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Abstract--An accurate representation of the transformer 

saturation curve is essential for calculations of low frequency 

transients (inrush current, ferroresonance, load rejection) and 

steady states (power quality problems, harmonics and 

subharmonics). This paper presents an original extraction 

methodology for determining the transformer saturation curve 

from the measured ferroresonant current and voltage 

waveforms. The proposed method is based on the formulation of 

a novel multiobjective function, using current and voltage 

obtained from the measurement. The proposed simulation-

optimization method is based on the Backward Differentiation 

Method for solving the very stiff differential equation system that 

describes the ferroresonance as well as the Nelder-Mead 

optimization method used to minimize the proposed 

multiobjective function. Five functions are proposed for 

approximating the saturation curve. The best ferroresonance 

simulation results are obtained with the inverse extended Frolich 

function. The validity of the proposed methodology has been 

confirmed by a very good agreement between the measured and 

simulated results of the ferroresonant current and voltage under 

different ferroresonance scenarios (three different values of 

series capacitances). 

Keywords: Saturation curve, ferroresonance, Backward 

Differentiation Method, Ordinary Differential Equation System, 

Nelder-Mead optimization method, transformer modelling.  

I. INTRODUCTION

IGH–FIDELITY modelling of transformer saturation

curve is an essential subject in simulations of low-

frequency electromagnetic transients (ferroresonance, inrush 

current, geomagnetic-induced currents) and simulations of 

steady-states (harmonics, power quality).Piece-wise saturation 

curve magnetizing currentflux linkage (im) is usually 

obtained by conversion from the RMS current-voltage curve 

(IRMSURMS) using the procedures shown in [1]-[3]. The RMS 

curve is provided by the manufacturer or obtained by 

measurements. However, the standard no-load test given by 

the manufacturer is usually limited to only a few points i.e. the 

iron core is not driven into deep saturation and may lead to 

significant errors in simulations of the ferroresonance. In 

addition, measurements of the saturation curve are limited as 
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they can sometimes lead to overheating of the windings and 

core, as well as excessive stress of the transformer insulation. 

Based on the above, it can be stated that there is still a need for 

correct modelling of the transformer saturation curve, which is 

the dominant subject of this paper. 

The extraction of the saturation curve is mainly obtained 

from the inrush current test. In paper [4] only the first inrush 

current peak is used for the estimation procedure and in paper 

[5] several cycles of the inrush current are used. A very

simplified analytical method for the conversion of the current-

time curve into the current-flux curve, based on signal samples

idealization of the peak inrush current, was proposed in paper

[6]. In paper [7], the parameters of the saturation curve are

obtained by the direct method from the waveforms of the no-

load and inrush currents. The problem is that in these works

the developed transformer model is tested only for one

scenario of inrush current. In papers [8]-[10], some

optimization methods are presented for estimating the linear

parameters of the transformer, which ignore the nonlinear

character of the saturation curve, so that they are not at all

suitable for simulations of the ferroresonance.

In ferroresonance simulations, the transformer nonlinear

saturation curve is predominantly represented by piece-wise

linear regions [11] or by polynomial functions (two or three

terms) [12]-[16]. When representing the saturation curve by

two-terms polynomials, it is very important to obtain the

correct values for the polynomial coefficients.

The nonlinear saturation curve of the transformer can be 

determined from ferroresonance measurements, however, as 

far as the authors are aware, there are no papers demonstrating 

that. This is because, in the case of a single-phase transformer 

series ferroresonance with a sufficiently large capacitance 

value, large current values are achieved, so that the 

transformer is drawn into deep saturation. During single-phase 

ferroresonance, two time-dependent variables can be measured 

directly: ferroresonant current and voltage, while during 

transformer energization, only the inrush current can be 

measured. The simultaneous extraction of the saturation curve 

from two state variables is mathematically more correct than 

the extraction from only one variable (transformer current).  

The focus of this work is to develop an algorithm 

(methodology) for parameter extraction of the saturation curve 

of a single-phase transformer using simultaneously measured 

ferroresonant current and voltage waveforms. The modelling 

and simulation of the ferroresonance is based on the solution 

of the system of ordinary differential equations (ODE), using a 
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suitable Backward Differentiation Method (BDF) [17]. 

Parallel to solving the ODE system, the extraction of 

saturation curve parameters is achieved using the heuristic 

NelderMead method to optimize the proposed original 

multiobjective function that incorporates ferroresonant current 

and voltage waveforms. To validate the proposed 

methodology, a comparison is made between the simulation 

and measurement results for different modes of 

ferroresonance.  

The rest of this paper is structured as follows. Section II 

presents the modelling, simulation and optimization procedure 

in a single-phase serial ferroresonant circuit. Section III 

presents the application of the proposed methodology for 

extraction of transformer saturation curve. Section IV 

demonstrates the validation of the obtained optimization 

results. Finally, Section V concludes the paper. 

II.  FERRORESONANT CIRCUIT MODELLING, SIMULATION AND 

OPTIMIZATION 

Ferroresonance is a well-known nonlinear dynamic 

phenomenon that occurs in electrical systems containing an 

iron core inductor and capacitor excited by an arbitrary supply 

source voltage. It represents an oscillating energy exchange 

between iron core inductors (magnetic field energy) and 

capacitors (electric field energy). Ferroresonace leads to the 

occurrence of distorted overvoltages and overcurrents in a 

system, which can be harmful to the system components. This 

phenomenon leads to one of the following four modes: (a) 

fundamental mode, (b) subharmonic mode, (c) 

pseudoharmonic mode and (c) chaotic mode [12]. 

The model shown in Figure 1 is the most common 

representation of a serial ferroresonant circuit. The linear 

elements of the single-phase two-winding transformer model 

are: Rp, Rs primary and secondary winding resistance, Lp, Ls 

primary and secondary winding inductance, Rm core loss 

resistance, Lm represents the non-linear inductance of the iron 

core of the transformer. All linear elements mentioned are 

obtained by standard short-circuit and no-load tests. 

Figure 1 also shows the following parameters: e(t) source 

voltage, C series capacitor, i(t) transformer ferroresonant 

current, u(t) transformer ferroresonant voltage, im magnetizing 

current,  magnetic flux, and Np : Ns transformer turns ratio. 

 

 
Fig. 1.  Ferroresonant circuit model 

 

In the previous part of the text, it was already pointed out 

that the non-linear saturation curve can be modelled by 

piecewise linear regions. However, due to the above-

mentioned limitations in laboratory measurements, it remains 

questionable to determine the last linear region (the last slope) 

in deep saturation.  

On the other hand, problems of overshooting and non-

differentiability of the proposed functions could arise when 

representing the saturation curve by piecewise linear regions 

[18]-[19]. 

The mentioned problems are eliminated by modelling the 

saturation curve using nonlinear analytical functions. One of 

the main goals of this work is the parameter extraction and 

comparative analysis of some representative analytical 

functions that model the nonlinear transformer saturation 

curve in ferroresonance analyses. 

A.  State-Space Equation for Ferroresonant Circuit 

The following nonlinear state-space equation describing the 

transformer transient during a serial ferroresonance analysis is 

developed in the following form: 
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where state vector  T
 iuX C and system matrix: 
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In equation (1),the unknown parameters in the analytical 

function that models the nonlinear saturation curve is defined 

by the vector   n

n R
T

21 ... . 

The numerical properties (stiffness ratios and stiffness 

indexes) of the differential equation systems describing the 

low-frequency transformer transients such as serial 

ferroresonance and inrush currents show that these equations 

represent very stiff equation systems [20]-[21]. It is not 

possible to solve them by applying classical explicit numerical 

methods. Therefore, it is necessary to apply implicit numerical 

methods, which are characterized by special properties in 

terms of numerical accuracy and numerical stability. 

For solving equation (2), a multistep BDF method of order 

p is proposed: 
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The equation (3) is solved by Newton-Raphson method: 
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where k = 1,2,... is a number of integration steps of the BDF 

ODE method of order p, while l = 1,2,... is a number of 

iterations of the Newton-Raphson method within each 

integration step. 

In the relation (4), the Jacobian 33 matrix as (E eye 33 

matrix) is obtained: 
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The particular value of the matrix G can be obtained by: 
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Considering the state-space equation (1), the following 

matrices are obtained that describe the solution of the 

ferroresonant system are obtained: 
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It should be noted that for solving the state-space equation (1) 

it is most convenient to use the BDF method of order 2, since 

this method has the special features of accuracy (second order 

method) and stability (A and L stable method) [22]-[23].  

B. Application of NelderMead optimization method 

for extraction of saturation curve 

As it can see from Figure 1, the basic observed quantities 

are the ferroresonant current (i) and the ferroresonant 

transformer voltage (u). These two quantities have different 

units and represent completely different waveforms, i.e. they 

have different peak values and corresponding harmonic 

content. 

Due to the different range of the state variables (i) and (u), it is 

necessary to formulate a special multiobjective function 

suitable for the qualitative extraction of the transformer 

saturation curve parameters. 

In this context, this paper proposes individual objective 

functions related to the ferroresonant current and voltage: 
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where Euclidean 2norms are: 
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Finally, it is suggested multiobjective objective function as 

arithmetic mean of these scaled individual functions: 
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The individual objective functions f1 and f2 are normalized 

by their corresponding values of the Euclidean 2 - norm. This 

ensures a balance in the contribution of the individual 

objective functions. The minimization of this function with 

respect to the vector  gives the corresponding parameters of 

the analytical function used to model the transformer 

saturation curve.  

To find the minimum value of the proposed multiobjective 

function F(), the Nelder–Mead optimization method [24] is 

recommended in this paper. The NelderMead method is a 

heuristic optimization technique commonly used to determine 

the minimum of a multiobjective function F(), Rn in n-

dimensional vector space. This method represents a nun 

constrained direct search method which relies on the 

geometrical construction of a specially defined convex 

simplex (S) of n+1 vertices, for an n dimensional problem. 

This method, through a particularly defined strategy, 

iteratively replaces its vertices for new ones with lower values 

of the objective function. During each iteration, the method 

always starts by calculating a reflected point of the worst point 

by defining the centroid point. Using this value, NelderMead 

algorithm performs special operations: (a) reflection or 

extension, (b) contraction or shrink to generate a new simplex 

(S). The objective function values at each vertex evaluates in 

each iteration and the worst vertex with the highest value will 

be replaced by another vertex which has just been found. 

Otherwise, the simplex (S) will be shrunk around the best 

determined vertex. The reduction of the simplex (S) leads to 

convergence of the method (of all simplex points) towards the 

final optimal solution. Details of the properties of 

NelderMead optimization method (derivation, convergence, 

implementation) are presented in the references [24]-[26]. The 

main advantage of this method is its independence from the 

gradient of the objective function or any approximation. This 

means that it is applicable to non-differentiable (non-smooth 

or discontinuous at certain points) functions or to cases where 

the gradient of the objective function is unknown. These 

properties make it more efficient and robust compared to the 

traditional optimization methods [24], [26], [28]. 

It should be noted that there are other optimization methods 

suitable for electromagnetic transient problems. In this regard, 

the Kriging method [27], Levenberg-Marquardt algorithm, 

trust-region method, conjugate gradient method and quasi 

Newton method [24] can be singled out. Each of the 

mentioned methods has its own advantages and disadvantages, 

depending on the specific problem being analyzed. Thus, for 

example, the paper [27] presents the application of the Kriging 

method to the design of the automatic reactive power regulator 
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controller of a STATCOM.   

The initial vector of the proposed optimization method is 

particularly important, and the procedure for its calculation is 

presented in the next part of the paper. The initial vector of the 

optimization method 0 is calculated by using the non-linear 

least squares method (NLSM) with the proposed analytical 

function im = im(, ), for the single valued curve: the measured 

ferroresonant current imeas.(t), vs. flux meas.(t), as the calculated 

integral of the measured ferroresonant voltage umeas.(t). Both 

quantities imeas.(t) and meas.(t) are defined in the time interval 

between the zero value of the ferroresonant current and the 

first peak of the ferroresonant current [tzero, tpeak] (marked in 

Figures 2 and 3). From measured ferroresonant voltage 

umeas.(t), using the trapezoidal method of integration with 

appropriate time step t, it was calculated the flux meas.(t): 
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The obtained tabulated values: measured current and 

calculated flux are: 
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where is: pmax = (tpeak – tzero)/t the total number of samples. 

 

Finally, NLSM is applied to the obtained data series ij, j,  

j = 1, 2, ... , jmax, using the appropriate analytical function  

i = i(, 0), 0 = [10, 20, ..., n0] 

T.   

III.  EXTRACTION OF SATURATION CURVES BY APPLICATIONS 

OF PROPOSED METHODOLOGY 

The proposed methodology for extraction of saturation 

curve will be applied to the serial (240/39 V) transformer 

ferroresonant circuit shown in Figure 1. The electrical system 

parameters are: 

 transformer rated power: 350 VA, 

 source voltage: e(t) = 345sin(t  89.05), 

 winding resistance: Rp = 3.10, 

 leakage inductance: Lp = 11.5 mH, 

 core-loss resistance: Rm = 4324, 

 serial capacitance: C = 10 F. 

To eliminate the impact of the transformer’s residual flux 

and the capacitor’s initial voltage, the transformer was 

demagnetized (rem  0) and the capacitor was completely 

discharged (uC0  0) before the breaker was switched-on. 

It should be noted that the maximum value of the capacitance 

Cmax. = 10 F was chosen, which ensures the entry of the 

transformer in deep saturation. On the other hand, Cmax. is the 

capacitance value at which the transformer and capacitor 

could still withstand the thermal and voltage stresses of the 

insulation when establishing very high ferroresonant 

overcurrent and overvoltage in the electric circuit. The 

measurement results of the transformer ferroresonant current 

and voltage waveforms, which represent the input data for the 

proposed extraction methodology are given in Figures 2 and 3. 

In addition, network voltage waveform e(t) is also known as 

input data. A good feature of the measured signals from 

Figures 2 and 3 is that in the observed windows of 0.2 s, a 

stationary state is reached, which enables better extraction of 

the approximation functions that will be used in this paper. 

The nonlinear analytical functions: three-term polynomial, 

two-term hyperbolic, three-term exponential, inverse extended 

Frolich, and five-term irrational (marked by: # l, l = 1, 2, ..., 5) 

shown in Table I, were taken for the representative functions. 

Due to space limitations, this paper presents the optimization 

results for only five (5) proposed analytic functions, although 

some others, less accurate analytic functions were also tested. 

For example: two-term polynomial, original Frolich function, 

logarithmic function, two-term exponential function etc. 
 

 
Fig. 2.  Measured transformer ferroresonant current, C = 10 F 

 

 
Fig. 3.  Measured transformer ferroresonant voltage, C = 10 F. 

 

Table II shows the results of the proposed optimization 

methodology for the representative analytical function. This 

Table shows the optimization results for scaled individual 

objective functions F1 and F2 as well as for the total 

multiobjective function F. 

Finally, Table III shows the results, according to the NLS 

method, of the calculated initial vector 0 as well as the results 

of the final vector final of unknown parameters that define the 

proposed nonlinear analytical saturation curves. 

According to the results shown in Table III, the following 

Figure 4 shows the transformer saturation curve optimization 

results, extracted by using the final multiobjective function F 

with the proposed NelderMead method. This Figure 

additionally shows the extrapolated piece-wise saturation 

curve obtained by converting the RMS curve from the 

standard no-load transformer test. It is clear that this piece-



wise curve has a high last slope, which makes it unsuitable for 

simulating ferroresonance with high values of currents and 

voltages (large values of serial capacitance C). 
 

TABLE I 

REPRESENTATIVE ANALYTICAL FUNCTIONS FOR EXTRACTION OF THE 

SATURATION CURVES ( MARKED BY 5,...,2,1,# ll ) 

Function No. Analytic function  Saturation curve 
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TABLE II 
RESULTS OF OPTIMIZATION FOR SCALED INDIVIDUAL OBJECTIVE FUNCTIONS 

AND TOTAL MULTIOBJECTIVE FUNCTION  
 

No. 
 

f1(final) f2(final) f(final) 

#1 1.4817 2.3273 1.9045 

#2 1.8497 3.0110 2.4303 

#3 1.4774 2.4809 1.9792 

#4 0.9472 1.5313 1.2393 

#5 1.2444 1.2385 1.2414 

 
TABLE III 

RESULTS OF OPTIMIZATION FOR SCALED INDIVIDUAL OBJECTIVE FUNCTIONS 

AND TOTAL MULTIOBJECTIVE FUNCTION  
 

No. 
 

Initial vector 0 Final solution final 

#1 



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It is clear from Table II that the best optimization results were 

achieved by three-term inverse Frolich extended function #4 

and five-term irrational function #5. Function #4 represents 

the dominant function for modeling the transformer saturation 

curve in the analyzed cases of ferroresonance (it achieves the 

convergence of the procedure much faster with the same range 

of accuracy). Function #5 has a very sharp transition from 

unsaturated to saturated linear region, which results in non-

smooth results of state variables (small power transformer). 
 

 
Fig. 4.  Extracted saturation curves by using NelderMead method:  

functions #l, l=1,2,...,5. RMS curve obtained from standard no-load test 

IV.  VALIDATION OF THE PROPOSED OPTIMIZATION 

METHODOLOGY 

The proposed optimization methodology for the extraction 

of a saturation curve was experimentally validated on the 

results of ferroresonance measurements at different values of 

serial capacitance C. 

The following Figures 5 and 6 show the results of the 

comparison between the measured and simulated transformer 

ferroresonant current and transformer ferroresonant voltage. 

Inverse extended Frolich function #4 was used to model the 

saturation curve. The simulations were performed by using the 

BDF numerical method of order two with the integration step 

of t = 50 s. In the mentioned Figures 5 and 6, by the value 

of C  10 F, the third subharmonic mode of ferroresonance 

with the basic oscillation period T  60 ms was established in 

the electric circuit. It is obvious from the mentioned figures 

that, since the optimization procedure was realized exactly 

refer to these measured waveforms of current and voltage, 

excellent results of matching of the measured and simulated 

quantities (ferroresonant current and voltage) were achieved. 

The obtained saturation curve by proposed optimization 

methodology was validated in the interpolation domain of 

smaller values of ferroresonant current and voltage (smaller 

values of serial capacitance C).  

In this regard, Figures 7 and 8 show the results of the 

comparison between the measured and simulated transformer 

ferroresonant current and transformer ferroresonant voltage 

for the capacitance value C  2.5 F. At the reduced value of 

the capacitance C  2.5 F, the fundamental mode of 

ferroresonance with the basic oscillation period T  20 ms was 

established in the electric circuit. 



 
Fig. 5.  Simulated vs. measured ferroresonant current, C = 10 F, 3th 

subharmonic mode of ferroresonance 

 

 
Fig. 6.  Simulated vs. measured ferroresonant voltage, C = 10 F, 3th 

subharmonic mode of ferroresonance 

 

 
Fig. 7.  Simulated vs. measured ferroresonant current, C = 2.5 F, 

fundamental mode of ferroresonance 

 

 
Fig. 8.  Simulated vs. measured ferroresonant voltage, C = 2.5 F, 

fundamental mode of ferroresonance 

 

Similarly, Figures 9 and 10 show the results of the comparison 

between the measured and simulated transformer 

ferroresonant current and transformer ferroresonant voltage 

for an even smaller capacitance value C  1.2 F. Analogous to 

the previous case, and at this value of capacitance C  1.2 F, 

the fundamental mode of ferroresonance with the basic 

oscillation period T  20 ms was established in the electric 

circuit. 
 

 
Fig. 9.  Simulated vs. measured ferroresonant current, C = 1.2 F, 

fundamental mode of ferroresonance 

 

 
Fig. 10.  Simulated vs. measured ferroresonant voltage, C = 1.2 F, 

fundamental mode of ferroresonance 

 

From Figures 2 to 10, it can be conclude that a very good 

match is achieved between the measured and simulated results 

of ferroresonance currents and voltages for all three different 

values of serial capacitance. Therefore, it is concluded that the 

achieved optimization results of saturation curve #4 are very 

good and can be used in simulations of a wide spectrum of 

ferroresonance, both in the domain of small values of 

capacitance C, where the fundamental mode of ferroresonance 

is established, as well as in the domain of large values of the 

capacitance C, where subharmonic mode of ferroresonance is 

established. 

V.  CONCLUSIONS 

This paper presents a novel methodology for parameter 

extraction of transformer saturation curve based on 

ferroresonant current and voltage measurements.  

A very stiff differential equation systems that models 

ferroresonance is solved using the L-stable Backward 

Differentiation Formula numerical method. 

To obtain the saturation curve, an original multiobjective 

function was proposed, which incorporates the balance 



between normalized individual objective functions related to 

ferroresonant current and ferroresonant voltage. To find 

minimum value of the proposed multiobjective function, the 

heuristic Nelder–Mead optimization method is recommended. 

Of the five proposed analytical functions used to model the 

saturation curve, the best results of the ferroresonance 

simulation were shown by the inverse extended Frolich 

function. The obtained simulation results, with the proposed 

saturation curve, for three different scenarios of 

ferroresonance, are validated by comparison against the 

corresponding measurements. 

The proposed methodology for extracting the saturation 

curve can be further applied in simulations of low-frequency 

electromagnetic transients. Future research will be focused on 

developing a methodology for extraction of the nonlinear 

saturation curves for  model of single-phase transformer and 

for three-phase transformers. 
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