
A Tool For Automatic Determination Of Model

Parameters Using Particle Swarm Optimization
Willy Nzale*, a, Hossein Ashourian a, Jean Mahseredjian b, Henry Gras a

a PGSTech, Montréal, QC H2K 1C3, Canada
b Polytechnique Montréal, Montréal, QC H3T 1J4, Canada

Abstract--This paper presents a tool developed in EMTP to

automatically determine model parameters for matching existing

field measurements. The tool uses the particle swarm

optimization (PSO) algorithm to calibrate or update existing

models. To enhance the performance of the tool, a technique used

to improve PSO efficiency is also proposed.

Two test cases are presented. The first case aims to determine

the parameters of the reactive power control loop in a PV park

controller model. The second case finds the unknown parameters

in an exciter model of a synchronous machine connected to a

grid.

Keywords: Digital-twin, Electromagnetic Transients, EMTP,

Particle Swarm Optimization, Renewables.

1. INTRODUCTION

odern simulation tools, such as EMTP [1], are capable

of predicting network performance under various

operating conditions and assist engineers in taking informed

decisions. Accurate predictions and analysis require accurate

models of simulated grids. Some models may require a large

number of parameters (model data). Due to unavailability of

data from equipment manufacturers, it is common to assign

typical values to some unknown parameters. This process can

be based on engineering judgement or typically available data.

Model accuracy can be further improved through availability

of measurements in the actual grid.

The concept is to use the response of the actual network

component and tune its model parameters to accurately

reproduce it. For example, the measured waveform of the

reactive power generated by a PV, corresponding to a step

change, can be utilized to calculate the settings of the reactive

power control loop gains in the park controller model.

This paper presents a tool based on particle swarm

optimization (PSO) for matching simulation and measurement

results. PSO is an algorithm that finds the optimal solution of

a problem using an iterative process in which a candidate

solution is improved with respect to a quality criterion. PSO

has been applied in [2]. Optimization enabled EMT

simulations were initially presented in [3] and [4]. They have

been also used in [5] for the design of power systems.

Contrary to these works, the research in this paper focuses on

the operational level of power systems. It presents a

contribution for tuning parameters of existing power system

*Corresponding author.
Email address: willy-arnaud.nzale-mimbe@polymtl.ca (W. Nzale).

Paper submitted to the International Conference on Power Systems Transients
(IPST2023) in Thessaloniki, Greece, June 12-15, 2023.

components with limited availability of data. The

implementation of PSO is also improved by proposing a

recalibration approach for search intervals. It is also

demonstrated in a real existing case context and can be easily

extended to other real cases. Our work subscribes in the field

of digital twin research where the model must be recalibrated

to imitate field measurements.

This paper implements the PSO method for calculating

unknown parameters in an EMT-type software for Inverter

Based Resource models and synchronous generators. It can be

effectively extended to other models in EMT-type simulations.

Section II of this paper recalls the concept of PSO, section

III describes how this concept is implemented inside the

EMTP tool, with proposed features, including a technique to

improve the efficiency of the traditional PSO method. In

sections IV and V, demonstration examples are presented to

evaluate the proposed tool’s performance.

2. PARTICLE SWARM OPTIMIZATION METHOD

2.1. Overview

Particle Swarm Optimization was introduced in [6],[7].

Initially, it was used to simulate social behavior [8]. The

reference [9] describes some important aspects of PSO and

swarm intelligence in general. A survey of PSO applications is

presented in [10] and [11]. Reference [12] shows a review on

some PSO based works.

Basically, the PSO technique uses a population of n

particles. For each  ,1 nj and at each time t, the j-th

particle ()
j

X t , which is a candidate solution to the problem to

be solved, is represented by an m-dimensional real-valued

vector:

,1 ,2 ,
() (), (),..., ()

j j j j m
X t x t x t x t    (1)

where m is the number of optimized parameters,
,

()
j k

x t is the

value of the k-th parameter in the j-th candidate solution and

 ,1 mk  . Each optimized parameter is constrained to vary in

a predefined range:

,

min max
() ,

j k k kx t x x    (2)

where
min

kx and
max

kx are lower and upper limits of the k-th

parameter to optimize.

In PSO, particles move in a multidimensional search space

at given velocities. The velocity of the j-th particle is:

M

mailto:willy-arnaud.nzale-mimbe@polymtl.ca

,1 ,2 ,

() (), (),..., ()
j j j j m

t t v t v tV v    (3)

where
,

()
j k

tv is the velocity component of the j-th particle for

the k-th parameter.
,

()
j k

tv must always be limited to enhance

the local exploration of the problem space by some maximum

[8]. Therefore:

,

max max
() ,

j k k ktv v v    (4)

max min

max k k

k

x x
v

N


 (5)

where N is a number of intervals selected for the k-th

parameter. Particles change their positions after updating their

velocities. Any velocity update involves three components:

inertia, cognition and social [2], [8].

The contribution of the inertia component is controlled by a

coefficient called the inertia weight ()w t . More explanations

are given in [13]. It is customary to decrease the value of

()w t over iterations (for better local exploration). One

approach is to use the decrement function presented in (6)

and coming from [2]:

 () (1)w t w t  (6)

where is a constant smaller than 1.

The contributions of cognition and social components are

evaluated with the knowledge of the individual best position
*
()jX t for any of the j-th particles in the population, and the

knowledge of the global best position
**

()X t , which is the

best position among all best positions found so far by each

individual particle. The best position particle is identified

using particle fitness value. The fitness value is calculated

with the fitness function F (or objective function) [8]. This

function is to be defined for each optimization problem. The

fitness value associated to the j-th particle ()
j

X t is

()()
j jF X Ft  . The fitness value associated to the global

best particle position
**

()X t is named
**

F or simply
best

F ,

whereas the fitness value associated to the individual best

particle position
*
()jX t is named

*

j
F .

2.2. PSO algorithm

The following steps describe the iterative searching process

of the PSO algorithm [2],[6],[8]. For the optimization problem

in hand, the formulation of the fitness function F must be

done prior to the execution of the following steps.

1. Initialize particles at 0t  .

1.1. Randomly generate n particles,

 (0), 1,2,...,
j

X j n , where

,1 ,2 ,
(0) (0), (0),..., (0)

j j j j m
X x x x    . To get

,
(0)

j k
x , simply select a random value inside the k-th

parameter search space defined in (2). In the same

way, randomly generate initial velocities,

 (0), 1,2,...,
j

j nV  , where

,1 ,2 ,
(0) (0), (0),..., (0)

j j j j m
v vV v    . To get

,
(0)

j k
v , simply select a random value inside

max max,k kv v   .

1.2. Evaluate each particle using the fitness function F .

1.3. For each particle, set the individual best
*
(0) (0)

j j
X X and the associated fitness value

*

j j
F F , 1, 2, ,j n  .

1.4. Search for the best fitness function value
best

F and set

the associated particle as the global best,
**

(0)X

with a fitness value of
**

best
F F .

1.5. Assign a value to the inertia weight coefficient (0)w .

2. Set 1t t  , then use (6) to update the inertia weight.

3. For each particle candidate, update the velocity vector in

(3) with the following formula:

 

 

, ,

*

1 1 , ,

**

2 2 , ,

() () (1)

(1) (1)

(1) (1)

j k j k

j k j k

j k j k

v t w t v t

c r x t x t

c r x t x t

 

   

   

 (7)

where
1

c and
2

c are constants (both positive);
1

r and

2
r are random numbers selected in [0,1]. Then, check the

velocity limits (see (4)). If the velocity goes out of

bounds, bring it back to its limit value. In (7), the first,

second and third terms in the sum respectively stand for

the inertia, the cognition and the social components.

4. For each particle, update the position vector in (1) with

the following formula:

, , ,

() () (1)
j k j k j k

x t v t x t   (8)

5. Evaluate each particle's position using the fitness

function, then update each particle individual best and the

global best if necessary.

6. Go back to 2 and repeat the process iteratively until a

stopping criterion is satisfied. The criterion may be a

predefined maximum number of iterations or a threshold

for fitness values. In each case, go to 7.

7. The particle position for which the fitness value is equal

to the global best value is selected as the final solution of

the optimization problem.

3. PSO IMPLEMENTATION FOR MODEL PARAMETER

DETERMINATION

3.1. Overview and assumptions

This section describes how the PSO algorithm is

implemented in the proposed tool in EMTP. The goal of the

tool is to determine some unknown parameter values in the

model of any component in a power network so that the model

response matches the corresponding physical response

obtained by on-site measurements. The features coded in the

tool include PSO parameter selections, fitness function

definition, stopping criteria definition, and a proposed

technique to improve efficiency of PSO algorithm under some

conditions.

It is assumed that the operating conditions of the studied

grid are replicated in the complete grid model. The targeted

component (or device) model has the same operating settings

as its physical twin in the field. The reference measurements

obtained from the grid include sufficiently accurate recordings

of active and reactive powers, voltages and/or currents in

time-domain. It is also assumed that the parameters of the

component model that have significant impact on its response

are identified.

3.2. PSO particle definitions and parameter

selections

In the proposed tool, the set of device parameter values to

be determined represents a particle candidate. Each particle

involved in the search process consists of m real values, where

m is the number of parameters.

In our implementation, the parameters of the PSO

algorithm are defined as follows: the value of the initial

weight is (0) 1w  , the value of  in (6) is 0.99. Also,

1 2
2c c  and N in (5) is set to 5. As stated in [2] and

[14], these PSO parameter values generally lead to better

performance. Furthermore, in our implementation, the velocity

update will be done using the constriction factor  presented

in [15]-[17].  is given by:

2

2

2 4




  


  
 (9)

where
1 2

c c   , and  is an arbitrary constant in the

range  0,1 . In our implementation,  is equal to defined

in (6). Using  , (7) is therefore replaced by the following:

 

 

, ,

*

1 1 , ,

**

2 2 , ,

() () (1)

(1) (1)

(1) (1)

j k j k

j k j k

j k j k

v t w t v t

c r x t x t

c r x t x t

 

   

   






 (10)

During the search process, if at any moment, the updated

velocity
,

()
j k

v t calculated using (10), gets out of the

boundaries defined by (4),
,

()
j k

v t is changed to become the

exceeded boundary velocity, that is:
,

max
()

j k kv t v (if

,
() 0

j k
v t ), or

,

max
()

j k kv t v  , (if
,

() 0
j k

v t ). The

same solution is applied if the updated position of any particle

(calculated using (8)) goes beyond the limits defined in (2).

Furthermore, in this later case, it is important to re-initialize

the velocity
,

()
j k

v t to avoid the same phenomenon at the next

iteration. In our implementation, we propose to re-initialize

the velocity by a random value and in the opposite direction,

that is:

, ,

() () ()
j k j k

v t R v t  (11)

where ()R is a random number in  0,1 .

3.3. Fitness function definition

To evaluate the position of each particle candidate and

determine individual and global bests after each iteration, a

fitness function must be defined. In our implementation, the

fitness function is built from sampled data in time-domain of

both experimental and simulated waveforms. The

experimental data, named reference waveform or experimental

waveform ()
exp

f t , is measured in the field at a specific

location. The simulated data, named simulated waveform

()
sim

f t , is captured at the same location but in the EMTP

model (after running a simulation). The goal of the

optimization is to make the simulated waveform match the

reference one.

The fitness function can be defined in several ways. One

simple approach which is implemented in the tool is the « sum

absolute error» fitness function. Its formulation is:

exp

1

() ()
SN

sim

i

F f i f i


  (12)

where SN is the number of sampled data values in the

observation interval. After the update of a particle position, the

obtained parameter values are entered in EMTP, a simulation

is run to obtain ()
sim

f t and the fitness value is evaluated

using (12).

3.4. Stopping criteria

PSO is an iterative process. In our implementation, the

iterations are stopped when one of these conditions is met:

- the predefined total number of iterations
max iter

N is

reached;

- the fitting error fite gets less that a predefined

threshold, named convergence tolerance in the tool.

fite is calculated for each particle position candidate right after

its fitness value. fite is a number that expresses the relative

mismatch error between the simulated waveform and the

experimental waveform:

exp

1

exp

1

() ()

()

(%) 100

S

S

N

sim

i

N

i

fit

f i f i

f i

e 





 



 (13)

When PSO stops due to the first condition, the particle

position with the lowest fitness value found so far, is taken as

the final solution. When the optimization stops due to the

second condition, the last particle position (which is the one

with fite less than the threshold) is taken as the final or the

optimal solution.

3.5. Proposed technique to improve PSO efficiency

In most cases, the PSO algorithm can reach an accurate

optimal solution. An accurate solution is a solution that gives a

simulated waveform close enough to reference. However, if

the searching ranges or velocity limits (defined by user) for

some parameters are too large, PSO may have trouble to

converge. The found optimal solution might not be sufficiently

accurate. In our implementation, we propose a technique to

avoid that and maintain the capability of PSO to find accurate

optimal solution, even in cases with large search intervals.

The proposed technique consists of re-initializing and

relaunching the iteration process, with improved searching

range for each parameter to optimize. This is performed when

the maximum number of iterations is reached and the best

fitting error (calculated using (13)) is still higher than the

convergence tolerance after running PSO once. The big

challenge is to derive an approach to appropriately select the

new and improved searching ranges.

It has been observed that during the iterative process, the

search space covered by particles evolves. After some

iterations, the search space contains the ideal solution, and the

algorithm simply needs more iterations to reach that solution.

However, due to the wide search range for each parameter and

due to the relatively high velocity limits, that ideal solution

may be overjumped and never reached. Therefore, we propose

to use the search space covered at the last iteration as the new

search space. That space is defined by a set of search intervals

(one for each parameter). The updated search interval for each

parameter k (initially defined in (2)) becomes:

,

min max
() ,

j k

new new

k kx t x x    (14)

where
minnew

kx and
maxnew

kx are the new lower and upper

limits of the k-th parameter to optimize.

  
 

min

, max 1,...,
min ()new

k j k iter j n
x x N


 (15)

  
 

max

, max 1,...,
max ()new

k j k iter j n
x x N


 (16)

, max()j k iterx N is the value of the k-th parameter in the j-th

candidate solution at the last iteration number max iterN .

To improve the likelihood of the new search space to

contain the ideal solution, this space is expanded to include the

best particle candidates found so far. In our implementation, as

PSO is run using n particles, the new search space is expanded

to include the n best candidates found so far. That is, assuming

,

best

i kX is the k-th parameter in the i-th best candidate solution

  ,i 1 n , for the search interval of parameter k, if for any i,

min

,

best new

i k kX x , then
minnew

kx in (14) is updated to

become
min

,

new best

k i kx X . In the same way, if

max

,

best new

i k kX x , then
maxnew

kx in (14) is updated to

become
max

,

new best

k i kx X .

After updating the search intervals for each parameter, the

velocity limits are recalculated using (5) with 10N  . Note

that this new value differs from the previous one  5N  to

ensure slower displacement of particles and reduce the risk of

overjumping better solution candidates. Also, the value 10 is

selected in accordance with [2] where it was pointed out that

optimal results are obtained with  5,10N  .

After resizing searching intervals and modifying velocity

limits, the iterative loop is re-launched. This proposed

technique is very efficient to reach more accurate solution

candidates as will be shown in the demonstration example.

4. EXAMPLE 1: IBR PARAMETER DETERMINATION

4.1. Case Description

In this first example, the tool is used to determine the

parameter values of the reactive power (Q) control loop in the

model of an IBR, a PV park. The parameters must be

determined so that the simulated waveform of the reactive

power generated by the park model, matches the waveform of

the recorded reactive power supplied by the actual plant

during a step change in the reactive power reference. Fig. 1

shows the model of the park and the connected network.

Fig. 1. PV park connected to a grid, EMTP model.

The searched parameter values are the proportional and

integral constants pK and iK in the reactive power control

loop, as shown in the PV park device mask (see Fig. 2).

Fig. 2. Q-control parameters for the PV park model

The selection of pK and iK as optimization parameters is

due to the structure of the controller in the software. However,

the tool can work just as well in case of a different

implementation structure (user would simply need to select all

parameters that have impact on reactive power response).

A step change is applied to the reactive power reference

signal in the actual park. The reactive power generated by the

park is recorded and shown in Fig. 3 (in blue). An initial

setting (prediction) of the Q-control loop parameters (using

values shown in Fig. 2) yields the model response shown in

Fig. 3 (in red). The goal is to find the values of pK and iK to

enter in Fig. 2, so that the red plot fits the blue one.

Fig. 3 Park reactive power: reference waveform in blue (from measurements

on the real park) and simulated waveform (with initial values) in red.

To set up the EMTP optimization tool for this example,

pK and iK are selected from the list of model parameters

(see Fig. 4). The searching range is set to  0, 20 for each

parameter, as prescribed by (2).

Fig. 4. Parameter selection window in the tool.

The observation interval is set to  1, 2.6 in Fig. 5. This

interval corresponds to the interval inside which the transient

state is observed in the reference waveform (see Fig. 3).

Fig. 5. Simulation data definition window in the tool

The optimization uses 10 particles with settings in Fig. 6.

Fig. 6. Optimization definition window in the tool

4.2. Optimization Results

Once the settings are completed in the tool, the

optimization process begins. Optimization starts by initializing

the 10 particles with random values (within search intervals)

for searched parameters. For each particle, a simulation is run,

and the fitness value is evaluated. Then each particle position

is updated in the iterative process described in Section 2.2 At

the end of the process, the optimal particle candidate found by

the tool has the following parameter values: p 1.26929K  and

i 6.92825K  . The final fitting error is 0.879%.

The simulated waveform for found optimal parameters,

alongside with the reference is now shown in Fig. 7.

Fig. 7. Reference and optimal waveforms for park reactive power

Fig. 7 clearly shows that the tool can achieve an excellent

match between the model and measurements. The total

computing time was around 10 minutes for the 50 simulation

runs (10 particles and 5 iterations). Time-step and simulation

time in each run were respectively set to100 s and 3seconds.

This overall computing time is reasonable and could have

been much higher if a random searching approach was used.

In addition to that, a random searching approach might not

find an acceptable solution.

Simulation results, not shown here, reveal that the use of

more particles generally yields better optimization results.

This is because more particles lead to more explorations in the

search space and higher probability for catching better

solution candidates. In contrary, the increase of the total

number of iterations does not generally yield better results. In

some cases, after few iterations, the particles fly within a

search space that does contain better solution candidates, but

the particles overjump these solutions. This is due to fixed and

relatively large search interval and velocity limits for each

parameter. This observation has motivated the development of

the proposed technique to improve efficiency in PSO, as

described in 3.5 The next example demonstrates the

effectiveness of this technique.

5. EXAMPLE 2: SYNCHRONOUS MACHINE EXCITER

PARAMETER DETERMINATION

5.1. Case Description

In this second example, the tool is used to determine

parameter values in the exciter model of a synchronous

machine. The parameters must be determined so that the time-

domain waveform of the excitation field voltage signal

matches the waveform of the same signal recorded in the

actual synchronous machine during a step change in reference

voltage. Contrary to the first example, in this example the

range of variation for one of the searched parameters is quite

wide. This example will demonstrate the effectiveness of the

proposed technique to improve the efficiency of the PSO

method in case of wide search ranges.

The circuit for this case is given in Fig. 8. The synchronous

machine SM1, its exciter SEXS_1 and the connected load

Load1, are modeled in EMTP. The goal is to determine the

values of the gain K and time constant
E

T in the exciter

model. These parameters are available from the exciter device

mask as shown in Fig. 9.

Fig. 8. Synchronous machine connected to a load

Fig. 9. Exciter parameters

The reference voltage input of the exciter is changed from 1

to 1.03 pu at the 1 s time-point, in the actual system and in the

model. The excitation field voltage of the actual exciter is

shown in Fig. 10 (in blue). The excitation field voltage

generated by the exciter in the model with standard initial

values of Fig. 9 is also shown in Fig. 10 (in red).

Fig. 10. Excitation field voltage

The tool is launched and PSO optimization is run with the

settings shown in Fig. 6. The search intervals are  100, 300

for the gain K and  0,1 for the time constant
E

T .

5.2. Optimization results and Discussion

After 5 iterations in the PSO algorithm, the first optimal

solution is found: K 167.74 and
E

T 0.0734 with a

fitting error of 7.35% . As the fitting error is higher than the

convergence tolerance, the technique proposed in this paper

(see section 3.5) to improve efficiency is triggered. The

technique reduces the search interval to  142.854, 270.197

for K and  0.000, 0.480 for
E

T . Then the iteration loop of

PSO is restarted. After 5 more iterations, the second optimal

solution is: K 194.743 and
E

T 0.0968 with a fitting

error of 4.029% . Fig. 11 shows the waveforms of the field

voltage for the first and second optimization solutions.

Fig. 11. Excitation field voltage waveform obtained after optimization

The first optimal solution (in gray) gives a result quite close

to the reference (when compared to the initial setting of Fig.

10). However, the match is not good enough. Implementing

the proposed technique yields a second optimal solution with a

better match (see black plot in Fig. 11). This proves the

efficiency of the proposed technique.

It is worth to point out that in this case, the proposed

technique was applied only once. It is possible to apply it

several times to improve accuracy of the final solution and

therefore the quality of the match. However, one must keep in

mind that each time this approach is applied, the iterative loop

is re-executed in full, increasing computing time.

6. CONCLUSIONS

This paper presented a tool developed in EMTP and based

on the PSO algorithm to determine values of unknown

parameters in component models. Parameters are determined

so that the time-domain response of the model matches the

response of the actual component in the field. This work is

within the digital-twin concept. The specifics of the tool

include appropriate selection of PSO parameters, adequate

definition of a fitness function and implementation of a

technique to improve PSO efficiency. Demonstration

examples have shown that the proposed tool can achieve very

accurate parameter values to reproduce measured events. The

performance of the PSO algorithm is generally jeopardized

when the search ranges are too large, but in the presented

implementation, the performance is not affected.

 ACKNOWLEDGMENTS

This work was supported by PGSTech company in

Montreal, Canada.

REFERENCES

[1] J. Mahseredjian, S. Dennetière, L. Dubé, B. Khodabakhchian, and L.
Gérin-Lajoie, "On a new approach for the simulation of transients in

power systems,'' Electr. Power Syst. Res., vol. 77, no. 11, pp. 1514-1520,

Sep. 2007.
[2] M. A. Abido, "Optimal design of power-system stabilizers using particle

swarm optimization," in IEEE Transactions on Energy Conversion, vol.

17, no. 3, pp. 406-413, Sept. 2002, doi: 10.1109/TEC.2002.801992.

[3] A. GoIe, S. Filizadeh, R. Menzies and P. Wilson, "Optimization-enabled

electromagnetic transient simulation," IEEE Power Engineering Society

General Meeting, 2004., Denver, CO, USA, 2004, pp. 1133 Vol.1-, doi:

10.1109/PES.2004.1373019.
[4] A. M. Gole, S. Filizadeh and P. L. Wilson, "Inclusion of robustness into

design using optimization-enabled transient simulation," in IEEE

Transactions on Power Delivery, vol. 20, no. 3, pp. 1991-1997, July
2005, doi: 10.1109/TPWRD.2005.848722.

[5] B. Poudel, B. Bhandari, E. Amiri, P. Rastgoufard, T. E. Field and R. A.

McCanne, "Interconnection Study and Optimization of Grid Connected
Photovoltaic System Using Electromagnetic Transient Program," 2021

IEEE Kansas Power and Energy Conference (KPEC), 2021, pp. 1-6,

doi: 10.1109/KPEC51835.2021.9446233.
[6] J. Kennedy and R. Eberhart, "Particle swarm optimization," Proceedings

of ICNN'95 - International Conference on Neural Networks, 1995, pp.

1942-1948 vol.4, doi: 10.1109/ICNN.1995.488968.
[7] Y. Shi and R. Eberhart, "A modified particle swarm optimizer," 1998

IEEE International Conference on Evolutionary Computation

Proceedings. IEEE World Congress on Computational Intelligence (Cat.
No.98TH8360), 1998, pp. 69-73, doi: 10.1109/ICEC.1998.699146.

[8] J. Kennedy, "The particle swarm: social adaptation of knowledge,"

Proceedings of 1997 IEEE International Conference on Evolutionary

Computation (ICEC '97), 1997, pp. 303-308, doi:

10.1109/ICEC.1997.592326.

[9] Kennedy, J., Eberhart, R.C. Swarm Intelligence. Morgan Kaufmann,
2001, ISBN 978-1-55860-595-4.

[10] Poli, R. (2007). "An analysis of publications on particle swarm

optimization applications". Technical Report CSM-469. Archived from
the original on 2011-07-16. Retrieved 2010-05-03.

[11] Poli, R. (2008). "Analysis of the publications on the applications of

particle swarm optimization". Journal of Artificial Evolution and
Applications. 2008: 1–10. doi:10.1155/2008/685175.

[12] Mohammad Reza Bonyadi, Zbigniew Michalewicz. "Particle Swarm

Optimization for Single Objective Continuous Space Problems: A
Review", Evol Comput 2017; 25 (1): 1–54. doi:

https://doi.org/10.1162/EVCO_r_00180.

[13] Y. Shi and R. Eberhart, "Parameter selection in particle swarm
optimization, " in Proc. 7th Ann. Conf. Evolutionary Program., Mar.

1998, pp. 591–600.

[14] Y. He, W. Jin Ma and J. Ping Zhang, "The Parameters Selection of PSO

Algorithm influencing On performance of Fault Diagnosis," in MATEC

Web of Conferences 63, 02019, 2016.

[15] J. Barrera, O. Alvarez-Bajo, J. J. Flores, C. A. Coello Coello, "Limiting
the Velocity in the Particle Swarm Optimization Algorithm,"

Computación y Sistemas, Vol. 20, No. 4, 2016, pp. 635–645 doi:

10.13053/CyS-20-4-2505.
[16] Eberhart, R. C. & Shi, Y. (2000). "Comparing inertia weights and

constriction factors in particle swarm optimization, " Proceedings of the

2000 Congress on Evolutionary Computation (CEC ’00), volume 1, pp.
84–88.

[17] Clerc, M. & Kennedy, J. (2002). "The particle swarm - explosion,

stability, and convergence in a multi-dimensional complex space, "
IEEE Transactions on Evolutionary Computation, Vol. 6, No. 1, pp. 58–

73.

https://doi.org/10.1162/EVCO_r_00180

