )w t over iterations (for better local exploration). One 

approach is to use the decrement function presented in (6) 

and coming from [2]: 

 ( ) ( 1)w t w t   (6) 

where is a constant smaller than 1.  

The contributions of cognition and social components are 

evaluated with the knowledge of the individual best position
*
( )jX t for any of the j-th particles in the population, and the 

knowledge of the global best position
**

( )X t , which is the 

best position among all best positions found so far by each 

individual particle. The best position particle is identified 

using particle fitness value. The fitness value is calculated 

with the fitness function F (or objective function) [8]. This 

function is to be defined for each optimization problem. The 

fitness value associated to the j-th particle ( )
j

X t  is 

( )( )
j jF X Ft  . The fitness value associated to the global 

best particle position
**

( )X t  is named 
**

F or simply 
best

F , 

whereas the fitness value associated to the individual best 

particle position
*
( )jX t  is named 

*

j
F . 

2.2. PSO algorithm 

The following steps describe the iterative searching process 

of the PSO algorithm [2],[6],[8]. For the optimization problem 

in hand, the formulation of the fitness function F must be 

done prior to the execution of the following steps. 

1. Initialize particles at 0t  . 

1.1. Randomly generate n particles,

 (0), 1,2,...,
j

X j n , where 

,1 ,2 ,
(0) (0), (0),..., (0)

j j j j m
X x x x    . To get

,
(0)

j k
x , simply select a random value inside the k-th 

parameter search space defined in (2). In the same 

way, randomly generate initial velocities, 

 (0), 1,2,...,
j

j nV   , where 

,1 ,2 ,
(0) (0), (0),..., (0)

j j j j m
v vV v    . To get 

,
(0)

j k
v , simply select a random value inside 

max max,k kv v   .  

1.2. Evaluate each particle using the fitness function F . 

1.3. For each particle, set the individual best 
*
(0) (0)

j j
X X and the associated fitness value

*

j j
F F , 1, 2, ,j n  .  

1.4. Search for the best fitness function value
best

F and set 

the associated particle as the global best, 
**

(0)X  

with a fitness value of 
**

best
F F .  

1.5. Assign a value to the inertia weight coefficient (0)w . 

2. Set 1t t  , then use (6) to update the inertia weight.  

3. For each particle candidate, update the velocity vector in 

(3) with the following formula: 

 

 

, ,

*

1 1 , ,

**

2 2 , ,

( ) ( ) ( 1)

( 1) ( 1)

( 1) ( 1)

j k j k

j k j k

j k j k

v t w t v t

c r x t x t

c r x t x t

 

   

   

 (7) 

where 
1

c and 
2

c are constants (both positive); 
1

r  and 

2
r  are random numbers selected in [0,1]. Then, check the 

velocity limits (see (4)). If the velocity goes out of 

bounds, bring it back to its limit value. In (7), the first, 

second and third terms in the sum respectively stand for 

the inertia, the cognition and the social components. 

4. For each particle, update the position vector in (1) with 

the following formula: 

 
, , ,

( ) ( ) ( 1)
j k j k j k

x t v t x t    (8) 

5. Evaluate each particle's position using the fitness 

function, then update each particle individual best and the 

global best if necessary.  

6. Go back to 2 and repeat the process iteratively until a 

stopping criterion is satisfied. The criterion may be a 

predefined maximum number of iterations or a threshold 

for fitness values. In each case, go to 7. 

7. The particle position for which the fitness value is equal 

to the global best value is selected as the final solution of 

the optimization problem. 

3. PSO IMPLEMENTATION FOR MODEL PARAMETER 

DETERMINATION 

3.1. Overview and assumptions 

This section describes how the PSO algorithm is 

implemented in the proposed tool in EMTP. The goal of the 

tool is to determine some unknown parameter values in the 

model of any component in a power network so that the model 



response matches the corresponding physical response 

obtained by on-site measurements. The features coded in the 

tool include PSO parameter selections, fitness function 

definition, stopping criteria definition, and a proposed 

technique to improve efficiency of PSO algorithm under some 

conditions. 

It is assumed that the operating conditions of the studied 

grid are replicated in the complete grid model. The targeted 

component (or device) model has the same operating settings 

as its physical twin in the field. The reference measurements 

obtained from the grid include sufficiently accurate recordings 

of active and reactive powers, voltages and/or currents in 

time-domain. It is also assumed that the parameters of the 

component model that have significant impact on its response 

are identified.  

3.2. PSO particle definitions and parameter 

selections 

In the proposed tool, the set of device parameter values to 

be determined represents a particle candidate. Each particle 

involved in the search process consists of m real values, where 

m is the number of parameters.  

In our implementation, the parameters of the PSO 

algorithm are defined as follows: the value of the initial 

weight is (0) 1w  , the value of  in (6) is 0.99. Also, 

1 2
2c c   and N in (5) is set to 5. As stated in [2] and 

[14], these PSO parameter values generally lead to better 

performance. Furthermore, in our implementation, the velocity 

update will be done using the constriction factor  presented 

in [15]-[17].  is given by: 

 
2

2

2 4




  


  
 (9) 

where 
1 2

c c   , and  is an arbitrary constant in the 

range  0,1 . In our implementation,  is equal to defined 

in (6). Using  , (7) is therefore replaced by the following: 

 

 

, ,

*

1 1 , ,

**

2 2 , ,

( ) ( ) ( 1)

( 1) ( 1)

( 1) ( 1)

j k j k

j k j k

j k j k

v t w t v t

c r x t x t

c r x t x t

 

   

   






 (10) 

During the search process, if at any moment, the updated 

velocity 
,

( )
j k

v t calculated using (10), gets out of the 

boundaries defined by (4), 
,

( )
j k

v t is changed to become the 

exceeded boundary velocity, that is: 
,

max
( )

j k kv t v (if 

,
( ) 0

j k
v t  ), or  

,

max
( )

j k kv t v  , (if  
,

( ) 0
j k

v t  ). The 

same solution is applied if the updated position of any particle 

(calculated using (8)) goes beyond the limits defined in (2). 

Furthermore, in this later case, it is important to re-initialize 

the velocity 
,

( )
j k

v t to avoid the same phenomenon at the next 

iteration. In our implementation, we propose to re-initialize 

the velocity by a random value and in the opposite direction, 

that is:  

 
, ,

( ) () ( )
j k j k

v t R v t   (11) 

where ()R is a random number in  0,1 . 

3.3. Fitness function definition 

To evaluate the position of each particle candidate and 

determine individual and global bests after each iteration, a 

fitness function must be defined. In our implementation, the 

fitness function is built from sampled data in time-domain of 

both experimental and simulated waveforms. The 

experimental data, named reference waveform or experimental 

waveform ( )
exp

f t , is measured in the field at a specific 

location. The simulated data, named simulated waveform 

( )
sim

f t , is captured at the same location but in the EMTP 

model (after running a simulation). The goal of the 

optimization is to make the simulated waveform match the 

reference one. 

The fitness function can be defined in several ways. One 

simple approach which is implemented in the tool is the « sum 

absolute error» fitness function. Its formulation is: 

 
exp

1

( ) ( )
SN

sim

i

F f i f i


   (12) 

where SN  is the number of sampled data values in the 

observation interval. After the update of a particle position, the 

obtained parameter values are entered in EMTP, a simulation 

is run to obtain ( )
sim

f t  and the fitness value is evaluated 

using (12). 

3.4. Stopping criteria 

PSO is an iterative process. In our implementation, the 

iterations are stopped when one of these conditions is met: 

- the predefined total number of iterations 
max iter

N  is 

reached; 

- the fitting error fite gets less that a predefined 

threshold, named convergence tolerance in the tool. 

fite is calculated for each particle position candidate right after 

its fitness value. fite is a number that expresses the relative 

mismatch error between the simulated waveform and the 

experimental waveform: 

 

exp

1

exp

1

( ) ( )

( )

(%) 100

S

S

N

sim

i

N

i

fit

f i f i

f i

e 





 



 (13) 

When PSO stops due to the first condition, the particle 

position with the lowest fitness value found so far, is taken as 

the final solution. When the optimization stops due to the 

second condition, the last particle position (which is the one 



with fite less than the threshold) is taken as the final or the 

optimal solution. 

3.5. Proposed technique to improve PSO efficiency 

In most cases, the PSO algorithm can reach an accurate 

optimal solution. An accurate solution is a solution that gives a 

simulated waveform close enough to reference. However, if 

the searching ranges or velocity limits (defined by user) for 

some parameters are too large, PSO may have trouble to 

converge. The found optimal solution might not be sufficiently 

accurate. In our implementation, we propose a technique to 

avoid that and maintain the capability of PSO to find accurate 

optimal solution, even in cases with large search intervals. 

The proposed technique consists of re-initializing and 

relaunching the iteration process, with improved searching 

range for each parameter to optimize. This is performed when 

the maximum number of iterations is reached and the best 

fitting error (calculated using (13)) is still higher than the 

convergence tolerance after running PSO once. The big 

challenge is to derive an approach to appropriately select the 

new and improved searching ranges. 

It has been observed that during the iterative process, the 

search space covered by particles evolves. After some 

iterations, the search space contains the ideal solution, and the 

algorithm simply needs more iterations to reach that solution. 

However, due to the wide search range for each parameter and 

due to the relatively high velocity limits, that ideal solution 

may be overjumped and never reached. Therefore, we propose 

to use the search space covered at the last iteration as the new 

search space. That space is defined by a set of search intervals 

(one for each parameter). The updated search interval for each 

parameter k (initially defined in (2)) becomes: 

 
,

min max
( ) ,

j k

new new

k kx t x x     (14) 

where 
minnew

kx  and 
maxnew

kx are the new lower and upper 

limits of the k-th parameter to optimize. 

  
 

min

, max 1,...,
min ( )new

k j k iter j n
x x N


  (15) 

  
 

max

, max 1,...,
max ( )new

k j k iter j n
x x N


  (16) 

, max( )j k iterx N is the value of the k-th parameter in the j-th 

candidate solution at the last iteration number max iterN . 

To improve the likelihood of the new search space to 

contain the ideal solution, this space is expanded to include the 

best particle candidates found so far. In our implementation, as 

PSO is run using n particles, the new search space is expanded 

to include the n best candidates found so far. That is, assuming 

,

best

i kX  is the k-th parameter in the i-th best candidate solution 

  ,i 1 n , for the search interval of parameter k, if for any i, 

min

,

best new

i k kX x , then 
minnew

kx  in (14) is updated to 

become 
min

,

new best

k i kx X . In the same way, if 

max

,

best new

i k kX x , then 
maxnew

kx  in (14) is updated to 

become 
max

,

new best

k i kx X . 

After updating the search intervals for each parameter, the 

velocity limits are recalculated using (5) with 10N  . Note 

that this new value differs from the previous one  5N   to 

ensure slower displacement of particles and reduce the risk of 

overjumping better solution candidates. Also, the value 10 is 

selected in accordance with [2] where it was pointed out that 

optimal results are obtained with  5,10N  .  

After resizing searching intervals and modifying velocity 

limits, the iterative loop is re-launched. This proposed 

technique is very efficient to reach more accurate solution 

candidates as will be shown in the demonstration example. 

4. EXAMPLE 1: IBR PARAMETER DETERMINATION 

4.1. Case Description 

In this first example, the tool is used to determine the 

parameter values of the reactive power (Q) control loop in the 

model of an IBR, a PV park. The parameters must be 

determined so that the simulated waveform of the reactive 

power generated by the park model, matches the waveform of 

the recorded reactive power supplied by the actual plant 

during a step change in the reactive power reference. Fig. 1 

shows the model of the park and the connected network. 

 
Fig. 1.   PV park connected to a grid, EMTP model. 

The searched parameter values are the proportional and 

integral constants pK and iK  in the reactive power control 

loop, as shown in the PV park device mask (see Fig. 2). 

  
Fig. 2.  Q-control parameters for the PV park model 

The selection of pK and iK as optimization parameters is 

due to the structure of the controller in the software. However, 

the tool can work just as well in case of a different 

implementation structure (user would simply need to select all 



parameters that have impact on reactive power response). 

A step change is applied to the reactive power reference 

signal in the actual park. The reactive power generated by the 

park is recorded and shown in Fig. 3 (in blue). An initial 

setting (prediction) of the Q-control loop parameters (using 

values shown in Fig. 2) yields the model response shown in 

Fig. 3 (in red). The goal is to find the values of pK and iK to 

enter in Fig. 2, so that the red plot fits the blue one. 

 
Fig. 3  Park reactive power: reference waveform in blue (from measurements 

on the real park) and simulated waveform (with initial values) in red. 

To set up the EMTP optimization tool for this example, 

pK and iK  are selected from the list of model parameters 

(see Fig. 4). The searching range is set to  0, 20  for each 

parameter, as prescribed by (2). 

 
Fig. 4.  Parameter selection window in the tool. 

The observation interval is set to  1, 2.6  in Fig. 5. This 

interval corresponds to the interval inside which the transient 

state is observed in the reference waveform (see Fig. 3). 

 
Fig. 5.  Simulation data definition window in the tool 

The optimization uses 10 particles with settings in Fig. 6.   

   
Fig. 6.  Optimization definition window in the tool 

4.2. Optimization Results 

Once the settings are completed in the tool, the 

optimization process begins. Optimization starts by initializing 

the 10 particles with random values (within search intervals) 

for searched parameters. For each particle, a simulation is run, 

and the fitness value is evaluated. Then each particle position 

is updated in the iterative process described in Section 2.2 At 

the end of the process, the optimal particle candidate found by 

the tool has the following parameter values: p 1.26929K  and 

i 6.92825K  . The final fitting error is 0.879%. 

The simulated waveform for found optimal parameters, 

alongside with the reference is now shown in Fig. 7. 

 
Fig. 7.  Reference and optimal waveforms for park reactive power 

Fig. 7 clearly shows that the tool can achieve an excellent 

match between the model and measurements. The total 

computing time was around 10 minutes for the 50 simulation 

runs (10 particles and 5 iterations). Time-step and simulation 

time in each run were respectively set to100 s and 3seconds. 

This overall computing time is reasonable and could have 

been much higher if a random searching approach was used. 

In addition to that, a random searching approach might not 

find an acceptable solution. 

Simulation results, not shown here, reveal that the use of 

more particles generally yields better optimization results. 

This is because more particles lead to more explorations in the 

search space and higher probability for catching better 

solution candidates. In contrary, the increase of the total 

number of iterations does not generally yield better results. In 

some cases, after few iterations, the particles fly within a 

search space that does contain better solution candidates, but 

the particles overjump these solutions. This is due to fixed and 

relatively large search interval and velocity limits for each 

parameter. This observation has motivated the development of 

the proposed technique to improve efficiency in PSO, as 

described in 3.5 The next example demonstrates the 

effectiveness of this technique. 

5. EXAMPLE 2: SYNCHRONOUS MACHINE EXCITER 

PARAMETER DETERMINATION 

5.1. Case Description 

In this second example, the tool is used to determine 

parameter values in the exciter model of a synchronous 

machine. The parameters must be determined so that the time-

domain waveform of the excitation field voltage signal 

matches the waveform of the same signal recorded in the 

actual synchronous machine during a step change in reference 



voltage. Contrary to the first example, in this example the 

range of variation for one of the searched parameters is quite 

wide. This example will demonstrate the effectiveness of the 

proposed technique to improve the efficiency of the PSO 

method in case of wide search ranges.  

The circuit for this case is given in Fig. 8. The synchronous 

machine SM1, its exciter SEXS_1 and the connected load 

Load1, are modeled in EMTP. The goal is to determine the 

values of the gain K and time constant 
E

T in the exciter 

model. These parameters are available from the exciter device 

mask as shown in Fig. 9. 

  
Fig. 8.  Synchronous machine connected to a load 

 
Fig. 9.  Exciter parameters 

The reference voltage input of the exciter is changed from 1 

to 1.03 pu at the 1 s time-point, in the actual system and in the 

model. The excitation field voltage of the actual exciter is 

shown in Fig. 10 (in blue). The excitation field voltage 

generated by the exciter in the model with standard initial 

values of Fig. 9 is also shown in Fig. 10 (in red).  

 

 
Fig. 10.  Excitation field voltage 

The tool is launched and PSO optimization is run with the 

settings shown in Fig. 6. The search intervals are  100, 300

for the gain K and  0,1 for the time constant 
E

T . 

5.2. Optimization results and Discussion 

After 5 iterations in the PSO algorithm, the first optimal 

solution is found: K 167.74  and 
E

T 0.0734 with a 

fitting error of 7.35% . As the fitting error is higher than the 

convergence tolerance, the technique proposed in this paper 

(see section 3.5) to improve efficiency is triggered. The 

technique reduces the search interval to  142.854, 270.197  

for K and  0.000, 0.480  for 
E

T . Then the iteration loop of 

PSO is restarted. After 5 more iterations, the second optimal 

solution is: K 194.743  and 
E

T 0.0968 with a fitting 

error of 4.029% . Fig. 11 shows the waveforms of the field 

voltage for the first and second optimization solutions. 

   
Fig. 11.  Excitation field voltage waveform obtained after optimization 

The first optimal solution (in gray) gives a result quite close 

to the reference (when compared to the initial setting of Fig. 

10). However, the match is not good enough. Implementing 

the proposed technique yields a second optimal solution with a 

better match (see black plot in Fig. 11). This proves the 

efficiency of the proposed technique.  

It is worth to point out that in this case, the proposed 

technique was applied only once. It is possible to apply it 

several times to improve accuracy of the final solution and 

therefore the quality of the match. However, one must keep in 

mind that each time this approach is applied, the iterative loop 

is re-executed in full, increasing computing time. 

6. CONCLUSIONS 

This paper presented a tool developed in EMTP and based 

on the PSO algorithm to determine values of unknown 

parameters in component models. Parameters are determined 

so that the time-domain response of the model matches the 

response of the actual component in the field. This work is 

within the digital-twin concept. The specifics of the tool 

include appropriate selection of PSO parameters, adequate 

definition of a fitness function and implementation of a 

technique to improve PSO efficiency. Demonstration 

examples have shown that the proposed tool can achieve very 

accurate parameter values to reproduce measured events. The 

performance of the PSO algorithm is generally jeopardized 

when the search ranges are too large, but in the presented 

implementation, the performance is not affected. 
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