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Abstract—Non-intrusive load monitoring is one of the key tools
in demand-side management (DSM). Recent advancements in the
computational power of processors have accentuated the role of
machine learning algorithms e.g., clustering, as a key function
in the NILM solutions applied on power grids. In event-based
NILM methods, the algorithm detects the transient states (load
events) and clusters them based on the similarity of different
features of the transient state. In this study, the performances of
eight clustering algorithms are comprehensively investigated and
the impact of choosing different input signals, e.g., P , Q, and I ,
on transient states clustering is analyzed. Various input signals
from the BLUED dataset are fed to the clustering algorithms.
By comparing the evaluation metrics including shape-based and
ground-truth-based metrics, it is observed that the OPTICS
algorithm fed by dual-stream input streams outperformed the
rest of the investigated clustering algorithms and input sets.
OPTICS algorithm groups load events based on their density in
multi-dimensional space, using a dynamic radius. The OPTICS
algorithm, as the best-performing transient state clustering
algorithm for the low-frequency NILM purpose, is then tested
with the downsampled input data in a wide frequency range, to
observe the impact of the data-sampling frequency on the results,
which simplifies the use of clustering algorithms in future studies.
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NOMENCLATURE

KM K-means
AP Affinity propagation
MS Mean shift
SC Spectral clustering
HC Hierarchical clustering
DB DBSCAN
OP OPTICS
BI BIRCH
Sil Silhouette
ARI Adjusted rand index
V V-measure
FM Fowlkes-Mallow
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LOAD Monitoring (LM) plays an important role in smart
grids. Having an effective LM in the grid provides

opportunities to implement more advanced load forecasting,
fault detection, and various DSM techniques [1].

Generally, LM approaches are categorized into two
categories: intrusive (ILM) and non-intrusive (NILM). In the
NILM method, which was first introduced by George Hart in
1992 [2], aggregated load measurements from a single-entry
point are collected and load disaggregation is performed via
different algorithms.

The majority of NILM studies involve key modules
e.g., data acquisition, extraction of appliance features, and
appliance classification [3]. In the data acquisition as
the first step, the sampling frequency is a key factor.
It can determine the feature extraction possibilities. The
high-frequency sampling allows us to investigate the NILM
methods that need transient state analysis, e.g., frequency
responses [4], voltage noise [5], or harmonics [6]. In general,
high-frequency NILM methods result in more precise load
disaggregation over different load types [7], however, it comes
with its costs e.g., larger data storage, initial investment
on high-frequency samplers, and more complex hardware.
Low-frequency NILM methods have attracted more attention
recently, due to the fact that the majority of installed smart
meters around the world generate low-frequency output [8].
Consequently, they do not impose expensive initial investments
on the grid.

In the feature extraction step, we try to transform input
data into a unique set of variables with which the NILM
algorithm can identify different appliances. After extracting
the features from the raw input data, a NILM algorithm
should categorize the appliances based on their load signature
features. Several artificial-intelligence-based algorithms have
been employed by researchers for this step. Generally, they can
fall into two groups: supervised classification and unsupervised
clustering methods [8]. Supervised learning performs a good
load disaggregation on the load profiles with which it has been
trained [4]. Nevertheless, it is difficult, if not impossible, to
create a labeled library of load signatures for every household,
given the wide range of appliance manufacturers and types
[9]. In contrast, unsupervised learning does not need labeled
training datasets, which makes unsupervised NILM methods
suitable candidates for real-world NILM applications [10].

In the existing literature, numerous studies have used
machine learning (ML) algorithms as a part of a NILM
solution [11]. However, a few papers have focused on the
performance of these ML algorithms as an independent
step in a NILM process. Because of the popularity of



supervised algorithms, some researchers have evaluated the
performance of supervised algorithms in the event detection
and classification step of a NILM solution. Authors in [12]
compare five supervised algorithms for the load classification
step with high-frequency data (30 kHz). In [13] authors
compared the performance of ten supervised classification
algorithms on low-frequency P data. Unsupervised clustering
algorithms have been used in many NILM studies for
load clustering, however, there is a lack of information on
comparing unsupervised clustering algorithms’ performance as
a part of a NILM solution in the literature. In [14] authors used
DBSCAN to cluster load events of a few high-consumption
appliances. In [15] the authors used the K-means algorithm to
cluster different power levels, despite the fact that K-means
needs the number of clusters. Hierarchical clustering is used
in [16] to cluster high-frequency load profiles by clustering
harmonics and electromagnetic induction signals. In [17]
HDBSCAN (a variation of DBSCAN) is used to cluster
segments of the time series of a load profile. Authors in
[18] used OPTICS and DBSCAN to cluster low-frequency
load transitions. Despite the variety of unsupervised clustering
algorithms that are used as an important step in NILM
solutions, none of these studies explain why they have chosen a
specific clustering algorithm for their load clustering purpose.
There is a lack of metric-based comparison for choosing each
of these unsupervised algorithms in every condition.

To fill this information gap, this paper proposes a
comparative evaluation of eight unsupervised clustering
algorithms for the NILM purpose fed by different input signals
(P , Q, I). Different metrics are calculated to evaluate each
algorithm’s performance on clustering of load events. The
best-performing algorithm is further tested by clustering load
events in a frequency range (60 Hz to 1/600 Hz).

The main contributions of this study are summarized as
follows:

• Comparing and analysis of the performance of the most
commonly used unsupervised clustering algorithms for
the NILM purpose under different input conditions;

• Investigating the performance of unsupervised clustering
algorithms facing different load transient cases;

• Identifying and analysis of the best-performing clustering
algorithm for the NILM purpose by comparing several
effective metrics; and

• Examining the flexibility and tolerance of the
best-performing clustering algorithm in a non-ideal
frequency range.

II. BACKGROUND

A. The clustering process

In NILM studies the first step is to collect the input data.
The input data, e.g., active or reactive power, harmonics,
or EMI (electromagnetic interference), then are processed to
fit the requirements of the event detection algorithm. After
determining the time steps in which the events have occurred,
the clustering algorithm puts similar load transient states into
the same clusters. Based on the similarities between each
cluster and the load transients in the appliances database, the

NILM algorithm assigns a name to each cluster. Finally, the
power and energy estimation for every load is calculated. Fig.
1 illustrates the above-mentioned process. As it is observed,
the clustering algorithm plays a key role in the NILM solution.
Let’s introduce each clustering algorithm briefly.

K-means (KM) is one of the most popular unsupervised
clustering algorithms which scales well to a large number (N)
of samples (X) and divides them into K disjoint clusters (C).
Each cluster is represented by the mean of its sample (µj)
which is called a centroid. The K-means algorithm chooses
the centroids that minimize the inertia term as follows:

n∑
i=0

min
µj∈C

(||xi − µj ||2) (1)

Despite the acceptable performance of the K-means
algorithm on datasets with even-shaped and convex clusters,
the necessity of predetermining the number of clusters can
be an obstacle for using K-means in NILM problems with
numerous appliances (i.e., clusters). It is noteworthy that in
the presence of few clusters, the true quantity of clusters can
be found by running the K-means over a range of clusters
number and choosing the elbow point.

Affinity propagation (AP) distinguishes clusters by
analyzing the responsibility (r(i,k)), availability (a(i,k)), and
similarity (s(i,k)) values between all sample pairs (i, k). The
responsibility of sample k to be in the same cluster as sample
i is given by:

r(i, k)← s(i, k)−max[a(i, k′) + s(i, k′) ∀ k′ ̸= k] (2)

and the availability of sample k to be in the same cluster as
sample i is given by:

a(i, k)← min[0, r(k, k) +
∑

i′s.t i′ /∈(i,k)

r(i′, k)] (3)

as this operation is repeated for all sample pairs, affinity
propagation is of high time and memory complexity, O(N2T )
and O(N2) respectively, where N is the number of samples
and T is the number of iterations.

Mean shift (MS), similar to K-means, is a centroid-based
algorithm. Centroid xi is initialized randomly, and in every
iteration, it is updated by the mean of the samples in a certain
bandwidth as follows:

xt+1
i ← m(xt

i) (4)

m(xi) =

∑
xj∈N(xi)

K(xj − xi)xj∑
xj∈N(xi)

K(xj − xi)
(5)

where K is a kernel function, and N(xi) is the neighborhood
of samples in a given bandwidth around xi.

Spectral clustering (SC), requires the number of clusters to
be specified in advance, as in K-means. Spectral clustering
uses eigenvectors of the affinity matrix between samples and
performs clustering on its components. This algorithm is not
advised for problems with a high number of clusters.

Hierarchical clustering (HC) is a general family of
clustering algorithms. Agglomerative clustering is a specific



type of hierarchical algorithm that uses a bottom-up approach.
Each sample starts in its own cluster and clusters merge
together successively based on the linkage criteria.

DBSCAN (DB), unlike K-means which focuses on the
average of clusters to find centroids, calculates the density
of the clusters. Therefore, DBSCAN is a suitable algorithm
for non-convex clusters. DBSCAN considers a sample a "core
sample" if there is a minimum number of samples in a
distance less than a bandwidth around that. In contrast, there
are "border" or "non-core" samples which are samples in the
bandwidth range of the core samples, but without the minimum
number of samples around them. Any non-core sample that is
farther than bandwidth from the core samples is considered an
outlier.

OPTICS (OP) is the general form of the DBSCAN
algorithm. In DBSCAN the bandwidth is a fixed value while
in OPTICS the bandwidth is a range that helps the OPTICS
algorithm find clusters in a more flexible way.

BIRCH (BI), works efficiently on large datasets as it
generates a compact summary of the dataset in its clusters
called clustering feature (CF). The clustering feature consists
of a number of data points (N), linear sum of data points (LS),
and squared sum of data points. Each new sample entering the
clustering feature tree joins the leaf (node) with which it has
the highest similarity.
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Fig. 1. The steps of the NILM algorithm using clustering

B. Clustering algorithms evaluation

Evaluating the performance of clustering algorithms is
not the same as supervised classification algorithms due to
the absence of ground truth data in real-world problems.
Therefore, metrics for evaluating clustering algorithms are
based on analyzing the quality of the clusters. Denser and

better-separated clusters mean the clustering algorithm is
performing better. However, as in this study we have access
to the ground truth data, we can employ more accurate
evaluation methods on clustering algorithms. The following
metrics have been used in this study. Adjusted Rand Index
(ARI) measures the similarity of the ground truth label and
clustering assignment, ignoring the permutations. ARI ranges
from -1 to 1, and a score of 1 represents perfect labeling while
-1 indicates random labeling. ARI is calculated as follows:

RI =
a+ b

C
nsamples

2

(6)

Given C is the ground truth class assignment and K is the
clustering, a and b can be defined as follows: a is the number
of pairs of samples that are in the same sets in both C and K.
b is the number of pairs of samples that are in different sets
in both C and K. Cnsamples

2 is the total number of possible
pairs in the entire dataset. To eliminate the effect of random
labeling, expected RI (E[RI]) is used to calculate ARI.

ARI =
RI − E[RI]

max(RI)− E[RI]
(7)

V-measure (V) is the next important metric that needs
ground truth labels. V-measure is a compound metric made of
homogeneity and completeness. Homogeneity means that each
cluster contains only members of a single class. Completeness
means that all members of a class are assigned to the same
cluster. It ranges from 0 to 1, and 1 represents perfect
clustering.

V =
(1 + β)× homogeneity × completeness

(β × homogeneity + completeness)
(8)

Fowlkes-Mallow (FM) score is another metric that is based
on having ground truth data. It is defined as below:

FM =
TP√

(TP + FP )(TP + FN)
(9)

where TP, FP, and FN stand for true positive, false positive,
and false negative respectively. FM ranges from 0 to 1 and a
high value indicates good similarity between two clusters.

Silhouette (Sil) coefficient, unlike previous metrics, does
not need ground truth labels to evaluate the performance of a
clustering algorithm. A higher silhouette coefficient indicates
better-defined clusters. For each sample, the silhouette
coefficient is calculated as below:

Sil =
b− a

max(a, b)
(10)

where a is the mean distance between a sample and all other
points in the same class, and b is the mean distance between a
sample and all other points in the next nearest class. The total
silhouette coefficient for a dataset is the mean of all silhouette
coefficients of samples. This metric ranges from -1 to 1, and
1 indicates very dense clusters.



III. RESEARCH METHODOLOGY

In this study, eight different clustering algorithms have been
evaluated by different metrics in the context of the NILM.
The algorithms, process, and evaluation metrics are briefly
explained in section II. The algorithms are fed by various
pre-processed electrical signals. Then, the best-performing
method is chosen to be tested in a range of data-sampling
frequencies to further investigate the effect of sampling
frequency on the clustering algorithms’ performance. Fig. 2
illustrates the flow of the research methodology.
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Fig. 2. The research flow

The dataset for this study is the BLUED dataset presented
in [19]. This dataset contains the power consumption data of a
house in Pennsylvania, US for 8 days. Electrical signals e.g.,
voltage (V ), and current (I) have been sampled at the rate
of 12 KHz [19]. However, corresponding active power (P )
and reactive power (Q) are sampled at 60 Hz. Different home
appliances were sampled in this dataset from which we chose
four appliances. The air conditioner, fridge, iron, and wall
socket (the same appliance is connected to this socket during
the measurements) are chosen due to their load signature
and frequent usage in the dataset. Two load signatures have
significant transient states and the two others have symmetric
shapes. Fig. 3 illustrates one cycle of load signatures of these
four appliances, sampled at 1 Hz frequency.

The collected data is pre-processed (cleaned and
normalized). Then, it is fed to the event detection function
which is supposed to find the time step t in which the ON or
OFF event has happened. In this study, the event detection
algorithm is based on the Log Likelihood Ratio detector
by Voting (LLR voting) [20]. As the focus of this paper
is comparing the clustering algorithms’ performance in the
context of the NILM, and not the event detection process,
the LLR Voting method is not detailed here. However, for
the reproduction purpose, it is worth mentioning that for
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Fig. 3. Load signatures of the appliances of the BLUED dataset: a) wall
socket, b) iron, c) AC, and d) fridge

1Hz frequency, the power threshold is set to 20 Watt, post
and pre-window (ω0 = ω1) lengths are 5, voting window
ωv is 10, and voting threshold θv is 4. After the event
detection algorithm identified the timestamps of the load
events (transitions), a window of 5 samples before and after
the timestamp is extracted as the transient state of that load
event. For each extracted transient state a feature set is
defined as below:

F = {σ{Pt, Qt, It},∆{Pt, Qt, It} ∀t = load event} (11)

where σ is the standard deviation and ∆ represents the
difference between the first and last data point of P , Q,
and I transient state. In this study, different combinations of
these three variables are fed to the clustering algorithms to
investigate their effect on the clustering results.

IV. SIMULATION ON REAL-WORLD DATA AND DISCUSSION

Based on the methodology explained in section III, a
comprehensive simulation is carried out. This simulation was
run on a Lenovo T590 laptop with 16 Gigabytes of RAM and
Intel core-i7 CPU @ 1.9 GHz. Python 3.8 was the main coding
tool.

Forty-eight hours of data from BLUED dataset was cleaned
and normalized to be fed to the clustering algorithms. Selected
clustering algorithms’ parameters were optimized to have the
best performance on the input data sampled at 1 Hz frequency.
Table I presents their parameters setting.

To investigate the impact of input electrical signal type on
the clustering of the load transient states, the following input
sets were chosen: I , P , Q, PI , QI , PQ, and PQI . Each
of these input sets is processed by clustering algorithms, and
their output labels are evaluated by the metrics introduced
in section II. Some metrics do not need ground truth data.
Thus, they only measure the quality of the clusters which
is dependent on how dense and well-separated the clusters
are. Silhouette metric is of this type. In contrast, some other
metrics, e.g., ARI or V-measure, need ground truth labels to



TABLE I
CLUSTERING ALGORITHMS PARAMETERS

Method Parameters
K-means init=’k-means++’, n-clusters=9

Affinity propagation max-iter=200000
Mean shift min-bin-freq=3, max-iter = 5000, bandwidth=auto

Spectral clustering n-clusters=9
Hierarchical clustering distance-threshold=0.35,linkage = ’ward’

DBSCAN eps=0.01, min-samples=15
OPTICS min-samples=15, xi = 0.1
BIRCH threshold=0.05,branching-factor = 50

determine how accurate the clustering is. However, the ground
truth labels do not exist in real-world clustering problems.
Thus, the combination of these two types of metrics provides
us with proper judgment on the performance of the clustering
algorithms in each scenario. Table II presents how every
clustering method has performed given different input sets.

In Table II, column "Time" is the time that the clustering
algorithm took to perform the clustering and it is in seconds.
The next column is the number of identified clusters. The
Silhouette, ARI, V-measure, and FM are calculated in the
next columns. The last column is the average of the last
three metrics (ARI, V-measure, and Fowlkes-Mallows). The
last row for every method represents the average of that
column. The number of clusters is not averaged as it does
not convey meaningful information about the performance of
the clustering method.

Since in real-world problems we deal with abundant data
samples, the speed and consumed time of the clustering
algorithm are of great importance. Affinity propagation (AP)
takes 84 seconds on average to do the clustering on this
dataset. K-means and Spectral clustering do the clustering
faster, however, it should be noted that they need to find
the optimal cluster numbers using the elbow method. For
this dataset with a limited amount of events, this process
should be run 15 times (15 clusters). Thus, it is fair to
multiply their taken time by 10 which makes them a very
time-consuming method same as the affinity propagation.
Among other methods, the OPTICS (OP) has the highest
mean performance which is 78%. With a clustering time
of 0.16 s, it is the slowest method among other available
methods, however, its high score in both types of metrics
(shape-based and ground-truth-based) makes it a suitable
method for the clustering purpose. Although Mean shift
(MS), DBSCAN (DB), and BIRCH (BI) are fast clustering
methods, none of them was able to identify the true number
of clusters. Moreover, their mean performance score is also
low (46%, 56%, and 47% respectively) compared to other
methods which shows the lack of accuracy in their clustering
process. Hierarchical clustering (HC) is the only fast method
among these clustering methods which has an acceptable mean
performance score (61%) compared to that of the OPTICS,
and was able to determine the true number of clusters in most
cases. Considering the above-mentioned comparison, OPTICS
seems to be the best candidate for being tested with lower data
sampling frequencies. Fig. 4 illustrates how different methods
have performed with different input signals for the clustering

TABLE II
CLUSTERING ALGORITHMS PERFORMANCE

Method Signal Time Clust. Sil ARI V FM Mean

KM

I 0.58 9 72 59 83 66 69
P 0.06 9 74 58 81 65 68
Q 0.09 9 78 56 74 62 64
PQ 0.04 9 72 62 81 68 70
PI 0.05 9 71 64 82 69 71
QI 0.045 9 73 64 82 69 71
PQI 0.04 9 71 63 82 68 71
Mean 0.13 NA 73 61 80 66 69

AP

I 365 5 66 49 75 62 62
P 2.8 5 86 33 70 53 52
Q 14 15 73 52 71 58 60
PQ 1.71 8 69 48 75 58 60
PI 183 6 67 55 79 65 66
QI 4.75 8 69 48 75 58 60
PQI 21 8 69 48 75 58 60
Mean 84 NA 71 47 74 58 60

MS

I 0.04 5 86 33 71 53 52
P 0.034 5 86 33 70 53 52
Q 0.04 5 79 9 43 37 29
PQ 0.03 7 83 28 67 47 47
PI 0.03 3 84 28 58 49 45
QI 0.03 7 83 28 67 47 55
PQI 0.03 5 81 32 69 52 51
Mean 0.033 NA 83 27 63 48 46

SC

I 0.96 9 19 36 48 44 42
P 1.2 9 9 41 65 55 53
Q 3.3 9 78 56 74 62 64
PQ 3.1 9 72 62 81 68 70
PI 0.64 9 20 37 71 53 53
QI 2 9 73 63 82 69 71
PQI 2.29 9 68 46 74 56 58
Mean 1.92 NA 48 48 70 58 58

HC

I 0.009 5 86 33 71 53 52
P 0.009 5 86 33 70 53 52
Q 0.006 6 65 29 60 47 45
PQ 0.004 9 72 62 81 68 70
PI 0.012 6 67 55 80 65 66
QI 0.007 9 73 64 82 69 71
PQI 0.01 9 71 63 82 68 71
Mean 0.008 NA 74 48 75 60 61

DB

I 0.004 5 32 47 73 59 59
P 0.008 4 22 32 61 49 47
Q 0.007 3 38 42 63 55 53
PQ 0.0001 7 35 45 70 54 56
PI 0.001 7 38 55 76 62 64
QI 0.004 7 38 50 73 58 60
PQI 0.003 7 32 44 70 54 56
Mean 0.003 NA 33 45 69 55 56

OP

I 0.17 9 86 85 91 87 87
P 0.15 9 82 81 87 83 83
Q 0.21 6 24 30 57 42 43
PQ 0.18 9 72 76 84 78 79
PI 0.15 9 83 85 90 86 87
QI 0.16 9 75 83 90 85 87
PQI 0.15 9 76 82 89 84 85
Mean 0.16 NA 71 74 84 77 78

BI

I 0.008 5 86 33 71 53 52
P 0.009 5 86 33 70 53 52
Q 0.007 5 79 9 43 37 29
PQ 0.009 8 81 28 66 47 47
PI 0.009 5 86 33 70 53 52
QI 0.009 7 83 28 67 47 47
PQI 0.009 10 64 40 74 53 55
Mean 0.008 NA 80 29 65 49 47

Sil, ARI, V, and FM are in percent (%)

purpose.
According to Fig. 4, a single Q stream is the worst input

for these clustering algorithms in most cases. A single P
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input is also a bad candidate for clustering purposes, however,
in three algorithms it has led to scores as high as the best
inputs. A single current (I) input has led to high scores in
half the algorithms. Dual-stream inputs e.g., PQ, PI , and QI
have almost the same results in most algorithms, however,
all of them have higher scores than single inputs in most
cases. When it comes to triple-stream inputs, (PQI), the
initial expectation is to have the best results compared to
previously mentioned inputs. However, it is shown that the
higher dimensionality has adversely affected its results in most
methods. In best cases, three signal input (PQI) is as good as
the best lower-dimension input. By looking at the Time column
in Table II, it is observed that three signal input (PQI) has
increased the computation time too without any improvement
of the clustering scores. It can be concluded that in the context
of the NILM, adding more dimensions to the input stream
can unfavorably affect the clustering process. Considering the
above, and averaging the score of each input over all methods,
QI can be considered the best-performing input for this
dataset. However, as the performance scores of dual-stream
inputs are not significantly different, for the generality purpose,
we can conclude that dual-stream inputs perform better than
single or triple-stream inputs for event clustering purposes. To
verify this, we added a limited extension to this part, by testing
this process on iAWE dataset [21] where again dual-stream
inputs obtained the best results and PQ was the best among
dual-stream inputs.

Fig. 5 illustrates the normalized ∆P and ∆Q of the ground
truth load events of the used dataset in this paper. By looking
at Fig. 5 it is observed that AC ON and AC OFF events
are far from other load events due to the AC’s high power
consumption. It is easily remarked that AC load events (both
ON and OFF) are separated into two different groups due to
the different power consumption at different ON/OFF events.
It makes the clustering task challenging for the algorithms as
they should still be clustered as the same load events. Iron ON
and OFF events are dense and well-separated from other load
events, however, they seem to be separated into two groups
too, same as the case with the AC load events. In the middle,
there is congestion of low-power load events and no event

samples. To better illustrate the situation, the middle part of
Fig. 5 is magnified. It is observed that the fridge and socket
ON and OFF events are at a short distance from each other,
and no-event data samples. However, their high density will
help the clustering algorithms to better identify them.
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Fig. 5. Ground truth labeling of the dataset

Fig. 6 shows the clustering output of the investigated
algorithms fed by QI streams. The number of identified
clusters is written in front of each algorithm’s name. The
color of clusters differs in every algorithm as the labels are
assigned in different orders. Some algorithms e.g., BIRCH,
Affinity propagation, and Mean shift have identified most of
the load events in the middle of the diagram as the same cluster
which shows their inability in distinguishing close clusters. In
contrast, DBSCAN has found so many clusters in that central
area while ignoring most of the data samples as outliers (black
circles). It shows DBSCAN shortcomings when facing dense
and sparse clusters at the same time. Many of the algorithms
have difficulty distinguishing AC load events (both ON and
OFF) and identify them as 4 different clusters instead of 2. The
only algorithm that has successfully identified AC load events
is OPTICS. OPTICS uses variable bandwidth to calculate the
areas with enough density, and for this reason, it is capable of
identifying both separate and congested clusters.

Although the OPTICS clustering algorithm fed by a
dual input stream showed the best performance among all
investigated combinations, there is still an important factor in
NILM which needs to be analyzed, and that is the sampling
frequency. We want to test the flexibility and tolerance of the
OPTICS algorithm when it faces non-idea frequency ranges.
The BLUED dataset which is used in this study is sampled
at 60 Hz frequency. To have a lower-resolution dataset, we
downsampled the dataset to the frequencies of {30, 1, 1/10,
1/30, 1/60, 1/120, 1/300, 1/600 Hz}. Fig. 7 illustrates the same
power profile for different sampling frequencies. Even though
the load profile sampled at 1/600 Hz seems to be an easier
case for the clustering algorithms due to the lack of transients,
load signatures with small wattage (e.g., wall socket) have
been eliminated in the sampling process. In this situation, the
clustering algorithm is not able to identify all load events, i.e.,
lower clusters number.
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By applying the OPTICS clustering algorithm on the QI
input stream sampled in different time periods, Table III is
achieved.

TABLE III
THE PERFORMANCE OF OPTICS CLUSTERING ALGORITHM

Method freq. Clust. Sil ARI V FM Mean Events

OPTICS

60 14 80 63 76 55 64 612
30 12 77 75 73 61 69 437
1 9 76 82 89 84 86 373
1/10 9 54 76 86 79 81 358
1/30 9 63 88 92 89 90 329
1/60 7 67 88 90 89 89 302
1/120 5 69 82 82 85 83 254
1/300 5 80 93 91 95 93 212
1/600 5 81 97 95 98 96 175

Sil, ARI, V, and FM are in percent (%)

It is observed that by lowering the sampling frequency
to 1/60 Hz, the OPTICS algorithm is not able to correctly
distinguish the number of clusters which is an important task.
However, the performance metrics have generally risen by
decreasing the sampling frequency. For example, 1/600 Hz
sampling frequency has a mean performance metric of 96%
and silhouette factor of 81% while 1 Hz period has 86% and
76% respectively.

It may seem counter-intuitive, as we expect the lower
resolution to exacerbate the clustering performance not
improve the metrics. It should be noted that the number of
identified clusters is reduced in lower sampling frequencies.
In particular, lower resolution eliminates the smaller load
events which are reflected in the "Events" column of Table
III. Note that the ground truth number of events is 364. Thus,
the clustering algorithm identifies high wattage load events
e.g., AC, more easily, and as a result, its performance score
improves. However, this seemingly better performance comes
at the cost of losing many smaller load events and reduced
clusters number.

Considering the above-mentioned points, 1/30 Hz frequency
is the lowest frequency with which the OPTICS algorithm is
able to operate without sacrificing the load event detection and
having good performance metrics at the same time.

High frequencies (60 and 30 Hz), have too many
fluctuations in their transient states for the LLR voting event
detection algorithm. Because of that, the LLR finds too many
False Positives (FP) which increases the number of clusters
and worsens the clustering scores.

With these results in mind, for the clustering purpose in
the NILM context, it is shown that OPTICS is the best
option among all eight investigated algorithms. While having
single stream inputs e.g., P , Q, and I does not lead to the



best performance of the clustering algorithms, having more
complex inputs e.g., PQI confuses the algorithms in some
cases. It is observed that dual-stream inputs are the best choice
for the input in most clustering algorithms.

V. CONCLUSION

This paper presents a comparative evaluation of
unsupervised clustering algorithms applied on different
load transient states in the context of the NILM in the
residential sector of power grids. Eight clustering algorithms
are fed by different combinations of three electrical signals,
i.e., P , Q, and I from BLUED dataset, as the input. Clustering
algorithms’ performance is evaluated by shape-based and
ground-truth-based metrics. Different input sets are tested
and among them, dual-stream inputs turned out to be the
best. Regarding clustering methods, OPTICS outperformed
other algorithms. To further investigate the effect of the input
signal on the clustering algorithms in the load disaggregation
and examine the flexibility of the OPTICS algorithm under
non-ideal conditions, the input data were down-sampled to
various frequencies. The OPTICS algorithm was able to
correctly predict the number of load event clusters with a
sampling frequency as low as 1/30 Hz. It is shown that
decreasing sampling frequency leads to missed load events
and clusters, however, the clustering scores improve and
the clustering operation becomes faster. Moreover, higher
sampling frequencies (60 and 30 Hz) exacerbated the
clustering scores due to FP load event detection. The results
of this study facilitate the process of choosing the best
clustering algorithms, input signals, and sampling frequency
for unsupervised NILM studies in the residential sector of
power grids.
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