
Sparse Solver Application for Parallel Real-Time 

Electromagnetic Transient Simulations 
B. Bruned, J. Mahseredjian, S. Dennetière, A. Abusalah, O. Saad

Abstract—The main purpose of this research is to speed-up 

real-time simulations of electromagnetic transients (EMTs) using 

sparse linear solver techniques. This paper presents the 

integration of a direct sparse linear solver (KLU) into a real-time 

software for EMT simulation. This solver is combined with 

parallelization of network solution. Fill-in reduction techniques 

are investigated as well as partial refactorization to speed-up 

computations. The pivoting technique during refactorization is 

asserted in terms of simulation stability as compared to existing 

sparse solver based on code generation without pivoting. 

Performance and validation are studied on practical power 

system cases with real-time Hardware-In-the-Loop (HIL) 

simulation. Substantial performance gains, up to 50%, are 

obtained using fill-in reduction and partial refactorization. 

Pivoting is necessary to maintain numerical stability. 

Keywords: EMT simulation, real-time, Hardware-In-The-

Loop, Direct sparse linear solver, Parallelization, Compensation 

Method.  

I. INTRODUCTION

nergy Transition raises important challenges for grid

operators to integrate renewable energy sources [1]. This

involves more power electronics equipment in the grid and 

new interaction problems that must be simulated and studied. 

The circuit-based electromagnetic transient (EMT) simulation 

approach is currently increasingly used to study the integration 

of renewable energy sources [2]. It is able to deliver highly 

accurate computations. Moreover, real-time hardware-in-the-

loop (HIL) EMT simulation can be used for accurate 

simulations with actual controller replicas [1]. The 

computation time is an important factor for HIL and 

parallelization of solution method is essential. 

The traditional line-delay (LD) technique parallelization, is 

based on the propagation delay of transmission lines or cables. 

If this delay is greater than the numerical integration time-

step, the network solution can be decoupled without any loss 

of accuracy. This technique has been implemented in both 

offline [3],[4] and real-time environments [5]. When there is 

no LD, other techniques have to be implemented. One of such 

techniques is the compensation method (CM) [6],[7]. In recent 

works [8][9] the CM has been programmed and tested in real-

time mode with demonstrated advantages. 

In addition to parallelization, sparse linear solvers [10] can 

be used to improve numerical performance. The nodal 

formulation of network equations involves the solution of 
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sparse linear systems. Sparse LU decomposition is commonly 

used to solve such systems in EMT-type software. Previous 

works [4] have studied and integrated an efficient sparse LU 

decomposition solver named KLU [11][12], for parallel 

offline simulation. A modified version of KLU (MKLU) has 

been used to benefit from partial refactorization techniques.  

The first contribution of this paper is to integrate and test 

MKLU into the real-time environment HYPERSIM [5], as a 

replacement of an existing legacy sparse solver (GenCode) 

based on code generation. It is the first time that such a solver 

is integrated into an industrial real-time simulation 

environment. The second contribution is to identify the most 

efficient sparse solver techniques to speed up real-time EMT 

simulation: fill-in reduction, partial refactorization and 

pivoting strategy. All are available in MKLU. Fill-in reduction 

and partial refactorization are combined for best efficiency. 

The third contribution is to combine these sparse solver 

techniques with parallelization techniques to speed up even 

more the simulation. Two kinds of parallelization technique 

are used in this paper, namely LD and CM. The performance 

of MKLU is compared with GenCode for practical power 

system cases. 

This paper is organized as follows. The integration of 

MKLU solver is described in Section II. Through each step of 

the sparse linear solver, speed-up techniques are identified 

(fill-in reduction, partial refactorization). In Section III, a 

detailed comparison is performed between MKLU and 

GenCode on the impact of fill-in reduction, pivoting strategy 

and real-time performance for practical power system cases 

with HIL. 

II. DIRECT SPARSE LINEAR SOLVER

Using classic nodal (modified-augmented-nodal analysis is 

not available in HYPERSIM) formulation with companion 

circuit models, network equations can be written in a linear 

form to be solved at each time-point: 

𝒀𝒏𝒗𝒏 = 𝒊𝒏 (1)

where 𝒀𝒏 is the admittance matrix of the network, 𝒗𝒏 the

vector of node voltages and 𝒊𝒏 the known vector of current

sources that include history term injections from companion 

circuit equivalents. For the nonlinear case, a linearized Norton 

equivalent [3][13] is provided and updated at each iteration. 

The linear system of (1) is generally sparse and 𝒀𝒏 is not

necessarily symmetric. Traditionally, direct LU sparse 

decomposition [10] is used to solve (1). It is preferred over 

iterative methods [14] for performance, robustness and 

predictability. The nodal admittance matrix is factorized as 

𝒀𝒏 = 𝑳𝒏𝑼𝒏 (2)

As well known, a forward substitution is first performed 
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 𝑳𝒏𝒙𝒏 = 𝒊𝒏 (3) 

and followed by backward substitution  

 𝑼𝒏𝒗𝒏 = 𝒙𝒏 (4) 

As 𝒀𝒏 is sparse, a sparse matrix format is adopted, using the 

standard Yale format (CSC) [15].  

Once the sparse matrix has been defined, the sparse linear 

system solution proceeds as follows: symbolic analysis, 

factorization, and solution (forward and backward and 

substitutions). The first two steps will be detailed below, along 

with the integration of the KLU solver into a real-time 

environment. 

A.  Symbolic analysis 

The symbolic analysis step memorizes the sparse structure 

of the LU decomposition for the numerical factorizations. 

Indeed, the sparse structure of 𝒀𝒏 remains fixed throughout 

the computation steps. Ordering methods are used during this 

phase to minimize fill-in. Indeed, a permutation of the 

elements of the matrix is sought to reduce the number of non-

zero values in the factorization. The obvious objective is to 

save time during the solution phase. Finding an ordering is to 

compute permutation matrices 𝑷𝒏 and 𝑸𝒏 such as: 

 �̃�𝒏 = 𝑷𝒏𝒀𝒏𝑸𝒏 (5) 

where the fill-in of the LU decomposition of �̃�𝒏  is less 

than 𝒀𝒏.  

There are two main families of ordering methods to reduce 

fill-in [10] : local and global methods. One the most used local 

methods is the minimum degree [16] ordering. It selects at 

each stage of Gaussian elimination the node which has a 

minimum number of neighbors (if the sparse matrix is seen as 

a graph). This method has been applied to electrical networks 

and showed its effectiveness in the symmetrical case. The 

approximate minimum degree ordering (AMD) method [17] is 

an improvement. Other ordering techniques have been used in 

solvers like COLAMD (Column Approximate Minimum 

Degree) [18]. 

Global methods are based on Nested Dissection [10] which 

applies the principle of divide-and-conquer heuristics. The 

graph associated with the sparse matrix is partitioned into sub-

graphs. By following the recursive structure of the partition 

(binary tree), the two sub-graphs are factorized followed by 

the interface variables between the two graphs. Graph 

partitioning algorithms are used, like Metis [19] or Scotch 

[20]. Nested Dissection amounts to formulating the solved 

matrix into a bordered-block-diagonal form. 

B.  Factorization 

Factorization is the main element of the resolution of a 

linear system and consists in numerically factoring the sparse 

matrix into the LU form. Different strategies can be chosen 

regarding scaling, pivoting and decomposition. 

Scaling can be used to improve matrix conditioning. 

Scaling does not necessarily contribute in terms of accuracy 

and stability for the simulation of power systems. Indeed, as 

an example, switch modelling as 𝑅𝑜𝑝𝑒𝑛/𝑅𝑐𝑙𝑜𝑠𝑒  resistors can 

create a wide range of values in the admittance matrix, in 

which case scaling can make things worse. 

The choice of pivot in the Gaussian elimination, is 

important for the stability of factorization. There are three 

strategies for pivoting. Without pivoting the elimination is 

processed using the matrix diagonal elements. This can cause 

stability issues due to errors caused by large/small values in 

the matrix. The pivot may become invalid (close to zero) and 

make the decomposition unstable. 

With partial pivoting, during factorization, the selected 

pivot is the maximum absolute value of the considered column 

and allows to prevent numerical instabilities. With full 

pivoting, the pivot is selected based on the maximum absolute 

value considering rows and columns. 

Full pivoting is very rarely used. It is more expensive in 

terms of computing times and does not necessarily provide 

better stability for power system matrices. Instead, partial 

pivoting is preferred. During factorization, it is also possible to 

check if the previously calculated pivot is valid. If the pivot is 

still valid, there is no need to modify it. Otherwise, a full 

factorization must be performed. 

The type of LU factorization may differ between solvers. 

Two main factorization strategies are used. In the right-

looking [21] factorization, the matrix is factorized from top 

left to bottom right. The left-looking approach [11][12] is 

more advantageous for sparse power system matrices. The 

matrix is factorized along the columns from left to right. 

C.  Partial refactorization 

The following changes have been made in [4] to optimize 

the KLU solver (MKLU, modified KLU) for EMT simulations 

and parallelization.  

The first one is the pivot validity test. If the pivot is no 

longer valid, the refactorization is stopped and a full 

factorization is performed. This avoids performing full 

factorization when the pivot remains valid in switching 

networks. 

The second enhancement is partial refactorization. It is 

applied only on the values of the matrix which have changed. 

First, fill-in reduction ordering is applied to 𝒀𝒏. Then, at each 

time-step, the minimal column index, 𝑛𝑐ℎ𝑔, where there is a 

value change in 𝒀𝒏, is computed. Benefiting from the left-

looking LU decomposition, refactorization is only proceeded 

for columns between 𝑛𝑐ℎ𝑔  and 𝑛  (size of 𝒀𝒏 ). This 

technique is named, hereinafter, RefactChg. 

In order to make 𝑛𝑐ℎ𝑔  as high as possible at each solution 

time-point, it is possible to order first the nodes which belong 

to linear elements and then the ones which come from time-

varying elements (switches or nonlinear elements). Equation 

(6) below depicts this ordering. 

 
𝒀𝒏 = [

𝒀𝒇 𝒀𝒇𝒗

𝒀𝒗𝒇 𝒀𝒗
] (6) 

Where 𝒀𝒇  is the fixed part of 𝒀𝒏 , 𝒀𝒗 contains the time-

varying elements of 𝒀𝒏 and 𝑛𝑐ℎ𝑔 is determined only for 𝒀𝒗. 

This technique is named, hereinafter, RefactVar. It is noticed 

that it can conflict with the fill-in reduction ordering, since it 

can break the fill-in optimization. To resolve this conflict 

between the two ordering approaches (fill-in reduction and 

partial refactorization), RefactVarOpt method is introduced in 

this paper. It proceeds by creating (6) and then applying fill-in 



reduction only on 𝒀𝒇 . The efficiencies of RefactChg and 

RefactVarOpt are compared below. 

The limitation of partial refactorization used in this section 

is that all columns from  𝑛𝑐ℎ𝑔 to 𝑛 have to be refactorized 

although only few of them may need it. Possible 

improvements based on [22][23] are left for further works. 

D.  Integration into parallel real-time environment 

Two parallelization techniques are considered in real-time 

mode. The first one is delay-based. Network analysis 

identifies the decoupling elements which are the power 

transmission lines (or cables) with propagation delays higher 

than the numerical integration time-step. Stublines with 

artificial delays can be inserted for artificial decoupling when 

actual lines do not exist. Then, an automatic task mapper 

assigns subnetworks with their control system equations to 

processor units [24]. Each subnetwork is solved independently 

using the selected sparse solver. 

The second parallelization technique is CM, which has 

been recently tested in real-time [8][9] simulations. It does not 

create inaccuracies as with stublines and delivers a 

simultaneous solution for network equations. The Fig. 1 

recalls the three steps of CM for two subnetworks (𝑁1 and 

𝑁2) which have been decoupled through wires. 𝒀𝟏 and 𝒀𝟐 

are admittance matrices, 𝒊𝟏  and  𝒊𝟐  the known or historic 

nodal current injections, 𝒊𝒄  is for compensation branch 

currents, (𝒁𝒕𝒉𝟏, 𝒗𝒕𝒉𝟏)  and (𝒁𝒕𝒉𝟐 , 𝒗𝒕𝒉𝟐)  are the Thevenin 

equivalents along the cutting branches. The two parallel steps, 

Thevenin equivalent computations (step-1) and superposition 

(step-3), involve the solution of linear systems with 

subnetwork admittance matrices. MKLU or GenCode can be 

used in step-1. The sequential step-2, deals with dense 

impedance matrices for which LAPACK [21] can be used. In 

this paper, the GenCode solver is preferred over LAPACK for 

performance, with only non-zero operations printed in the 

generated code. 

The integration of MKLU into the real-time environment is 

done as follows. First, MKLU is pre-compiled as a static 

library on the real-time simulator. Then, its include files allow 

to call its functions and use its data structures directly on the 

generated code of the simulated network. Also, a standard 

Yale format (CSC) is used to represent sparse matrices in the 

simulation code. Finally, the simulation code is compiled, 

linking with the static MKLU library. 

 
Fig. 1.  Overview of CM steps for parallelization. 

III.  PERFORMANCE AND VALIDATION ANALYSIS 

Two sparse linear solvers are tested in this section: the 

legacy solver GenCode and MKLU with RefactChg and 

RefactVarOpt. TABLE I summarizes the characteristics of 

each solver. The performances are compared in terms of fill-in 

reduction, partial refactorization efficiency, pivoting and real-

time performance on HIL setup. The applied parallelization 

techniques are listed in TABLE II. 
TABLE I 

COMPARED SOLVERS 

Solvers Analysis options Factorization 

GenCode 

 

RefactVar (no fill-

in reduction) 

No pivoting 

Partial-refactorization 

MKLU 

 

AMD, COLAMD 

or Metis 

RefactChg or 

RefactVarOpt 

Partial Pivoting, Partial-refactorization or 

full refactorization according to pivot 

validity test 

TABLE II 

PARALLELIZATION TECHNIQUES 

Name Solution methods 

SEQ Sequential solution of network equations without any decoupling 

CM Compensation Method 

LD 
Line-Delay method based on the propagation delay of power 

transmission lines 

LD+CM 
Combination of Line-Delay and Compensation Method 
decoupling 

A.  Fill-in reduction performance 

Fill-in reduction is tested on two large linear distribution 

networks.  

Case-1 is the Xavier distribution network [8], with 619 

nodes. The simulation interval is 1 s with a time-step of 50 μs, 

for studying a single-phase-to-ground fault. 

Case-2 is the GHOST microgrid case from [25] with 663 

nodes. The simulation interval is 90 s with a time-step of 100 

μs to simulate a grid fault that provokes an islanded mode. 

For these two networks, the main computation effort is on 

the solution part (backward and forward substitution). Very 

few refactorizations are required for each case. As there are no 

natural propagation delay lines for parallel decoupling, the 

CM is used to accelerate the simulation. TABLE III presents 

the maximum sizes of subnetwork admittance matrices 

before/after CM decoupling for each test case. Figures 2 and 3 



show the CM decoupling locations for each test case. 
TABLE III 

ADMITTANCE MATRIX SIZES BEFORE AND AFTER CM DECOUPLING 

Case Parallel solver Number of tasks Max Size 

Xavier 

SEQ 1 619 

CM 2 318 

CM 4 186 

GHOST 
SEQ 1 663 

CM 5 238 

 
Fig. 2.  Xavier distribution test case with CM parallelization. 

 
Fig. 3.  GHOST microgrid test case with CM parallelization. 

 

Three fill-in techniques are tested with the MKLU solver: 

AMD, COLAMD and Metis. Figures 4 and 5 display the 

sparsity patterns of the admittance matrix of each test case and 

the number of non-zero elements (nz) when using AMD. A 

lesser non-zero value dispersion from AMD ordering will 

reduce the fill-in in LU factors. 

  
Fig. 4.  Sparsity structures before (left) and after (right) AMD ordering for 

Xavier distribution network. 

  
Fig. 5.  Sparsity structures before (left) and after (right) AMD ordering for 
GHOST microgrid. 

 

RefactChg is chosen for the refactorization strategy. Offline 

and real-time simulations are run on an OP5031 target 64 bits 

Linux with 32 cores (2 CPU Intel Xeon E5 3.2 GHz – 16 

cores). Tables IV and V display performance results for each 

fill-in reduction technique. The offline average time-step (∆𝑡̅̅ ̅) 

is equal to the measured execution time over the total number 

of time-steps. The related speed-up ratio (𝑆̅) is computed 

against the GenCode solution. For the real-time simulation, no 

physical hardware is interfaced to the simulator, but the real-

time constraint is ensured. The second-last column displays 

the minimum time-step (∆𝑡̅̅ ̅
𝑅𝑇) to avoid continuous overruns 

during the real-time simulation. The last column presents the 

related speed-up ratio (𝑆�̅�𝑇). 
TABLE IV 

PERFORMANCE RESULTS, XAVIER DISTRIBUTION NETWORK 

Parallelization Solver ∆𝒕̅̅ ̅ �̅� ∆𝒕̅̅ ̅
𝑹𝑻 �̅�𝑹𝑻 

SEQ 

GenCode 117.1 μs 1 121 μs 1 

MKLU +AMD 91.7 μs 1.28 96 μs 1.26 

MKLU+COLAMD 91.5 μs 1.28 97 μs 1.25 

MKLU+Metis 92.8 μs 1.26 97 μs 1.25 

CM 2 tasks 

GenCode 61.4 μs 1 64 μs 1 

MKLU +AMD 52.1 μs 1.18 57 μs 1.12 

MKLU+COLAMD 50.6 μs 1.21 57 μs 1.12 

MKLU+Metis 51.6 μs 1.19 56 μs 1.14 

CM 4 tasks 

GenCode 35.3 μs 1 37 μs 1 

MKLU +AMD 32.7 μs 1.08 35 μs 1.06 

MKLU+COLAMD 33.4 μs 1.06 35 μs 1.06 

MKLU+Metis 33.1 μs 1.07 35 μs 1.06 

 

 

 

 

 

 



TABLE V 

PERFORMANCE RESULTS, GHOST MICROGRID 

Parallelization Solver ∆𝒕̅̅ ̅ �̅� ∆𝒕̅̅ ̅
𝑹𝑻 �̅�𝑹𝑻 

SEQ 

GenCode 64.5 μs 1 68 μs 1 

MKLU +AMD 60.4 μs 1.07 63 μs 1.08 

MKLU+COLAMD 59.9 μs 1.08 63 μs 1.08 

MKLU+Metis 59.3 μs 1.09 61 μs 1.12 

CM 

GenCode 32 μs 1 38 μs 1 

MKLU +AMD 30.7 μs 1.04 36 μs 1.06 

MKLU+COLAMD 30.6 μs 1.05 36 μs 1.06 

MKLU+Metis 31.4 μs 1.02 36 μs 1.06 

 

The presented results demonstrate the efficiency of fill-in 

reduction techniques. The performance gain can reach 26% in 

real-time for Xavier network. As expected, efficiency tends to 

decrease with decreasing network size. The parallelized 

version of Xavier network, for example, is less impacted with 

fill-in reduction.  

The combination of MKLU fill-in reduction and CM 

reaches respectively, for case-1 and case-2, speed-up ratios of 

3.5 ( ∆𝑡̅̅ ̅
𝑅𝑇𝑆𝐸𝑄+𝐺𝑒𝑛𝐶𝑜𝑑𝑒

∆𝑡̅̅ ̅
𝑅𝑇𝐶𝑀 4 𝑡𝑎𝑠𝑘𝑠+𝑀𝐾𝐿𝑈

⁄ ) and 1.9 

( ∆𝑡̅̅ ̅
𝑅𝑇𝑆𝐸𝑄+𝐺𝑒𝑛𝐶𝑜𝑑𝑒

∆𝑡̅̅ ̅
𝑅𝑇𝐶𝑀+𝑀𝐾𝐿𝑈

⁄ ) over the legacy solution 

(SEQ+GenCode). All fill-in reduction techniques give 

approximately the same performance gain as matrix sizes are 

not huge. Also, for other cases with transmission lines, LD 

decouples the network each time a transmission line long 

enough for decoupling is detected. This limits the maximum 

size of subnetwork admittance matrices. For the rest of the 

paper, AMD ordering is kept. 

B.  Partial refactorization 

The test case IFA2000, is an HVDC interconnection 

between France (Les Mandarins) and United Kingdom 

(Sellindge). It is used here to assert the efficiency of partial 

refactorization. The modelling presented in [8] is used. Each 

LCC pole (Line Commutated Converter) is represented by two 

detailed 6-pulse bridges. Fig. 6 shows the LD (4 cores) and 

LD+CM (6 cores) parallel decoupling methods. Several 

refactorizations are required when the link is in operation 

which comes from repetitive thyristor commutations. The 

time-step is set to 30 μs. The 10 s starting sequence real-time 

software-in-the-loop (SIL) simulation is run on an OP5031 

target 32 bits Linux with 32 cores (2 CPU Intel Xeon E5 3.2 

GHz - 16 cores). 

 
Fig. 6.  Overview of IFA2000 modelling and parallel decoupling. 

 

For LD decoupling, the larger subnetwork is Sellindge side. 

The total size of the admittance matrix is 125x125. The size of 

the fixed part (linear elements) is 33x33. Fig. 7 shows the 

sparsity structure of the admittance matrix and fill-in reduction 

ordering. 

  
Fig. 7.  Sparsity structure before (left) and after (right) AMD ordering for 

IFA2000 Sellindge subnetwork. 

 

Fig. 9 displays the execution times of the most loaded 

processor which runs Sellindge side subnetwork. Prior the 

start of the stations, GenCode is more efficient than MKLU. 

Fill-in reduction delivers computation gains mainly during the 

solution phase (backward and forward substitution) as the 

converter stations have not yet started. This is not enough to 

over perform the code generation optimization of GenCode. 

After station start (t>6.4s), fill-in reduction is very effective on 

the partial factorization stage. MKLU shows performance 

gains over GenCode. It is even better to applied fill-in 

reduction to the entire matrix. Indeed, MKLU+RefactChg 

improves by 50% the performance of GenCode solver. It is the 

only method with an execution time per time-step far below 

the 30 μs of the simulation time-step which guarantees a real-

time simulation with no overruns. As a counterpart, the 

solution with this method needs three full refactorizations to 

cope with pivot invalidity. Applying fill-in reduction in the 

whole matrix requires pivoting to achieve a stable simulation. 

 
Fig. 8.  Execution time of the most loaded processor, LD using various 
solvers for a 10 s SIL real-time simulation. 

 

With LD+CM decoupling, the maximum matrix size is 

reduced to 77x77 with a fixed part of 21x21. In that case, as 

depicted by Fig. 9, the effect of fill-in reduction on 

performance is less important. RefactVarChg is still more 

efficient than RefactVarOpt. However, the performances are 

similar with GenCode. Only 5% of performance gain are 

obtained when converters are in operation. Code generation 

optimization avoids less function calls and extra programming 

structures in comparison with MKLU solver. This 

counterbalances the fill-in reduction performance gains which 

are less important with lower matrix dimensions. In that case, 



the trade-off between fill-in reduction and further CM 

parallelization is in favor of fill-in reduction. CM decoupling 

improves a little over fill-in reduction while using two extra 

simulation cores. 

 
Fig. 9.  Execution time of the most loaded processor, LD+CM using various 

solvers for a 10 s SIL real-time simulation. 

C.  Pivoting efficiency 

The previous part has shown the utility of pivoting when 

fill-in reduction is applied to the whole matrix. Another 

example comes from the CM decoupling. It has been already 

shown in [8][9] that the open circuit solutions for subnetworks 

may not be stable. The two 6-pulse bridges case (Fig. 10) 

show this kind of instability. CM decouples each 6-pulse 

bridge into two subnetworks (Task 1 and Task 2). With this 

decoupling, the simulation is unstable with GenCode. 

However, using MKLU helps to achieve a stable simulation. 

Several pivot changes are required during the computations. 

MKLU benefits from pivoting to strengthen the stability of 

CM decoupling. Test case data can be found in the Appendix. 

 
Fig. 10.  CM decoupling of two 6-pulse bridges. 

D.  HIL real-time performance 

For real-time HIL simulation, the test case of IFA2000 is 

considered with the physical cubicles and protections replicas 

in the simulation loop. The real-time setup is the same as [26]. 

As depicted in Fig. 11, LD decoupling is used to parallelize 

the network solution. The simulation runs in real-time with 40 

μs time-step on three cores on an OP5031 target 64 bits Linux 

with 16 cores (CPU Intel Xeon E5 3.2 GHz – 16 cores). The 

power transit is set to 1000 MW from Les Mandarins to 

Sellindge. A single phase-to-ground fault occurs on the Les 

Mandarins side. It is eliminated after a duration of 40 ms. The 

maximum admittance matrix size (Sellindge subnetwork 

simulated on Proc 1, see Fig. 11) is 131x131 with a fixed part 

of 30x30. 

 
Fig. 11.  IFA2000 HIL setup with LD decoupling. 

 

Fig. 12 shows similar performance gains as for the SIL 

simulation of section III.B. Fill-in reduction applied to the 

whole matrix (RefactChg) is still the best strategy to save 

computing times. Pivoting is still necessary for a stable 

simulation. MKLU+RefactChg reaches a performance gain of 

14% over GenCode during HIL real-time simulation. Fig. 13 

demonstrates that MKLU gives the same results as GenCode. 

 
Fig. 12.  Execution time of the most loaded processor, LD using various 
solvers for HIL real-time simulation. 

 
Fig. 13.  DC voltage validation during single-phase-to-ground fault. 

IV.  CONCLUSION 

This paper presented the integration of a direct sparse linear 

solver, named modified KLU (MKLU), for parallel real-time 

electromagnetic transient simulations.  

First, fill-in reduction techniques embedded in MKLU have 

provided performance gains of 26% over an existing code 

generation solver (GenCode) for linear networks. With the 

compensation method (CM) parallelization technique, fill-in 

reduction applied to the whole admittance matrix allows 

reaching a speed-up of 3.9 over the sequential solution with 

GenCode. For an HVDC network example, the combination 

with partial refactorization (MKLU+RefactChg) improves by 

50% over GenCode when several repetitive refactorizations 

are required. When the matrix size decreases with further 

parallel decoupling using LD+CM, fill-in reduction techniques 



are less effective. 

Second, MKLU offers pivoting which is required to have 

fill-in reduction over the whole matrix combined with partial 

refactorization (RefactChg). Without this technique, some 

simulation cases can become unstable. Additionally, changing 

the pivot improves the robustness of CM decoupling. 

Lastly, a performance gain of 14% has been observed for 

MKLU+RefactChg for HIL real-time simulation. 

Further research is needed to improve the efficiency of 

partial refactorization. 

V.  APPENDIX 

Data of the test case presented in Fig. 10: 

- For the voltage source, 𝑉𝑠𝑟𝑐 = 86.6 𝑘𝑉, 𝑅𝑠𝑟𝑐 = 1.5 , 𝐿𝑠𝑟𝑐 =
0.043 𝑚𝐻 

- 𝑅1 = 0.01 𝛺, 𝐿1 = 0.1 𝐻 

- For each diode, 𝑅𝑜𝑝𝑒𝑛 = 10−3 𝛺 , 𝑅𝑐𝑙𝑜𝑠𝑒 = 106 𝛺 , 

𝑅𝑠𝑛𝑢𝑏𝑏𝑒𝑟 = 100 𝛺, 𝐶𝑠𝑛𝑢𝑏𝑏𝑒𝑟 = 10−6 𝛺, 𝑉𝑚𝑖𝑛 = 0.8 𝑉  

- For Transformers, Y ground for primary side, Y floating for 

secondary, 𝑉𝑝𝑟𝑖𝑚 = 86.6 𝑘𝑉, 𝑅𝑝𝑟𝑖𝑚 = 0.43 𝛺 , 𝐿𝑝𝑟𝑖𝑚 =

0.458 𝑚𝐻 , 𝑉𝑠𝑒𝑐𝑜𝑛𝑑 = 8.66 𝑘𝑉, 𝑅𝑠𝑒𝑐𝑜𝑛𝑑 = 0.238 𝛺 , 

𝐿𝑠𝑒𝑐𝑜𝑛𝑑 = 0.025 𝑚𝐻 , for the magnetization branch 𝑅𝑚 =
1.08 𝑀𝛺, 𝐿𝑚 = 2.86 × 103 𝐻. 
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