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Abstract – The growth and integration of renewable energy 

and control systems in the utility grid represents a challenge for 

the electric power industry. Power quality monitoring plays a 

critical role in modern electrical systems for both standards 

compliance and system security reasons. This paper presents a 

novel technique for calculating subharmonics, harmonics, 

interharmonics, supraharmonics, and DC offset in electrical 

systems. This extended spectral fitting (ESF) approach is a 

combination of the numerical Laplace transform (NLT) and a 

modified vector fitting (VF) which we have denominated 

extended vector fitting (EVF). In this novel approach, it is 

assumed that frequencies of the harmonics and supraharmonics 

are known poles and that frequencies of the subharmonics and 

interharmonics are unknown poles in the frequency domain 

(FD), resulting in a rational approximation that considers known 

poles and unknown poles. The advantages of the proposed 

methodology are demonstrated (1) for synthetic test signals and 

(2) in an AC-DC-AC converter simulation. Results show that the

ESF approach can fully decompose a signal into the

aforementioned components with a high degree of accuracy.

Keywords: Extended vector fitting, numerical Laplace 

transform, harmonics, interharmonics, supraharmonics.  

I. INTRODUCTION

OWER quality requirements in modern electrical systems

are an important aspect to consider due to the integration

of power electronics technologies associated with current 

renewable energy and control systems. Integrating these 

systems into the utility grid generates significant technical 

challenges to the power industry. For example, a large-scale 

integration of these technologies and their interaction with 

network elements can lead to power quality issues, such as 

subharmonic, harmonic, or interharmonic distortion in 

waveforms, which can lead to unstable operating conditions 

[1, 2]. Different problems have even been reported in medium- 

or low-voltage systems due to high frequency distortion or 

supraharmonics in the frequency range of 2-150 kHz [3, 4]. 

These components also negatively affect the electrical 

distribution system’s power quality and reduce its efficiency 

[5]. 

Thus, proper identification of these components in electrical 

systems requires analytical tools which allow a precise 

estimation. 
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A comprehensive review of the available literature on 

harmonics estimation techniques was presented in [6] and 

includes discrete Fourier transform (DFT), wavelet transform 

(WT), Hilbert–Huang transform (HHT), Chirpz-transform 

(CZT), autoregressive moving average (ARMA), Prony’s 

method, multiple signal classification (MUSIC), estimation of 

signal parameters via rotational invariance technique 

(ESPRIT), Kalman filtering (KF), artificial neural network 

(ANN), and phase locked loop (PLL), in which the 

advantages, disadvantages, main references, and potential 

applications for each technique is reviewed. More recently, the 

matrix pencil method [7] was proposed for calculating 

harmonics and interharmonics even in presence of noise. The 

sine cosine algorithm for accurate estimation of harmonics and 

interharmonics is presented in [8] and a hybrid method is 

presented and proposed for application online in [9]. 

This paper presents a novel technique for subharmonics, 

harmonics, interharmonics, supraharmonics, and DC offset 

calculation in electrical systems. The methodology consists of 

first obtaining the frequency domain (FD) image of a signal 

via the numerical Laplace transform (NLT) and then by using 

a rational approximation technique to calculate the DC offset, 

amplitude, damping, frequency, and phase of each 

aforementioned component. Vector fitting (VF) is the rational 

fitting technique used for this purpose. We called spectral 

fitting (SF) approach to the combination of the NLT and VF, 

and it had been implemented for the identification of 

electromechanical oscillation modes and mode shape [10]. 

Unlike that work, this one presents a novel modification of the 

VF algorithm that allows to identify the subharmonics, 

interharmonics, harmonics, supraharmonics, and DC offset at 

the same time. This extended VF (EVF) permits to carry out a 

rational approximation that considers known and unknown 

poles. We have now called extended spectral fitting (ESF) to 

the combination of the NLT and EVF. 

This paper begins with a brief review of NLT theory. EVF and 

the ESF methodology are then explained in detail and latter 

demonstrated (1) for synthetic test signals and (2) in an AC-

DC-AC converter simulation. 

II. EXTENDED SPECTRAL FITTING (ESF) APPROACH

A brief overview of the NLT theory is presented in this 

section, and the EVF method is shown on detail, which allows 

rational approximations with known and unknown poles. 

Finally, both techniques are interrelated in ESF. 
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A.  Numerical Laplace transform (NLT) 

For a signal 𝑓(𝑡) , the unilateral Laplace Transform is 

defined as [11],    

𝐹(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡

∞

𝑜

, (1) 

where the complex frequency is given by 𝑠 = 𝑐 + 𝑗𝜔, with 𝜔 

being the angular frequency and 𝑐  being a positive real 

constant. The NLT can be calculated by considering the 

independent variables discretized as [12, 13] 
𝑡𝑛 = 𝑛∆𝑡, 𝑛 = 0,1, … , 𝑁𝑠 − 1

𝜔𝑘 = 𝑘∆𝜔, 𝑘 = 0,1, … , 𝑁𝑠 − 1.
 (2) 

Using (2) and the rectangular rule of integration in (1) 

gives, 

𝐹𝑘 =
𝑇𝑜𝑏𝑠

𝑁𝑠

∑ (𝑓𝑛𝑒−𝑐𝑇𝑛 𝑁𝑠⁄ )𝑒−𝑗2𝜋𝑛𝑘 𝑁𝑠⁄ ,

𝑁𝑠−1

𝑛=0

 (3) 

where 𝐹𝑘 ≡ 𝐹(𝑐 + 𝑗𝑘∆𝜔) and 𝑓𝑛 ≡ 𝑓(𝑛∆𝑡).  Regular 

sampling has been considered in (2) and (3), where ∆𝑡 =
𝑇𝑜𝑏𝑠 𝑁𝑠⁄  and ∆𝜔 = 2𝜋 𝑇𝑜𝑏𝑠⁄  with 𝑇𝑜𝑏𝑠  being the 

observation time and 𝑁𝑠 the number of samples. Note that (3) 

allows using the FFT algorithm. 

On the other hand, if odd sampling is used for 

discretization of 𝜔, (3) becomes, 

𝐹2𝑘+1 =
𝑇𝑜𝑏𝑠

𝑁𝑠

∑ (𝑓𝑛𝑒−(𝑐𝑇+𝑗𝜋)𝑛 𝑁𝑠⁄ )𝑒−𝑗2𝜋𝑛𝑘 𝑁𝑠⁄ ,

𝑁𝑠−1

𝑛=0

 (4) 

where 𝐹2𝑘+1 ≡ 𝐹(𝑐 + 𝑗(2𝑘 + 1)∆𝜔) and 𝑓𝑛 ≡ 𝑓(𝑛∆𝑡), with 

∆𝑡 = 𝑇𝑜𝑏𝑠 𝑁𝑠⁄  and ∆𝜔 = 𝜋 𝑇𝑜𝑏𝑠⁄ . In this case, the discretized 

variables are [12, 13] 
𝑡𝑛 = 𝑛∆𝑡, 𝑛 = 0,1, … , 𝑁𝑠 − 1

𝜔𝑘 = (2𝑘 + 1)∆𝜔, 𝑘 = 0,1, … , 𝑁𝑠 − 1.
 (5) 

B.  Extended vector fitting (EVF) method 

Conventional process of VF [14] calculates a rational 

function-based model of a scalar function 𝐹(𝑠)  on pole-

residue form (6) by relocating a set of initial poles through an 

iterative procedure in a least-squares (LS) sense where 

coefficients 𝑑 and ℎ may be zero. 

𝐹(𝑠) ≅ ∑
𝑐𝑛

𝑠 − 𝑝𝑛

+ 𝑑 + 𝑠ℎ,

𝑁

𝑛=1

 (6) 

where 𝑐𝑛 are the residues, 𝑝𝑛 are the poles, 𝑑 is a constant 

term and ℎ  is a proportional part for the rational 

approximation. Note that VF formulation assumes that all 

poles are unknown. Assuming now that some poles are known 

and others are unknown, we get, 

𝐹(𝑠) ≅ ∑
𝑐𝑛

′

𝑠 − 𝑝𝑙 𝑛

+ ∑
𝑐𝑛

𝑠 − 𝑝𝑣𝑛

+ 𝑑 + 𝑠ℎ,

𝑁2

𝑛=1

𝑁1

𝑛=1

 (7) 

where 𝑐𝑛
′  are the residues of the known poles 𝑝𝑙 𝑛

 and 𝑐𝑛 

are the residues of the unknown poles 𝑝𝑣𝑛
. Equation (7) 

indicates that it is possible to assume that some poles of the 

rational approximation may be known. In ESF is assumed that 

frequencies of the harmonics and supraharmonics are known 

poles in the FD and that frequencies of the subharmonics or 

interharmonics are unknown poles in the FD. 

The VF algorithm works in two stages. First, it improves 

initial pole position iteratively. Second, it calculates the 

residues in a single step. 

    1)  Unknown poles identification step 

The goal in this step is to calculate the unknown poles for 

the rational approximation, which complete the set of poles for 

the fitting when added to the known poles. The initial pole set 

is defined as 𝑎𝑛  and is improved through an iterative 

procedure. On each iteration, (8) can be solved with known 

poles 𝑝𝑙𝑛
 and 𝑎𝑛 , where 𝜎(𝑠)  is an auxiliary weighting 

function (9) containing the same poles as in (8). 

𝜎(𝑠)𝐹(𝑠) ≅ 𝜎𝐹𝑓𝑖𝑡(𝑠) = 

∑
𝑐𝑛

′

𝑠 − 𝑝𝑙 𝑛

+ ∑
𝑐𝑛

𝑠 − 𝑎𝑛

+ 𝑑 + 𝑠ℎ.

𝑁2

𝑛=1

𝑁1

𝑛=1

 
(8) 

𝜎(𝑠) ≅ 𝜎𝑓𝑖𝑡(𝑠) = ∑
𝑐̃𝑛

′

𝑠 − 𝑝𝑙 𝑛

+ ∑
𝑐̃𝑛

𝑠 − 𝑎𝑛

+ 1,

𝑁2

𝑛=1

𝑁1

𝑛=1

 (9) 

with 𝜎𝐹𝑓𝑖𝑡(𝑠) being the fitting of 𝜎(𝑠)𝐹(𝑠)and 𝜎𝑓𝑖𝑡(𝑠) being 

the fitting of 𝜎(𝑠). Manipulating (8) results in, 

𝐹(𝑠) ≅
𝜎𝐹𝑓𝑖𝑡(𝑠)

𝜎(𝑠)
. (10) 

Substituting (8) and (9) into (10) returns, 

𝐹(𝑠) ≅ 

ℎ

[
∏(𝑠 − 𝑧𝑛

′ )
∏(𝑠 − 𝑝𝑙 𝑛

)
⁄ ] ∙ [

∏(𝑠 − 𝑧𝑛)
∏(𝑠 − 𝑎𝑛)⁄ ]

[
∏(𝑠 − 𝑧̃𝑛

′ )
∏(𝑠 − 𝑝𝑙 𝑛

)
⁄ ] ∙ [

∏(𝑠 − 𝑧̃𝑛)
∏(𝑠 − 𝑎𝑛)⁄ ]

, 
(11a) 

𝐹(𝑠) ≅ ℎ
∏(𝑠 − 𝑧𝑛

′ ) ∙ ∏(𝑠 − 𝑧𝑛)

∏(𝑠 − 𝑧̃𝑛
′ ) ∙ ∏(𝑠 − 𝑧̃𝑛)

. (11b) 

Equation (11b) clearly states that the zeros from 𝜎(𝑠) 

approximate the poles from 𝐹(𝑠). Furthermore, multiplying 

(9) by 𝐹(𝑠) results in, 

𝜎(𝑠)𝐹(𝑠) ≅ [∑
𝑐̃𝑛

′

𝑠 − 𝑝𝑙 𝑛

+ ∑
𝑐̃𝑛

𝑠 − 𝑎𝑛

+ 1

𝑁2

𝑛=1

𝑁1

𝑛=1

] 𝐹(𝑠). (12) 

Equating equations (8) and (12) yields, 

∑
𝑐𝑛

′

𝑠 − 𝑝𝑙𝑛

+ ∑
𝑐𝑛

𝑠 − 𝑎𝑛

+ 𝑑 + 𝑠ℎ

𝑁2

𝑛=1

𝑁1

𝑛=1

= 

[∑
𝑐̃𝑛

′

𝑠 − 𝑝𝑙 𝑛

+ ∑
𝑐̃𝑛

𝑠 − 𝑎𝑛

+ 1

𝑁2

𝑛=1

𝑁1

𝑛=1

] 𝐹(𝑠). 

(13) 

Algebraic manipulation in (13) returns, 

∑
𝑐𝑛

′

𝑠 − 𝑝𝑙 𝑛

+ ∑
𝑐𝑛

𝑠 − 𝑎𝑛

+ 𝑑 + 𝑠ℎ

𝑁2

𝑛=1

𝑁1

𝑛=1

− 

∑
𝑐̃𝑛

′ 𝐹(𝑠)

𝑠 − 𝑝𝑙𝑛

− ∑
𝑐̃𝑛𝐹(𝑠)

𝑠 − 𝑎𝑛

𝑁2

𝑛=1

𝑁1

𝑛=1

= 𝐹(𝑠). 

(14) 

Equation (14) can now be formulated as a LS problem, Ax 

= b. Frequently, the sample size of the frequency response 𝑘 

is greater than the number of coefficients to be calculated, so 

an overdetermined system is obtained: 

 

 



𝐀𝑘 = 

[
1

𝑠𝑘 − 𝑝𝑙1

 ⋯ 
1

𝑠𝑘 − 𝑝𝑙 𝑁1

   
1

𝑠𝑘 − 𝑎1

 ⋯ 
1

𝑠𝑘 − 𝑎𝑁2

   1    𝑠𝑘    

−
𝐹(𝑠𝑘)

𝑠𝑘 − 𝑝𝑙1

 ⋯ −
𝐹(𝑠𝑘)

𝑠𝑘 − 𝑝𝑙 𝑁1

   −
𝐹(𝑠𝑘)

𝑠𝑘 − 𝑎1

 ⋯ 

−
𝐹(𝑠𝑘)

𝑠𝑘 − 𝑎𝑁2

]. 

(15a) 

𝐱 = 

[𝑐1
′  ⋯ 𝑐𝑁1

′    𝑐1  ⋯ 𝑐𝑁2
   𝑑    ℎ   𝑐̃1

′  ⋯ 𝑐̃𝑁1
′    𝑐̃1  ⋯ 𝑐̃𝑁2

]
𝑇

. 
(15b) 

𝐛 = [𝐹(𝑠1)   ⋯    𝐹(𝑠𝑘)]𝑇 . (15c) 

The LS solution of (15) delivers the residues of 𝜎𝑓𝑖𝑡(𝑠); the 

zeros of this function are the poles 𝑎𝑛 for the next iteration, 

which correspond to the eigenvalues of [14], 

𝐇 = 𝐆 − 𝐤𝒄̃𝑻, (16) 

where 𝐆 is a diagonal matrix with the poles and 𝐤 is a unit 

column vector. 

    2)  Residue identification step 

Once the unknown poles 𝑝𝑣𝑛
 for the rational 

approximation in (7) have been calculated, the residues can be 

found by solving (7) as a LS problem.  

C.  Extended spectral fitting (ESF) approach 

Let's begin by considering a power electrical signal defined 

by, 

𝑓(𝑡) ≅ [𝜓 + ∑ 𝐴𝐻𝑛
cos(𝑛𝜔0𝑡 + 𝜃𝐻𝑛

)

𝑁1

𝑛=1

] + 

[∑ 𝐴𝐼𝑛
𝑒𝛼𝐼𝑛𝑡cos(𝜔𝑛𝑡 + 𝜃𝐼𝑛

) + ∑ 𝐴𝑅𝑛
𝑒𝛼𝑅𝑛𝑡

𝑁𝑟

𝑛=1

𝑁𝑐

𝑛=1

]. 

(17) 

The first square bracket of (17) is the compact 

representation of the Fourier series for 𝑁1  harmonics or 

supraharmonics with fundamental frequency of 𝜔0 = 2𝜋𝑓𝑜 

and where 𝐴𝐻𝑛
 is the amplitude and 𝜃𝐻𝑛

 is the phase for the 

nth component; and where 𝜓 represents the DC offset. 

 Otherwise, the second square bracket of (17) considers 𝑁𝑐 

subharmonics or interharmonics with a frequency of 𝜔𝑛 =

2𝜋𝑓𝑛  and a damping factor of 𝛼𝐼𝑛
, where 𝐴𝐼𝑛

 is the 

amplitude and 𝜃𝐼𝑛
 is the phase for the nth component; it also 

considers 𝑁𝑟 exponential functions of amplitude 𝐴𝑅𝑛
 with a 

damping factor of 𝛼𝑅𝑛
. It is assumed that 𝑁2 = 𝑁𝑐 + 𝑁𝑟.  

The Laplace transform 𝐹(𝑠) of (17) can be expressed as 

[10, 11], 

𝐹(𝑠) ≅ [
𝜓

𝑠
+ ∑ (

0.5𝐴𝐻𝑛
𝑒𝑗𝜃𝐻𝑛

𝑠 − 𝑗𝑛𝜔0

+
0.5𝐴𝐻𝑛

𝑒−𝑗𝜃𝐻𝑛

𝑠 + 𝑗𝑛𝜔0

)

𝑁1

𝑛=1

] 

+ [∑ (
0.5𝐴𝐼𝑛

𝑒𝑗𝜃𝐼𝑛

𝑠 − 𝛼𝐼𝑛
− 𝑗𝜔𝑛

+
0.5𝐴𝐼𝑛

𝑒−𝑗𝜃𝐼𝑛

𝑠 − 𝛼𝐼𝑛
+ 𝑗𝜔𝑛

)

𝑁𝑐

𝑛=1

+ ∑
𝐴𝑅𝑛

𝑠 − 𝛼𝑅𝑛

𝑁𝑟

𝑛=1

]. 

(18) 

The use of (18) is inconvenient because in the LS 

implementation of VF, and even in other rational 

approximation methods [15], a pole in the origin is not 

considered. However, this drawback can be overcome; an 

artificially damped function in the time domain (TD) (20) and 

a rational frequency-shifting response in the FD (21) are 

obtained by applying the frequency-shifting property (19) [11] 

to (17) and (18). 

𝑓(𝑡)𝑒𝜆𝑡 = 𝐹(𝑠 − 𝜆). (19) 

𝑓(𝑡) ≅ ([𝜓 + ∑ 𝐴𝐻𝑛
cos(𝑛𝜔0𝑡 + 𝜃𝐻𝑛

)

𝑁1

𝑛=1

]

+ [∑ 𝐴𝐼𝑛
𝑒𝛼𝐼𝑛𝑡cos(𝜔𝑛𝑡 + 𝜃𝐼𝑛

)

𝑁𝑐

𝑛=1

+ ∑ 𝐴𝑅𝑛
𝑒𝛼𝑅𝑛𝑡

𝑁𝑟

𝑛=1

]) 𝑒𝜆𝑡 . 

(20) 

𝐹(𝑠 − 𝜆) ≅ 

[
𝜓

𝑠 − 𝜆
+ ∑ (

0.5𝐴𝐻𝑛
𝑒𝑗𝜃𝐻𝑛

𝑠 − 𝜆 − 𝑗𝑛𝜔0

+
0.5𝐴𝐻𝑛

𝑒−𝑗𝜃𝐻𝑛

𝑠 − 𝜆 + 𝑗𝑛𝜔0

)

𝑁1

𝑛=1

] 

+ [∑ (
0.5𝐴𝐼𝑛

𝑒𝑗𝜃𝐼𝑛

𝑠 − 𝜆 − 𝛼𝐼𝑛
− 𝑗𝜔𝑛

+
0.5𝐴𝐼𝑛

𝑒−𝑗𝜃𝐼𝑛

𝑠 − 𝜆 − 𝛼𝐼𝑛
+ 𝑗𝜔𝑛

)

𝑁𝑐

𝑛=1

+ ∑
𝐴𝑅𝑛

𝑠 − 𝜆 − 𝛼𝑅𝑛

𝑁𝑟

𝑛=1

]. 

(21) 

Through the artificial damping function 𝑒𝜆𝑡, it is possible 

to dissipate the DC offset, 𝜓, which becomes a residue of a 

simple pole with known frequency, 𝜆 . The parameter 

identification of (20) can be done in the FD by using the EVF 

algorithm presented in the previous section once the image of 

𝑓(𝑡) is numerically calculated through (3) or (4).  

The first square bracket in (21) represents a function with 

known poles; a simple pole for the direct component 𝜓 and 

𝑁1 conjugate complex poles with known frequencies for the 

harmonics or supraharmonics. And, the second square bracket 

of (21) represents a function with unknown conjugate complex 

poles for the subharmonics or interharmonics with or without 

damping and, possibly, simple real poles representing 

decreasing exponential functions in TD. The parameter 

identification of (17) can be now calculated. EVF delivers a 

function in pole-residue form with real poles and residues and 

with conjugate complex poles and residues as, 

𝐹(𝑠) ≅ 

[
𝑟𝐻

𝑠 − 𝑝𝐻 𝑛

+ ∑ (
𝛾𝐻𝑛

+ 𝑗𝜂𝐻𝑛

𝑠 − 𝛿𝐻𝑛
− 𝑗𝛽𝐻𝑛

+
𝛾𝐻𝑛

− 𝑗𝜂𝐻𝑛

𝑠 − 𝛿𝐻𝑛
+ 𝑗𝛽𝐻𝑛

)

𝑁1

𝑛=1

]

+ [∑ (
𝛾𝐼𝑛

+ 𝑗𝜂𝐼𝑛

𝑠 − 𝛿𝐼𝑛
− 𝑗𝛽𝐼𝑛

𝑁𝑐

𝑛=1

+
𝛾𝐼𝑛

− 𝑗𝜂𝐼𝑛

𝑠 − 𝛿𝐼𝑛
+ 𝑗𝛽𝐼𝑛

) + ∑
𝑟𝐼𝑛

𝑠 − 𝑝𝐼𝑛

𝑁𝑟

𝑛=1

]. 

(22) 



Finally, the DC offset, amplitude, and phase of each 

harmonic or supraharmonic using the first square bracket in 

(21) and (22) are 

𝜆 = 𝑝𝐻 𝑛
= 𝛿𝐻𝑛

;    𝜓 ≅ 𝑟𝐻;    𝑛𝜔0 = 𝑛2𝜋𝑓0 = 𝛽𝐻𝑛
; 

 
𝐴𝐻𝑛

2
𝑒𝑗𝜃𝐻𝑛 ≅ 𝛾𝐻𝑛

+ 𝑗𝜂𝐻𝑛
. 

(23) 

For subharmonics or interharmonics with or without 

damping and damped exponential functions by using the 

second square bracket in (21) and (22), they are 

𝜔𝑛 = 2𝜋𝑓𝑛 ≅ 𝛽𝐼𝑛
;    

𝐴𝐼𝑛

2
𝑒𝑗𝜃𝐼𝑛 ≅ 𝛾𝐼𝑛

+ 𝑗𝜂𝐼𝑛
; 

 𝛼𝐼𝑛
≅ 𝛿𝐼𝑛

− 𝜆;   𝐴𝑅𝑛
≅ 𝑟𝐼𝑛

;    𝛼𝑅𝑛
≅ 𝑝𝑛 − 𝜆.  

(24) 

III.  TEST CASES 

A.  Synthetic test signals 

    1)  Full-wave rectified sinusoidal signal 

In this example, the NLT accuracy is evaluated using a 

synthetic signal and its analytical Laplace transform; the 

harmonics are then calculated using the ESF methodology and 

compared to those calculated analytically. The synthetic test 

signal is a full-wave rectified sinusoidal signal, 

𝑓(𝑡) = |sin(𝜔0𝑡)|, (25) 

where 𝜔0 = 2𝜋𝑓0  rad/s, 𝑓0 = 50  Hz, 𝑇0 = 1 𝑓0⁄ = 0.02 s, 

and considering the absolute value, the new period is 𝑇 =
1 (2𝑓0) =⁄ 0.01 s. The analytic Laplace transform of (25) is, 

ℒ[𝑓(𝑡)] =
1

1 − 𝑒−𝑇𝑠
[
𝜔0 − 𝜔0𝑒−(𝑠+𝑗𝜔0)𝑇

𝑠2 + 𝜔0
2

]. (26) 

On the other hand, coefficients 𝑎0 , 𝑎𝑛  and 𝑏𝑛  for the 

trigonometric Fourier series of (25) are 

𝑎0 =
1

𝑇𝜔0

[− cos(𝜔0𝑇) + 1] ≈ 0.6366, (27) 

𝑎𝑛 =  
2

𝑇
[
cos(𝑇𝜔0) cos(2𝑇𝑛𝜔0)

𝜔0(4𝑛2 − 1)

+
2𝑛 sin(2𝑇𝑛𝜔0) sin(𝑇𝜔0) − 1

𝜔0(4𝑛2 − 1)
] ,  𝜔0 ≠ 0, 

(28) 

𝑏𝑛 =
1

𝑇
[
sin(𝑇𝜔0(2𝑛 − 1))

𝜔0(2𝑛 − 1)

−
sin(𝑇𝜔0(2𝑛 + 1))

𝜔0(2𝑛 + 1)
] ,   𝜔0 ≠ 0, 

(29) 

and the coefficients 𝑐0 , 𝑐𝑛  and 𝜃𝑛  for the compact 

Fourier series (31) of (25) are 

𝑐0 = 𝑎0;   𝑐𝑛 = √(𝑎𝑛)2 + (𝑏𝑛)2;    𝜃𝑛 = tan−1 [
−𝑏𝑛

𝑎𝑛

] (30) 

𝑓(𝑡) = 𝑐0 + ∑ 𝑐𝑛cos (2𝑛𝜔0𝑡 + 𝜃𝑛)

𝑁

𝑛=1

 (31) 

Fig. 1a shows the full-wave rectified sinusoidal signal with 

a 𝑇𝑜𝑏𝑠 = 0.06 s and with ∆𝑡 = 100 𝜇s. The NLT of this data 

set using odd sampling (4) is presented in Fig. 1b together 

with the analytic Laplace transform and its respective 

deviation. Note that these parameters give a maximum 

frequency of 100 kHz in NLT implementation. This result 

shows that the NLT approximation of the analytical Laplace 

transform is very accurate. 

The rational approximation of the NLT through EVF and 

its fitting deviation is shown in Fig. 1c for up to 25 harmonics; 

therefore, 𝑁1 = 50 poles with a cutoff frequency of 1250 Hz. 

In this example only harmonics are calculated, so only the first 

square bracket in (22) is considered. Once the rational 

approximation (22) is complete, DC offset and harmonics are 

calculated using (23). 

Approximation of the synthetic signal by means of the 

compact Fourier series and the ESF method and its absolute 

error is presented in Figs. 1a and 2a, respectively. Finally, 

both amplitude spectrums are presented in Figs. 2b and 2c. 

The DC offset, amplitudes, and phases calculated using the 

compact Fourier series and the ESF are shown in Table I for 

the first 5 harmonics. The results show high accuracy in 

harmonics calculation using the proposed method. 

 
TABLE I 

DC OFFSET, AMPLITUDES AND PHASES OF THE FIRST 5 HARMONICS 

CALCULATED BY USING THE COMPACT FOURIER SERIES AND THE ESF 

APPROACH FOR 𝑁1 = 50. 

 
Compact Fourier 

series 
ESF approach 

n 𝑐𝑛 𝜃𝑛 𝑐𝑛 𝜃𝑛 

 [ º ]  [ º ] 

0 0.6366 - 0.6366 - 

1 0.4244 180 0.4243  179.99 

2 0.0849 180 0.0848 -179.99 

3 0.0364 180 0.0363  179.99 

4 0.0202 180 0.0201 -179.99 

5 0.0129 180 0.0128  179.99 

 

 

 

 
Fig. 1. (a) Full-wave rectified sinusoidal signal and its approximations, (b) analytic Laplace transform, NLT and its deviation, (c) NLT and fitting deviation. 
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Fig. 2. (a) Absolute approximation error using the ESF and the compact Fourier series. Amplitude spectrum of the synthetic signal calculated by using (b) 

the compact Fourier series and, (c) the ESF approach. 

 

 

    2)  Full-wave rectified sinusoidal signal plus subharmonics, 

interharmonics and a DC offset.  

The proposed methodology is then evaluated using the full-

wave rectified sinusoidal signal (25) to which two 

subharmonics, four interharmonics, an exponential function, 

and a DC offset are added, 

𝑓(𝑡) = |sin(𝜔0𝑡)| + 

0.5𝑒−50𝑡cos(2𝜋75𝑡 + 60°) +  

0.8𝑒−75𝑡cos(2𝜋90𝑡 − 45°) + 

0.2𝑒−12𝑡cos(2𝜋125𝑡 + 90°) + 

0.2𝑒−12𝑡cos(2𝜋225𝑡 − 60°) + 

0.7𝑒−10𝑡cos(2𝜋5025𝑡 + 0°) + 

0.6𝑒−45𝑡cos(2𝜋7010𝑡 − 70°) + 

0.3𝑒−68𝑡 + 1. 

(32) 

The behavior of this synthetic test signal (32) is shown in 

Fig. 3a with a 𝑇𝑜𝑏𝑠 = 0.06 s and with ∆𝑡 = 100 𝜇s. The 

NLT of the test signal is presented in Fig. 3b together with the 

fitting deviation using the EVF up to 100 harmonics, which is 

in the supraharmonic range. Therefore, 𝑁1 = 200 poles in 

(22), resulting in a 10 kHz cutoff frequency. And for 𝑁2, 20 

poles are used. These 20 poles freely fitted in frequency, 

amplitude, damping, and phase. Once the approximation (22) 

is complete, the DC offset, amplitude, and phase of each 

harmonic or supraharmonic are calculated through (23); and 

through (24) for the subharmonics or interharmonics. 

The ESF’s synthetic signal approximation is presented 

separately in Fig. 3c, first for the sinusoidal rectified signal 

and the DC offset and then for the subharmonics and 

interharmonics; their absolute errors are presented in Fig. 4a. 

The complete synthetic signal approximation is presented in 

Fig. 3a and its absolute error in 4b. The amplitude spectrum is 

presented in Fig. 4c and the DC offset, amplitudes, and phases 

of the harmonics calculated by using the compact Fourier 

series and ESF are shown in Table 2 for the first 5 harmonics. 

The parameters calculated by the ESF approach for 𝑁2 =
20 are presented in Table 3. With these 20 poles, EVF 

converges to 2 real poles and 18 complex poles, returning 2 

exponential functions and 9 sinusoidal functions in TD.  

 

 

 

To discard those components spurious to the 

approximation, a relative dominant pole measurement 

(RDPM) |𝑐𝑛|/|𝑝𝑛| is used [10]. This concept weights the 

position of the pole with respect to the residue size in the 

corresponding 𝐹(𝑠). Note that components 7, 8, 9, and 11 in 

Table 3 can be discarded by using this concept. By comparing 

(23) with the data in Table 3, the overall results show that the 

approximation is virtually the same. 
TABLE II 

DC OFFSET, AMPLITUDES, AND PHASES OF THE FIRST 5 HARMONICS 

CALCULATED BY USING THE COMPACT FOURIER SERIES AND THE ESF 

APPROACH FOR 𝑁1 = 200. 

 Compact Fourier 

series 
ESF approach 

n 𝑐𝑛 𝜃𝑛 𝑐𝑛 𝜃𝑛 

 [º]  [º] 

0 1.6366 - 1.6367 - 

1 0.4244 180 0.4271 -179.96 

2 0.0849 180 0.0849  179.99 

3 0.0364 180 0.0364  179.99 

4 0.0202 180 0.0202  179.99 

5 0.0129 180 0.0129  179.99 

 
TABLE III 

AMPLITUDE, DAMPING, FREQUENCY, AND PHASE OF EACH COMPONENT 

CALCULATED BY THE ESF APPROACH FOR 𝑁2 = 20. 

 ESF approach 

n 𝐴𝐼𝑛
 𝛼𝐼𝑛

 𝑓𝑛 𝜃𝐼𝑛
 RDPM 

  [Hz] [º]  

1 0.5009 49.71 75.04  59.05 0.75 

2 0.7938 75.35 90.19 -45.04 1.00 

3 0.1999 11.95 124.99  90.10 0.18 

4 0.2000 12.00 225.00 -60.00 0.10 

5 0.6942 10.00 5025.00 -0.00 0.01 

6 0.5904 44.99 7010.00 -70.00 0.01 

7 4.8e-5 181.27 10082.50 -126.40 5e-7 

8 3.0e-4 2.4e3 10416.01 -142.51 3e-6 

9 0.0013 1.2e4 12853.98 -167.81 1e-5 

10 0.3001 68.11 - - 1.00 

11 0.0004 1.3e5 - - 0.00 
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Fig. 3. (a) Synthetic test signal and its approximation, (b) NLT and fitting deviation, (c) rectified sinusoidal signal, added components and their 

approximations. 

 
Fig. 4. (a) Absolute approximation error for the sinusoidal rectified signal and the DC offset and for added components, (b) absolute error for the complete 

approximation, (c) amplitude spectrum. 

 

B.  AC-DC-AC Converter 

In this example, an AC-DC-AC converter model of 

Simulink is used to demonstrate the scope of the proposed 

methodology [16]. The test system, consisting of a 25 kV, 60 

Hz voltage source which feeds a 50 kW, 50 Hz load through 

an AC-DC-AC converter, is shown in Fig. 5. The converter 

first uses a six-pulse diode bridge and then an IGBT two-level 

inverter to generate 50 Hz of voltage with the pulse width 

modulation (PWM) at a 2 kHz carrier frequency. 

Note that the system is composed of three nodes: grid node, 

inverter node, and load node. The current at the grid node and 

its ESF approximation is presented in Fig. 6a for 100 

harmonics, which uses 𝑁1 = 200 and 𝑁2 = 30 poles. The 

NLT of the signal is presented in Fig. 6b, which also shows 

the fitting deviation using the EVF up to 100 harmonics, 5 

kHz. 

 

From this point on, the subharmonics and interharmonics 

calculation are grouped as transient state; and the DC offset, 

the fundamental component, and harmonics as steady state. 

These results are shown in Fig. 6c with their respective scales.  

Similarly, the results for the voltage in the inverter node are 

shown from Fig. 7a to Fig. 7c with 𝑁1 = 2 and 𝑁2 = 1 

poles, so the cutoff frequency is 50 Hz. 

Moreover, the results for the voltage in the inverter node 

with 𝑁1 = 2000 and 𝑁2 = 20 poles are shown from Fig. 8a 

to Fig. 8c; which are 1000 harmonics. Additionally, the 

absolute error for the approximation is presented in Fig. 9a 

and amplitude spectrum and phase spectrum in Figs. 9b and 

9c, respectively. It can be highlighted how harmonics occur in 

multiples of the inverter switching frequency. 

 These results validate a good performance of the ESF 

approach for a wide frequency range.  

 

 
Fig. 5. AC-DC-AC Converter test system. 
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Fig. 6. (a) Current at the grid node and its approximation, (b) NLT and fitting deviation, (c) transient and steady state responses calculated by ESF. 

 

Fig. 7. (a) Voltage at the inverter node and its approximation, (b) NLT and fitting deviation, (c) transient and steady state responses calculated by ESF. 

 

Fig. 8. (a) Voltage at the inverter node and its approximation, (b) NLT and fitting deviation, (c) transient and steady state responses calculated by ESF. 

 

Fig. 9. (a) Absolute error for the voltage approximation at the inverter node, (b) amplitude spectrum for 1000 harmonics, (c) phase spectrum. 
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IV.  CONCLUSIONS 

The ESF approach was presented for the calculation of 

subharmonics, harmonics, interharmonics, supraharmonics, 

and DC offset in electrical systems. This methodology is a 

combination of the NLT and a novel modification of the VF, 

which the authors have denominated extended vector fitting 

(EVF). The main findings are as follows: 

1) The EVF method assumes that some rational 

approximation poles are known, and others are 

unknown. This work presents one implementation of 

this feature; however, it could be used in other 

applications. 

2) The ESF methodology is able to simultaneously 

calculate the amplitude and phase of each harmonic or 

supraharmonic; the amplitude, damping, frequency, 

and phase of each subharmonic or interharmonic; and 

the DC offset contained in a signal. 

3) Parameter identification is calculated with high 

accuracy due to the error level achieved by both the 

NLT and the EVF. 

4) The methodology can be used to obtain the phase of 

the fundamental component regardless of whether it 

has content of harmonics and interharmonics. 

5) The results of the examples validate a good 

performance of the ESF approach for a wide frequency 

range. 

6) Components spurious to rational approximation can be 

discarded by the RDPM.  
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