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Abstract—Timely detection and classification of power system
events are essential for situation awareness and reliable
electricity grid operation. It is also a crucial step with
regard to synchrophasor network data management and
archiving. In this paper, an event detection and classification
method based on the singular value decomposition (SVD) of
synchrophasor data is proposed. The detection algorithm exploits
the low-dimensionality characteristics of synchrophasor data
and identifies the changes in the dimensionality of a sliding
data matrix. The SVD-based method assigns several detection
flags indicating events and outliers in voltage magnitude, phase
angle and frequency data. The proposed classification algorithm
comprises a decision tree employing detection flags and singular
values to classify events into several categories, e.g., fault, voltage
magnitude and phase angle events, and generation-load mismatch
events. Moreover, the proposed algorithm identifies whether
events are spatially correlated. Field synchrophasor data collected
from a smart grid are used to evaluate the performance of the
proposed method. The numerical results show that the proposed
method can successfully detect and classify different types of
events even in the presence of measurement uncertainty.

Keywords—Event detection, phasor measurement unit (PMU),
singular value decomposition, synchrophasor.

I. INTRODUCTION

SYNCHROPHASOR data produced by PMUs are key
measurements used in the monitoring, protection, and

control of the modern electric grid by providing accurate
and timestamped snapshots of the power system [1].
In transmission and distribution systems, events such as
oscillations, line tripping, faults, and islanding can lead to
grid instability and power outages. The post-event analysis
of synchrophasor data has shown that offline techniques can
help reconstruct different scenarios and identify the root cause
of the events [2]. Given the sheer amount of synchrophasor
data in PMU networks and the limited archive space, it is
crucial to detect and classify events, discard older irrelevant
measurements, and only compress and archive measurements
required for post-event analysis. In real-time, the classification
of these events and decision-making is even more complex.
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There are various data-driven synchrophasor-based event
detection, spatial localization, and characterization methods
that use isolation forest, dynamic programming, clustering
technique, Prony analysis, and decision tree [3]–[7]. Most
of the existing methods do not consider the stochastic,
dynamic, and nonlinear characteristics of power systems and
rely on data labelling and feature selection. Particularly, the
low-rank characteristics and spatial-temporal (spatiotemporal)
correlations of PMU data are not leveraged.

A synchrophasor matrix of several PMUs data is low-rank
due to the spatiotemporal similarities. Similar to principal
component analysis (PCA), singular value decomposition
(SVD) of the synchrophasor data matrix decomposes it
into several singular modes. The first few singular modes
have the most significant contribution to the original data.
However, the higher-dimension modes usually contain PMU
measurement error and noise. When an event or outlier
happens, the spatiotemporal correlation changes and the
required number of singular modes to accurately reconstruct
the data (the dimensionality of the data matrix) increases.
Several PCA/SVD-based methods leveraging the low-rank
characteristics have been proposed to address synchrophasor
data problems such as missing data recovery [8], data
compression [9]–[11], and event/outlier detection [12]–[14].

A PCA-based method for online characterization of outliers
in synchrophasor data is proposed in [12]. The dynamic
responses of a system under nominal and off-nominal (e.g.,
faulted) conditions are analyzed and a bound on the change in
the norm of the principal component (PC) scores is presented.
It is shown that in the presence of bad data outliers, these
bounds for higher dimensional PC scores will be significantly
larger compared to lower dimensions. However, real-time
detection and event classification are not addressed.

PCA is used in [13] to analyze dimensionality reduction.
When an event occurs, an alert from the early event detection
algorithm is issued if the proposed event indicator becomes
very large due to the change in the core subspaces of the
PMU data. However, small events may not trigger the event
indicator, event classification is not proposed, and an adaptive
training stage is required to extract the key features of the
high-dimensional PMU data.

In [14], the low-dimensional subspace spanned by the
dominant singular vectors of the data matrix is used to
characterize an event and a dictionary of subspaces should
be established using offline training data. The dictionary is
used to match the online events with the most similar event



1 3

1 3

1 2

1 2 3

1 2 3

1 2 3

1 2 3

n

n

n

n

n

3

1 3

1 3

1 2

1 2 3

1 2 3

1 2 3

1 2 3

n

n

n

n

n

3

1 3

1 3

1 2

1 2 3

1 2 3

1 2 3

1 2 3

n

n

n

n

n

3

1 3

1 3

1 2

1 2 3

1 2 3

1 2 3

1 2 3

n

n

n

n

n

3

1 3

1 3

1 2

1 2 3

1 2 3

1 2 3

1 2 3

n

n

n

n

n

3

1 3

1 3

1 2

1 2 3

1 2 3

1 2 3

1 2 3

n

n

n

n

n

3

p
u
sh
e
d

in
co
m
in
g

PMUs

1

2

h

n

d

3

1 3

1 2

1 2 3

1 2 3

1 2 3

1 2 3

n

n

n

n

n

3

3

1 3

1 2

1 2 3

1 2 3

1 2 3

1 2 3

n

n

n

n

n

3

Fig. 1. Block diagram of a typical PDC buffer.

in the dictionary through subspace comparison. However,
establishing an efficient offline dictionary requires a massive
amount of training event data which is a big challenge in
real power systems. Moreover, the dominant singular vector
selection is performed using two experimental thresholds
that can introduce over/under-estimation of the subspace
rank. The choice of singular value thresholding criteria is a
common challenge in all PCA/SVD-based methods applied to
synchrophasor data and should be addressed [10]–[16].

In this paper, we propose an SVD-based method to
detect and classify power system events using real-time
synchrophasor data collected by a phasor data concentrator
(PDC) from different locations. The proposed method
performs dimensionality analysis on a real-time sliding
window to detect events and classify them based on the
changes in the dimensionality and singular values of data
matrices including voltage magnitude, phase angle, and
frequency data. Compared to existing PCA/SVD-methods, the
main contributions of this paper are threefold:

1) The proposed singular value thresholding criterion is not
experimental. Instead, we use PMU accuracy information
provided by the manufacturer to set the thresholds and
hence guarantee both reliability and security of low-rank
subspace estimation.

2) The proposed data-driven method does not require
training event data which is challenging to obtain from
real systems and uses online voltage magnitude, phase
angle, and frequency SVD results for direct classification.

3) The proposed algorithm has a low computational burden
and is capable of detecting events at an earlier stage
compared to training-based classifiers and raw PMU data
monitoring approaches.

The rest of the paper is organized as follows. Section II
presents the outline of the proposed detection and classification
method. Section III describes the proposed core SVD-based
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Fig. 2. Simplified flowchart of the proposed method

dimensionality approximation and the respective singular
value thresholding method. The proposed detection and
decision tree classifier algorithms are detailed in Section IV.
The numerical results using field synchrophasor data of a
real microgrid are presented in Section V. Finally, Section VI
includes the summary and conclusions.

II. OUTLINE OF THE PROPOSED METHOD

Figure 1 shows the structure of a PDC with d circular buffers
each for a variable such as frequency, magnitude, and phase
angle of voltage and current signals [17]. The buffers have n
columns each dedicated to a PMU and h completed (pushed)
rows. With a PDC refreshing rate of Fs frames per second
(fps), the rows represent intervals of 1/Fs second. We employ
the buffer history (bottom part) with the duration of h/Fs

second and construct the general data matrix Y as

Y =
[
y1 y2 · · · yn

]
(1)

where yi with i = [1, · · · , n] are temporal data vectors with
the length of h. The observed data matrix Y includes the
ground-truth data X and the measurement error E such that

Y = X+E . (2)

However, matrices X and E are not observed and cannot
be analytically determined since E is a random process.
The elements of each row of Y are spatially correlated
since they represent the measurements reported from PMUs
at a given timestamp. On the other hand, the elements of
each column of Y are temporally correlated. Due to the
spatiotemporal correlations in synchrophasor data, Y exhibits
low-rank characteristics. Therefore, we can use SVD to
estimate the dimensionality of Y. As soon as the first instant
of an event or outlier data enters the first row of the sliding
matrix Y, the spatiotemporal correlations decrease and the
dimensionality of the data increases. The main idea is to



continuously assess the dimensionality of Y in real-time and
determine whether any changes occur in the spatiotemporal
correlations or in the magnitude of SVD modes.

Figure 2 describes the outline of the proposed event
detection method. At each PDC push instant, the buffers
containing the measured voltage magnitudes, phase angles,
and frequencies are updated and converted to data matrices
Y with the structure given in (1). SVD is performed for
each data matrix and used to determine the dimensionality
of each variable. If the dimensionality of any of data matrices
is increased from its nominal value or any of the primary
singular values is deviated significantly from its average value,
an event is declared. Subsequently, the results of SVD are
sent to detection and classification algorithms. The following
sections describe the synchrophasor data dimensionality
approximation, event detection, and classification methods.

III. SVD-BASED DIMENSIONALITY APPROXIMATION

Given m=min(h, n), the reduced SVD of Y becomes

Y =

m∑
r=1

σrurv
T
r (3)

where {v1,v2, · · · ,vm} and {u1,u2, · · · ,um} are the right
and left singular vectors, respectively, and σ1, σ2, · · · , σm are
the corresponding singular values. Singular vectors ur and vr

are the temporal and spatial eigenfunctions of Y, respectively,
and are normalized so that√∑h

i=1
ur(i)2 = 1 (4)√∑n

j=1
vr(j)2 = 1 (5)

Thus, the SVD results in m modes, each consisting of a
temporal mode shape (ur), a spatial mode shape (vr), and a
mode magnitude (σr). The contribution of the rth SVD mode
to Y is given, according to [18,19], as

Yr = σrurv
T
r (6)

Due to the spatiotemporal correlations in synchrophasor
data, the first few modes capture the primary dynamics of the
data matrix, and measurement errors and small perturbations
are reflected in the higher dimension modes. Therefore, the
dimensionality of Y is determined by the number of the first ρ
modes, and the best rank-ρ approximation to Y is constructed
as given in [20]:

Yρ =

ρ∑
r=1

urσrv
T
r (7)

According to [19], the threshold criterion to find ρ should
determine whether the magnitude of a mode is larger than
the measurement error which is represented as noise matrix in
(2). In words, only the modes with signal-to-noise ratio (SNR)
greater than unity are validated and the rest are rejected. As
shown in [9], the SNR of the rth SVD can be calculated as

SNRr =

(
Yr RMS

ERMS

)2

(8)

where Yr RMS and ERMS are the RMS amplitudes of Yr

and E, respectively. Therefore, the condition to validate the
rth mode with SNR greater than unity is Yr RMS > ERMS .
In order to determine ρ, we should calculate Yr RMS and a
bound on the RMS error ERMS [19]. Calculating the RMS
using (6) yields

Yr RMS =

√
1

hn

∑h

i=1

∑n

j=1
Yr(i, j)2

=
σr√
hn

√∑h

i=1
ur(i)2

√∑n

j=1
vr(j)2

=
σr√
hn

. (9)

Moreover, as shown in [9], it can be assumed that the random
process E has an upper bound ϵ such that

ERMS ≤ ϵ. (10)

Therefore, the condition to validate the rth mode becomes
σr/
√
hn > ϵ. Thus, we define a threshold σ̂ such that

σ̂ ≜ ϵ
√
hn (11)

which gives the singular value thresholding criterion σr > σ̂.
Thus, the reduced dimensionality of Y is determined as the
total number of SVD modes that satisfy the condition σr > σ̂:

ρ =

m∑
r=1

{
1, if σr > σ̂

0, otherwise.
(12)

In order to determine the upper bound ϵ on E, we use
the accuracy metrics provided by PMU manufacturers. The
PMU measurement accuracy is usually given by metrics such
as magnitude error (ME), angle error (AE), and frequency
error (FE) that represent the maximum error of different
measurement types. Therefore, to calculate (11) for each type
of data matrix, we use the corresponding metric, i.e., ME, AE,
or FE as the upper bound ϵ.

IV. SVD-BASED EVENT DETECTION AND CLASSIFICATION

In this section, the proposed SVD-based event detection and
classification methods are described.

A. SVD-based Detection

Algorithm 1 describes the proposed SVD-based event
detection method that is executed at each PDC push instant.
Data matrices Yi including the frequency, voltage magnitude,
and voltage phase angle of different phases are updated and
any missing entries are recovered using methods such as [8].
PMU acuuracy information including FE, ME, and AE are
used as ϵi with i = {1, · · · , d}.

A detection flag ϕi is assigned to each data variable which
is set to 0 for normal operating conditions and 1 when an event
is detected. During initialization (Line 1), the algorithm does
not evaluate the Yi until the buffer is full after h instants.

After initialization, Subroutine 1 is executed for all Yi to
determine flags ϕi. The reduced SVD is calculated in Line 3,
and the dimensionality of Yi is approximated in Line 4. The
flag ϕi is set using Line 5 to Line 9. The flag is set to 0 if there



Algorithm 1 SVD-based event detection
Inputs: Matrices Yi and PMU accuracy ϵi for i = {1, · · · , d}

as data type, e.g., magnitude, phase angle, and frequency.
Outputs: Detection flags ϕi, and ϕ̄i

1: Initialisation: Wait for h instants until buffer is full

2: for i← 1, · · · , d do

Subroutine 1: SVD-based analysis

3: Perform reduced SVD: Yi =
∑m

r=1 σiruirvi
T
r

4: Approximate dimensionality using (12):

ρi =

m∑
r=1

{
1, if σir > ϵi

√
hn using (11)

0, otherwise.

5: if ρi > ρni then ▷ Check dimensionality change
6: ϕi = 1 ▷ Dimensionality has changed
7: else
8: ϕi = 0 ▷ No change in dimensionality
9: end if

10: Update the moving average of the first singular value:
σ̄i1 =

∑t
j=t−L−1

Fs

σi1(j)

11: if |σi1 − σ̄i1|/σ̄i1 > α then
12: ϕ̄i = 1 ▷ Singular value change flag
13: else
14: ϕ̄i = 0 ▷ No change in singular value
15: end if

16: end for

is no change and is set to 1 if it increases from the nominal
dimensionality ρni determined using some training data.

Spatially correlated events with small magnitudes, do not
diminish the low-rank properties of the data matrix. Therefore,
events such as a small step in voltage magnitude of all
busses do not trigger the dimensionality change detection
flag ϕi. However, such variation in the magnitude of all
PMU measurements changes the value of the first singular
value σ1 which represents the primary dynamics of the data.
Hence, we propose an additional detection flag ϕ̄i based
on the variation of σi1. The moving average of the first
singular value σ̄i1 during the last L instants is updated in
Line 10. If the instantaneous σi1 deviates from σ̄i1 such that
|σi1 − σ̄i1|/σ̄i1 > α, then ϕ̄i is set to 1. Here, α > 0 is the
threshold coefficient. The procedure to determine ϕ̄i is given
in Line 11 to Line 15.

B. Event classification

Algorithm 2 summarizes the proposed event classification
approach customized for the distribution system under study.
The algorithm is executed at each timestamp with intervals of
1/Fs seconds. The inputs to Algorithm 2 are the detection
flags ϕi and ϕ̄i and singular values σi1 and σi2 received
from Algorithm 1. Indices i = {1, 2, 3} correspond to voltage
magnitude (vm), voltage phase angle (pa), and frequency (f ),
respectively. Therefore, flags for voltage magnitude, phase
angle, and frequency are denoted by ϕvm, ϕpa, and ϕf ,
respectively. We utilize the fact that the amplitude of the first

Algorithm 2 Event classification
Inputs: Detection flags ϕi & ϕ̄i and singular values σi1 & σi2

determined by Algorithm 1 where indices i = {1, 2, 3}
correspond to voltage magnitude (vm), voltage phase
angle (pa), and frequency (f ), respectively.

1: if any ϕi = 1 OR ϕ̄i = 1 then ▷ Event detected
2: if all ϕvm, ϕpa & ϕf are equal to 1 then
3: Significant decrease in all σi1 & increase in σi2:

Fault detected.
4: else if ϕvm = 1 then
5: Spatially uncorrelated voltage magnitude event.
6: if Significant deviation in σvm1 & σvm2 then
7: Step changes downstream of transformer:

OLTC operation
8: end if
9: if Deviation in σvm1, σvm2 & σpa2 then

10: Voltage sag, impulse
11: end if
12: else if ϕpa = 1 then
13: Spatially uncorrelated voltage phase angle event

with significant deviation in σpa2: Impulse due to
14: temporary imbalance in load/generation locally.
15: else if ϕf = 1 then
16: Deviation in σf1 & σf2: Islanding event.
17: else if ϕ̄vm = 1 then
18: Spatially correlated magnitude event with

deviation in σvm1: load switching, step changes
19: else if ϕ̄pa = 1 then
20: Spatially correlated voltage phase angle event with

deviation in σpa1: transients, phase angle jump
21: else if ϕ̄f = 1 then
22: Spatially correlated frequency event with deviation

in σf1: Oscillations, sudden load/gen. imbalance
23: end if
24: else
25: No event detected
26: end if

singular value σ1 corresponds to the signals’ magnitude, and
the second singular value σ2 deviates due to impulses and
outliers [12].

An event is declared if any detection flag is set to 1 (Line 1).
Faults significantly affect all types of measurements in a short
time interval. Therefore, a fault is detected if all flags ϕf , ϕvm,
and ϕpa are set to 1 (Line 2). During a fault, there will be a
significant deviation in both σi1 and σi2.

Events that are not spatially correlated result in
dimensionality change and trigger one of the ϕvm, ϕpa,
or ϕf flags (Lines 4 to 15). When OLTC operates, the
voltage magnitudes of buses downstream of OLTC change
while those upstream remain relatively unchanged. This will
cause both σvm1 (step change in overall magnitude) and
σvm2 (dimensionality increase) to deviate from their average
values. This is used to classify OLTC operation in Line 6.
Impulse magnitude events (voltage sag) have a short duration
and are thought to happen due to temporary imbalances
in load/generation locally, inrush current, or self-clearing
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Fig. 3. Single-line diagram of EPFL campus smart grid.

TABLE I
PMU ACCURACY ϵ AND CORRESPONDING SINGULAR VALUE THRESHOLDS

σ̂ FOR DIFFERENT VARIABLES.

Parameter PMU Accuracy ϵ Threshold σ̂
Magnitude ME: 3.56×10−4 0.0107
Phase Angle AE: 4.19×10−4 0.0126
Frequency FE: 3.88×10−4 0.0067

faults upstream. Since small voltage sags happen shortly,
their impact on the overall magnitude of the moving window
Yvm is small and does not affect σvm1 for long. However,
voltage sag will be reflected in the significant deviation of
the second singular values σvm2 and σpa2. Voltage sag events
and impulses, in general, are classified in Line 9 and Line 12.
During an islanding event, the frequency of the islanded
section deviates from that of the rest of the grid. Therefore,
while both σf1 and σf2 deviate, ϕf is triggered (Line 15).

Spatially correlated events are detected when one of the
ϕ̄vm, ϕ̄pa, or ϕ̄f flags is triggered (Lines 17 to 21). Since
the amplitudes of all the signals change to a new value,
the first singular value representing the primary dynamics of
the system will be affected more than other singular values.
Step changes in all bus voltages are due to load switching
and are detected in Line 17 when ϕ̄vm is triggered and
only σvm1 deviates due to overall magnitude change with
no dimensionality change. Increase and decrease in σvm1

signifies load switch-off (voltage step up) and load switch-on
(voltage step down), respectively. Correlated phase angle
events such as phase angle jump are declared when ϕ̄pa is
triggered and σvm1 deviates (Line 19). Oscillations due to
generation-load mismatch events cause a significant rise or
drop in all frequencies reported from different buses, and are
declared when ϕ̄f is triggered (Line 21).

V. NUMERICAL RESULTS

The performance of the proposed detection and
classification method is evaluated using field synchrophasor
data. Figure 3 shows the single-line diagram of the smart grid
of the École Polytechnique Fédérale de Lausanne (EPFL)
campus comprising a real-time PMU-based monitoring
system. This active smart grid includes photovoltaic panels
and combined heat and power units. The nominal frequency
of the power system is fn = 50 Hz. The six class-P PMUs
employ the enhanced-Interpolated Discrete Fourier Transform
synchrophasor approximation method [21]. PMU data are
collected and aggregated by a low-latency PDC with the
refreshing rate of 50 fps. Detailed information on the PMUs
and the smart grid technology can be found in [21]–[23]. The
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Fig. 4. Detection and classification of a double line to ground fault. (a) voltage
magnitude, (b) phase angle, (c) frequency, (d) σvm, (e) σpa, and (f) σf .

field synchrophasor data used in this paper are made available
via the web interface https://smartgrid.epfl.ch/.

The length of data matrices is set to h = 50 equal to
one second of synchrophasor data. The frequency data matrix
Yf has 6 columns each assigned to a PMU. The three-phase
voltage magnitude and phase angle data of the 6 PMUs are
included in Yvm and Ypa, respectively. Therefore the number
of columns in Yvm and Ypa is n = 18. The accuracy
information, i.e., ME, AE and FE, of PMUs used in EPFL are
given in [23]. Table I shows these 3 PMU accuracy data used
as ϵi with i = [1, 2, 3], in (11) to calculate the thresholds σ̂i.
Moreover, the threshold coefficient α = 1% is set to determine
the detection flags ϕ̄i (see Line 11 of Algorithm 1).

Figures 4(a), (b) and (c) show the voltage magnitude, phase
angle, and frequency reported by PMU-6 during a self-clearing
double-line to ground fault near the end of the line. It can be
seen that the fault temporarily affects all the system variables.
Therefore, as shown in Figures 4(d), (e), and (f), the second
singular values σ2i of the voltage magnitude, phase angle,
and frequency data matrices increase above the respective
thresholds σ̂i. Therefore, the dimensionality of all variables
increase from 1 to 2, and the respective flags ϕvm, ϕpa, ϕf

are triggered. Algorithm 2 correctly classifies this event using
the condition given in Line 2.

Figures 5(a), (b), and (c) show three voltage sag events
affecting voltage magnitude, phase angle, and frequency of all
the nodes in the power system. These voltage sag events with
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Fig. 5. Detection and classification of multiple voltage sag events caused by
faults in upstream power system. (a) voltage magnitude, (b) phase angle, (c)
frequency deviation, (d) σvm, (e) σpa, and (f) σf .

short durations of a few cycles are usually caused by faults
somewhere on the upstream power system. In order to achieve
better resolution, Figure 5(c) depicts the deviation of frequency
from its nominal value, i.e., ∆f = f − fn. Figures 5(d), (e),
and (f) show that despite the small magnitudes of these events,
the second singular value σ2i of all system variables increases
above the respective thresholds σ̂i. These events are detected
and classified as faults by Line 2 of Algorithm 2.

Figures 6(a) and (b) show the 3-phase voltage magnitudes
reported by PMU-6 and PMU-1, respectively. During a
200-second interval, four load switchings happen and cause
step-like changes in voltage magnitude at around 15, 56, 117,
and 180 seconds. However, two of these events (at around 56
and 180 seconds) are not spatially correlated since PMU-1 at
the main substation has not reported them. Figure 6(d) shows
the variations of the first singular value of voltage magnitude
σ1vm relative to its moving average value σ̄1vm. It can be seen
that the two spatially correlated events (around 15s and 117s)
cause a significant deviation of σ1vm from its average value
and trigger the detection flag ϕ̄vm. However, the two spatially
correlated events around 56s and 180s do not cause a deviation
of more than α = 1% from the average value, hence do not
trigger ϕ̄vm. Therefore, voltage events at 15s and 117s are
classified as correlated events using Line 17 of Algorithm 2. It
should be noted that as soon as ϕ̄vm is triggered, Algorithm 1
stops updating the moving average for L instants to prevent

Fig. 6. Detection and classification of multiple voltage magnitude events
caused by load switchings. (a) PMU-6 voltage magnitude, (b) PMU-1 voltage
magnitude, (c) PMU-6 voltage phase angle, (d) σ1vm, (e) σ2vm, and (f) σpa.

any false detections during the new settling point post-event.
On the other hand, the uncorrelated events at 56s and

180s cause a significant increase in the value of the second
singular value σ2vm of voltage magnitude matrix, as shown in
Figure 6(e). Since σ2vm increases above the threshold σ̂vm,
Algorithm 1 declares an event and Line 4 of Algorithm 2
classifies it as an uncorrelated voltage event. Moreover,
Figure 6(c) shows the three-phase voltage phase angle reported
by PMU-6, and Figure 6(f) shows the first and second singular
values of the phase angle matrix against the threshold σ̂pa. As
expected, the switching events do not trigger ϕpa or ϕ̄pa.

Figures 7(a), (b), and (c) show the three-phase voltage
magnitude and phase angle reported by PMU-5, and the
frequencies measured by PMU-1, PMU-3, and PMU-5 during
a 12s interval. As shown in Figure 7(b), a phase angle
deviation happens at around 5.26s on “phase A" reported by
PMU-5. This outlier does not significantly affect the singular
values of voltage magnitude and frequency matrices shown
in Figures 7(d) and (f). However, as shown in Figures 7(e),
σ2pa of the voltage phase angle matrix increases above the
threshold σ̂pa and triggers the detection flag ϕpa. Therefore,
the event is classified as an uncorrelated phase angle event by
Line 12 of Algorithm 2.

One major advantage of the proposed method is the
reliability and robustness of the singular value thresholding
criteria. In contrast to conventional SVD-based methods,
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Fig. 7. Detection and classification of a voltage phase angle outlier. (a) PMU-5
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the proposed method uses PMU accuracy information to
determine dimensionality. Conventional SVD-based methods
such as [10,11,14] use experimental threshold values to
compare the largest singular values with the smaller ones
and determine the dimensionality. In particular, [14] uses the
following to approximate the rank ρ of Y as the largest r such
that the following holds:

{
σr/σr̄+1 > ∆

(
∑r̄

r=1 σr)/(
∑m

i=1 σi) ≥ τ
(13)

where ∆ guarantees that only dominant singular values remain
in the approximation and τ measures the approximation
ratio of lower-dimension singular values to the magnitude
of all singular values combined. In the current literature,
these thresholds are defined experimentally and can cause
under/over-estimation of the dimensionality, especially when
the synchrophasor data is noisy and the spatiotemporal events
have small magnitudes.

Figure 8 shows the comparison between dimensionality
approximation performed by the proposed method and
that of [14] with suggested ∆ = 10 and τ = 0.99.
Figures 8(a) and 8(b) show the voltage magnitudes and
the estimated rank ρ by both methods. It can be seen
that when it comes to events with small magnitude
changes, only the proposed method can accurately detect the

Fig. 8. Comparison of dimensionality approximation performed using the
proposed method and a conventional SVD-based method.
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dimensionality change. On the other hand, in the case of
phase angle, the higher-dimension singular values have larger
magnitude compared to the lower-dimension ones, which
can cause conventional thresholding methods to overestimate
dimensionality. This has been shown in Figures 8(c) and
8(d). While phase angles, shown in Figures 8(c), are not
experiencing any particular disturbance, the conventional
thresholding method overestimates the rank due to the
increase in the higher-dimension singular values caused by
measurement accuracy. However, since the proposed method
employs the phase angle error (AE) information of PMUs, the
rank approximation is accurate and robust against such errors
and noise.

Figure 9 shows the impact on σ1 and σ2 due to different
events and confirms the classification Algorithm 2. Figure 9(a)
shows the results for load switching where ϕ̄vm is triggered
and while there are no significant deviations in σvm2 and σpa2,
the first singular value σvm1 shows the most deviation. This
confirms Line 17 of Algorithm 2. Figure 9(b) and Figure 9(c)



TABLE II
RUNTIME OF THE PROPOSED METHOD FOR DIFFERENT NUMBERS OF

PMUS

No. PMUs Runtime [ms]
(n) Average Maximum
6 0.164 2.097
50 1.535 3.861
100 1.895 4.394
1000 6.803 15.10

depict uncorrelated OLTC operation and voltage sag events,
respectively, where ϕvm is triggered. However, σpa2 only
deviates in the case of voltage sag event, confirming Lines 6
and 9 of Algorithm 2.

The main computational burden of the proposed method
is the computation of the SVD performed three times at
each instant. While the runtime of the classification algorithm
flags is relatively constant, the runtime of the detection
algorithm highly depends on the number of PMUs impacting
the computational burden of SVD. Table II shows the average
and maximum runtime of the proposed method at each instant
calculated with different number of PMUs and synthetic data.
Even with n = 1000, the detection and classification procedure
terminates within the 1/Fs = 20 ms window and before
the next data messages arrive. In addition to the algorithm
runtime, the total event detection delay depends on PMU
communication delay, PDC wait time (usually under 100ms),
and 1/Fs resulting from the moving window updates.

VI. CONCLUSIONS

This paper proposes an SVD-based event detection and
classification method. The SVD-based detection algorithm
evaluates the dimensionality of real-time sliding matrices
containing the voltage magnitude, phase angle, and frequency
data reported by PMUs across the power system. The proposed
detection flags are set according to the changes in the
dimensionality of matrices that indicate disruption of the
low-rank nature of synchrophasor data by an event. The
classification algorithm comprises a physics-based decision
tree that employs the detection flags and first and second
singular values. Spatially correlated and uncorrelated events
are classified under several categories, i.e., faults, voltage
sag, load switching, OLTC operation, voltage phase angle
impulse, islanding, frequency oscillations and generation-load
mismatch. The performance of the proposed method is
evaluated using field PMU data containing different types
of events and outliers. The numerical results show that the
proposed detection and classification method is accurate and
reliable even in the presence of PMU data uncertainty.
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