
Sparse Solver Application for Parallel Real-Time

Electromagnetic Transient Simulations
B. Bruned, J. Mahseredjian, S. Dennetière, A. Abusalah, O. Saad

Abstract—The main purpose of this research is to speed-up

real-time simulations of electromagnetic transients (EMTs) using

sparse linear solver techniques. This paper presents the

integration of a direct sparse linear solver (KLU) into a real-time

software for EMT simulation. This solver is combined with

parallelization of network solution. Fill-in reduction techniques

are investigated as well as partial refactorization to speed-up

computations. The pivoting technique during refactorization is

asserted in terms of simulation stability as compared to existing

sparse solver based on code generation without pivoting.

Performance and validation are studied on practical power

system cases with real-time Hardware-In-the-Loop (HIL)

simulation. Substantial performance gains, up to 50%, are

obtained using fill-in reduction and partial refactorization.

Pivoting is necessary to maintain numerical stability.

Keywords: EMT simulation, real-time, Hardware-In-The-

Loop, Direct sparse linear solver, Parallelization, Compensation

Method.

I. INTRODUCTION

nergy Transition raises important challenges for grid

operators to integrate renewable energy sources [1]. This

involves more power electronics equipment in the grid and

new interaction problems that must be simulated and studied.

The circuit-based electromagnetic transient (EMT) simulation

approach is currently increasingly used to study the integration

of renewable energy sources [2]. It is able to deliver highly

accurate computations. Moreover, real-time hardware-in-the-

loop (HIL) EMT simulation can be used for accurate

simulations with actual controller replicas [1]. The

computation time is an important factor for HIL and

parallelization of solution method is essential.

The traditional line-delay (LD) technique parallelization, is

based on the propagation delay of transmission lines or cables.

If this delay is greater than the numerical integration time-

step, the network solution can be decoupled without any loss

of accuracy. This technique has been implemented in both

offline [3],[4] and real-time environments [5]. When there is

no LD, other techniques have to be implemented. One of such

techniques is the compensation method (CM) [6],[7]. In recent

works [8][9] the CM has been programmed and tested in real-

time mode with demonstrated advantages.

In addition to parallelization, sparse linear solvers [10] can

be used to improve numerical performance. The nodal

formulation of network equations involves the solution of

B. Bruned and S. Dennetière are with RTE, Jonage, France (e-mail of

corresponding author: boris.bruned@rte-france.com). J. Mahseredjian and A.
Abusalah are with Polytechnique Montréal. O. Saad is with Hydro-Québec.

Paper submitted to the International Conference on Power Systems Transients
(IPST2023) in Thessaloniki, Greece, June 12-15, 2023.

sparse linear systems. Sparse LU decomposition is commonly

used to solve such systems in EMT-type software. Previous

works [4] have studied and integrated an efficient sparse LU

decomposition solver named KLU [11][12], for parallel

offline simulation. A modified version of KLU (MKLU) has

been used to benefit from partial refactorization techniques.

The first contribution of this paper is to integrate and test

MKLU into the real-time environment HYPERSIM [5], as a

replacement of an existing legacy sparse solver (GenCode)

based on code generation. It is the first time that such a solver

is integrated into an industrial real-time simulation

environment. The second contribution is to identify the most

efficient sparse solver techniques to speed up real-time EMT

simulation: fill-in reduction, partial refactorization and

pivoting strategy. All are available in MKLU. Fill-in reduction

and partial refactorization are combined for best efficiency.

The third contribution is to combine these sparse solver

techniques with parallelization techniques to speed up even

more the simulation. Two kinds of parallelization technique

are used in this paper, namely LD and CM. The performance

of MKLU is compared with GenCode for practical power

system cases.

This paper is organized as follows. The integration of

MKLU solver is described in Section II. Through each step of

the sparse linear solver, speed-up techniques are identified

(fill-in reduction, partial refactorization). In Section III, a

detailed comparison is performed between MKLU and

GenCode on the impact of fill-in reduction, pivoting strategy

and real-time performance for practical power system cases

with HIL.

II. DIRECT SPARSE LINEAR SOLVER

Using classic nodal (modified-augmented-nodal analysis is

not available in HYPERSIM) formulation with companion

circuit models, network equations can be written in a linear

form to be solved at each time-point:

𝒀𝒏𝒗𝒏 = 𝒊𝒏 (1)

where 𝒀𝒏 is the admittance matrix of the network, 𝒗𝒏 the

vector of node voltages and 𝒊𝒏 the known vector of current

sources that include history term injections from companion

circuit equivalents. For the nonlinear case, a linearized Norton

equivalent [3][13] is provided and updated at each iteration.

The linear system of (1) is generally sparse and 𝒀𝒏 is not

necessarily symmetric. Traditionally, direct LU sparse

decomposition [10] is used to solve (1). It is preferred over

iterative methods [14] for performance, robustness and

predictability. The nodal admittance matrix is factorized as

𝒀𝒏 = 𝑳𝒏𝑼𝒏 (2)

As well known, a forward substitution is first performed

E

mailto:boris.bruned@rte-france.com

 𝑳𝒏𝒙𝒏 = 𝒊𝒏 (3)

and followed by backward substitution

 𝑼𝒏𝒗𝒏 = 𝒙𝒏 (4)

As 𝒀𝒏 is sparse, a sparse matrix format is adopted, using the

standard Yale format (CSC) [15].

Once the sparse matrix has been defined, the sparse linear

system solution proceeds as follows: symbolic analysis,

factorization, and solution (forward and backward and

substitutions). The first two steps will be detailed below, along

with the integration of the KLU solver into a real-time

environment.

A. Symbolic analysis

The symbolic analysis step memorizes the sparse structure

of the LU decomposition for the numerical factorizations.

Indeed, the sparse structure of 𝒀𝒏 remains fixed throughout

the computation steps. Ordering methods are used during this

phase to minimize fill-in. Indeed, a permutation of the

elements of the matrix is sought to reduce the number of non-

zero values in the factorization. The obvious objective is to

save time during the solution phase. Finding an ordering is to

compute permutation matrices 𝑷𝒏 and 𝑸𝒏 such as:

 �̃�𝒏 = 𝑷𝒏𝒀𝒏𝑸𝒏 (5)

where the fill-in of the LU decomposition of �̃�𝒏 is less

than 𝒀𝒏.

There are two main families of ordering methods to reduce

fill-in [10] : local and global methods. One the most used local

methods is the minimum degree [16] ordering. It selects at

each stage of Gaussian elimination the node which has a

minimum number of neighbors (if the sparse matrix is seen as

a graph). This method has been applied to electrical networks

and showed its effectiveness in the symmetrical case. The

approximate minimum degree ordering (AMD) method [17] is

an improvement. Other ordering techniques have been used in

solvers like COLAMD (Column Approximate Minimum

Degree) [18].

Global methods are based on Nested Dissection [10] which

applies the principle of divide-and-conquer heuristics. The

graph associated with the sparse matrix is partitioned into sub-

graphs. By following the recursive structure of the partition

(binary tree), the two sub-graphs are factorized followed by

the interface variables between the two graphs. Graph

partitioning algorithms are used, like Metis [19] or Scotch

[20]. Nested Dissection amounts to formulating the solved

matrix into a bordered-block-diagonal form.

B. Factorization

Factorization is the main element of the resolution of a

linear system and consists in numerically factoring the sparse

matrix into the LU form. Different strategies can be chosen

regarding scaling, pivoting and decomposition.

Scaling can be used to improve matrix conditioning.

Scaling does not necessarily contribute in terms of accuracy

and stability for the simulation of power systems. Indeed, as

an example, switch modelling as 𝑅𝑜𝑝𝑒𝑛/𝑅𝑐𝑙𝑜𝑠𝑒 resistors can

create a wide range of values in the admittance matrix, in

which case scaling can make things worse.

The choice of pivot in the Gaussian elimination, is

important for the stability of factorization. There are three

strategies for pivoting. Without pivoting the elimination is

processed using the matrix diagonal elements. This can cause

stability issues due to errors caused by large/small values in

the matrix. The pivot may become invalid (close to zero) and

make the decomposition unstable.

With partial pivoting, during factorization, the selected

pivot is the maximum absolute value of the considered column

and allows to prevent numerical instabilities. With full

pivoting, the pivot is selected based on the maximum absolute

value considering rows and columns.

Full pivoting is very rarely used. It is more expensive in

terms of computing times and does not necessarily provide

better stability for power system matrices. Instead, partial

pivoting is preferred. During factorization, it is also possible to

check if the previously calculated pivot is valid. If the pivot is

still valid, there is no need to modify it. Otherwise, a full

factorization must be performed.

The type of LU factorization may differ between solvers.

Two main factorization strategies are used. In the right-

looking [21] factorization, the matrix is factorized from top

left to bottom right. The left-looking approach [11][12] is

more advantageous for sparse power system matrices. The

matrix is factorized along the columns from left to right.

C. Partial refactorization

The following changes have been made in [4] to optimize

the KLU solver (MKLU, modified KLU) for EMT simulations

and parallelization.

The first one is the pivot validity test. If the pivot is no

longer valid, the refactorization is stopped and a full

factorization is performed. This avoids performing full

factorization when the pivot remains valid in switching

networks.

The second enhancement is partial refactorization. It is

applied only on the values of the matrix which have changed.

First, fill-in reduction ordering is applied to 𝒀𝒏. Then, at each

time-step, the minimal column index, 𝑛𝑐ℎ𝑔, where there is a

value change in 𝒀𝒏, is computed. Benefiting from the left-

looking LU decomposition, refactorization is only proceeded

for columns between 𝑛𝑐ℎ𝑔 and 𝑛 (size of 𝒀𝒏). This

technique is named, hereinafter, RefactChg.

In order to make 𝑛𝑐ℎ𝑔 as high as possible at each solution

time-point, it is possible to order first the nodes which belong

to linear elements and then the ones which come from time-

varying elements (switches or nonlinear elements). Equation

(6) below depicts this ordering.

𝒀𝒏 = [

𝒀𝒇 𝒀𝒇𝒗

𝒀𝒗𝒇 𝒀𝒗
] (6)

Where 𝒀𝒇 is the fixed part of 𝒀𝒏 , 𝒀𝒗 contains the time-

varying elements of 𝒀𝒏 and 𝑛𝑐ℎ𝑔 is determined only for 𝒀𝒗.

This technique is named, hereinafter, RefactVar. It is noticed

that it can conflict with the fill-in reduction ordering, since it

can break the fill-in optimization. To resolve this conflict

between the two ordering approaches (fill-in reduction and

partial refactorization), RefactVarOpt method is introduced in

this paper. It proceeds by creating (6) and then applying fill-in

reduction only on 𝒀𝒇 . The efficiencies of RefactChg and

RefactVarOpt are compared below.

The limitation of partial refactorization used in this section

is that all columns from 𝑛𝑐ℎ𝑔 to 𝑛 have to be refactorized

although only few of them may need it. Possible

improvements based on [22][23] are left for further works.

D. Integration into parallel real-time environment

Two parallelization techniques are considered in real-time

mode. The first one is delay-based. Network analysis

identifies the decoupling elements which are the power

transmission lines (or cables) with propagation delays higher

than the numerical integration time-step. Stublines with

artificial delays can be inserted for artificial decoupling when

actual lines do not exist. Then, an automatic task mapper

assigns subnetworks with their control system equations to

processor units [24]. Each subnetwork is solved independently

using the selected sparse solver.

The second parallelization technique is CM, which has

been recently tested in real-time [8][9] simulations. It does not

create inaccuracies as with stublines and delivers a

simultaneous solution for network equations. The Fig. 1

recalls the three steps of CM for two subnetworks (𝑁1 and

𝑁2) which have been decoupled through wires. 𝒀𝟏 and 𝒀𝟐

are admittance matrices, 𝒊𝟏 and 𝒊𝟐 the known or historic

nodal current injections, 𝒊𝒄 is for compensation branch

currents, (𝒁𝒕𝒉𝟏, 𝒗𝒕𝒉𝟏) and (𝒁𝒕𝒉𝟐 , 𝒗𝒕𝒉𝟐) are the Thevenin

equivalents along the cutting branches. The two parallel steps,

Thevenin equivalent computations (step-1) and superposition

(step-3), involve the solution of linear systems with

subnetwork admittance matrices. MKLU or GenCode can be

used in step-1. The sequential step-2, deals with dense

impedance matrices for which LAPACK [21] can be used. In

this paper, the GenCode solver is preferred over LAPACK for

performance, with only non-zero operations printed in the

generated code.

The integration of MKLU into the real-time environment is

done as follows. First, MKLU is pre-compiled as a static

library on the real-time simulator. Then, its include files allow

to call its functions and use its data structures directly on the

generated code of the simulated network. Also, a standard

Yale format (CSC) is used to represent sparse matrices in the

simulation code. Finally, the simulation code is compiled,

linking with the static MKLU library.

Fig. 1. Overview of CM steps for parallelization.

III. PERFORMANCE AND VALIDATION ANALYSIS

Two sparse linear solvers are tested in this section: the

legacy solver GenCode and MKLU with RefactChg and

RefactVarOpt. TABLE I summarizes the characteristics of

each solver. The performances are compared in terms of fill-in

reduction, partial refactorization efficiency, pivoting and real-

time performance on HIL setup. The applied parallelization

techniques are listed in TABLE II.
TABLE I

COMPARED SOLVERS

Solvers Analysis options Factorization

GenCode

RefactVar (no fill-

in reduction)

No pivoting

Partial-refactorization

MKLU

AMD, COLAMD

or Metis

RefactChg or

RefactVarOpt

Partial Pivoting, Partial-refactorization or

full refactorization according to pivot

validity test

TABLE II

PARALLELIZATION TECHNIQUES

Name Solution methods

SEQ Sequential solution of network equations without any decoupling

CM Compensation Method

LD
Line-Delay method based on the propagation delay of power

transmission lines

LD+CM
Combination of Line-Delay and Compensation Method
decoupling

A. Fill-in reduction performance

Fill-in reduction is tested on two large linear distribution

networks.

Case-1 is the Xavier distribution network [8], with 619

nodes. The simulation interval is 1 s with a time-step of 50 μs,

for studying a single-phase-to-ground fault.

Case-2 is the GHOST microgrid case from [25] with 663

nodes. The simulation interval is 90 s with a time-step of 100

μs to simulate a grid fault that provokes an islanded mode.

For these two networks, the main computation effort is on

the solution part (backward and forward substitution). Very

few refactorizations are required for each case. As there are no

natural propagation delay lines for parallel decoupling, the

CM is used to accelerate the simulation. TABLE III presents

the maximum sizes of subnetwork admittance matrices

before/after CM decoupling for each test case. Figures 2 and 3

show the CM decoupling locations for each test case.
TABLE III

ADMITTANCE MATRIX SIZES BEFORE AND AFTER CM DECOUPLING

Case Parallel solver Number of tasks Max Size

Xavier

SEQ 1 619

CM 2 318

CM 4 186

GHOST
SEQ 1 663

CM 5 238

Fig. 2. Xavier distribution test case with CM parallelization.

Fig. 3. GHOST microgrid test case with CM parallelization.

Three fill-in techniques are tested with the MKLU solver:

AMD, COLAMD and Metis. Figures 4 and 5 display the

sparsity patterns of the admittance matrix of each test case and

the number of non-zero elements (nz) when using AMD. A

lesser non-zero value dispersion from AMD ordering will

reduce the fill-in in LU factors.

Fig. 4. Sparsity structures before (left) and after (right) AMD ordering for

Xavier distribution network.

Fig. 5. Sparsity structures before (left) and after (right) AMD ordering for
GHOST microgrid.

RefactChg is chosen for the refactorization strategy. Offline

and real-time simulations are run on an OP5031 target 64 bits

Linux with 32 cores (2 CPU Intel Xeon E5 3.2 GHz – 16

cores). Tables IV and V display performance results for each

fill-in reduction technique. The offline average time-step (∆𝑡̅̅ ̅)

is equal to the measured execution time over the total number

of time-steps. The related speed-up ratio (𝑆̅) is computed

against the GenCode solution. For the real-time simulation, no

physical hardware is interfaced to the simulator, but the real-

time constraint is ensured. The second-last column displays

the minimum time-step (∆𝑡̅̅ ̅
𝑅𝑇) to avoid continuous overruns

during the real-time simulation. The last column presents the

related speed-up ratio (𝑆�̅�𝑇).
TABLE IV

PERFORMANCE RESULTS, XAVIER DISTRIBUTION NETWORK

Parallelization Solver ∆𝒕̅̅ ̅ �̅� ∆𝒕̅̅ ̅
𝑹𝑻 �̅�𝑹𝑻

SEQ

GenCode 117.1 μs 1 121 μs 1

MKLU +AMD 91.7 μs 1.28 96 μs 1.26

MKLU+COLAMD 91.5 μs 1.28 97 μs 1.25

MKLU+Metis 92.8 μs 1.26 97 μs 1.25

CM 2 tasks

GenCode 61.4 μs 1 64 μs 1

MKLU +AMD 52.1 μs 1.18 57 μs 1.12

MKLU+COLAMD 50.6 μs 1.21 57 μs 1.12

MKLU+Metis 51.6 μs 1.19 56 μs 1.14

CM 4 tasks

GenCode 35.3 μs 1 37 μs 1

MKLU +AMD 32.7 μs 1.08 35 μs 1.06

MKLU+COLAMD 33.4 μs 1.06 35 μs 1.06

MKLU+Metis 33.1 μs 1.07 35 μs 1.06

TABLE V

PERFORMANCE RESULTS, GHOST MICROGRID

Parallelization Solver ∆𝒕̅̅ ̅ �̅� ∆𝒕̅̅ ̅
𝑹𝑻 �̅�𝑹𝑻

SEQ

GenCode 64.5 μs 1 68 μs 1

MKLU +AMD 60.4 μs 1.07 63 μs 1.08

MKLU+COLAMD 59.9 μs 1.08 63 μs 1.08

MKLU+Metis 59.3 μs 1.09 61 μs 1.12

CM

GenCode 32 μs 1 38 μs 1

MKLU +AMD 30.7 μs 1.04 36 μs 1.06

MKLU+COLAMD 30.6 μs 1.05 36 μs 1.06

MKLU+Metis 31.4 μs 1.02 36 μs 1.06

The presented results demonstrate the efficiency of fill-in

reduction techniques. The performance gain can reach 26% in

real-time for Xavier network. As expected, efficiency tends to

decrease with decreasing network size. The parallelized

version of Xavier network, for example, is less impacted with

fill-in reduction.

The combination of MKLU fill-in reduction and CM

reaches respectively, for case-1 and case-2, speed-up ratios of

3.5 (∆𝑡̅̅ ̅
𝑅𝑇𝑆𝐸𝑄+𝐺𝑒𝑛𝐶𝑜𝑑𝑒

∆𝑡̅̅ ̅
𝑅𝑇𝐶𝑀 4 𝑡𝑎𝑠𝑘𝑠+𝑀𝐾𝐿𝑈

⁄) and 1.9

(∆𝑡̅̅ ̅
𝑅𝑇𝑆𝐸𝑄+𝐺𝑒𝑛𝐶𝑜𝑑𝑒

∆𝑡̅̅ ̅
𝑅𝑇𝐶𝑀+𝑀𝐾𝐿𝑈

⁄) over the legacy solution

(SEQ+GenCode). All fill-in reduction techniques give

approximately the same performance gain as matrix sizes are

not huge. Also, for other cases with transmission lines, LD

decouples the network each time a transmission line long

enough for decoupling is detected. This limits the maximum

size of subnetwork admittance matrices. For the rest of the

paper, AMD ordering is kept.

B. Partial refactorization

The test case IFA2000, is an HVDC interconnection

between France (Les Mandarins) and United Kingdom

(Sellindge). It is used here to assert the efficiency of partial

refactorization. The modelling presented in [8] is used. Each

LCC pole (Line Commutated Converter) is represented by two

detailed 6-pulse bridges. Fig. 6 shows the LD (4 cores) and

LD+CM (6 cores) parallel decoupling methods. Several

refactorizations are required when the link is in operation

which comes from repetitive thyristor commutations. The

time-step is set to 30 μs. The 10 s starting sequence real-time

software-in-the-loop (SIL) simulation is run on an OP5031

target 32 bits Linux with 32 cores (2 CPU Intel Xeon E5 3.2

GHz - 16 cores).

Fig. 6. Overview of IFA2000 modelling and parallel decoupling.

For LD decoupling, the larger subnetwork is Sellindge side.

The total size of the admittance matrix is 125x125. The size of

the fixed part (linear elements) is 33x33. Fig. 7 shows the

sparsity structure of the admittance matrix and fill-in reduction

ordering.

Fig. 7. Sparsity structure before (left) and after (right) AMD ordering for

IFA2000 Sellindge subnetwork.

Fig. 9 displays the execution times of the most loaded

processor which runs Sellindge side subnetwork. Prior the

start of the stations, GenCode is more efficient than MKLU.

Fill-in reduction delivers computation gains mainly during the

solution phase (backward and forward substitution) as the

converter stations have not yet started. This is not enough to

over perform the code generation optimization of GenCode.

After station start (t>6.4s), fill-in reduction is very effective on

the partial factorization stage. MKLU shows performance

gains over GenCode. It is even better to applied fill-in

reduction to the entire matrix. Indeed, MKLU+RefactChg

improves by 50% the performance of GenCode solver. It is the

only method with an execution time per time-step far below

the 30 μs of the simulation time-step which guarantees a real-

time simulation with no overruns. As a counterpart, the

solution with this method needs three full refactorizations to

cope with pivot invalidity. Applying fill-in reduction in the

whole matrix requires pivoting to achieve a stable simulation.

Fig. 8. Execution time of the most loaded processor, LD using various
solvers for a 10 s SIL real-time simulation.

With LD+CM decoupling, the maximum matrix size is

reduced to 77x77 with a fixed part of 21x21. In that case, as

depicted by Fig. 9, the effect of fill-in reduction on

performance is less important. RefactVarChg is still more

efficient than RefactVarOpt. However, the performances are

similar with GenCode. Only 5% of performance gain are

obtained when converters are in operation. Code generation

optimization avoids less function calls and extra programming

structures in comparison with MKLU solver. This

counterbalances the fill-in reduction performance gains which

are less important with lower matrix dimensions. In that case,

the trade-off between fill-in reduction and further CM

parallelization is in favor of fill-in reduction. CM decoupling

improves a little over fill-in reduction while using two extra

simulation cores.

Fig. 9. Execution time of the most loaded processor, LD+CM using various

solvers for a 10 s SIL real-time simulation.

C. Pivoting efficiency

The previous part has shown the utility of pivoting when

fill-in reduction is applied to the whole matrix. Another

example comes from the CM decoupling. It has been already

shown in [8][9] that the open circuit solutions for subnetworks

may not be stable. The two 6-pulse bridges case (Fig. 10)

show this kind of instability. CM decouples each 6-pulse

bridge into two subnetworks (Task 1 and Task 2). With this

decoupling, the simulation is unstable with GenCode.

However, using MKLU helps to achieve a stable simulation.

Several pivot changes are required during the computations.

MKLU benefits from pivoting to strengthen the stability of

CM decoupling. Test case data can be found in the Appendix.

Fig. 10. CM decoupling of two 6-pulse bridges.

D. HIL real-time performance

For real-time HIL simulation, the test case of IFA2000 is

considered with the physical cubicles and protections replicas

in the simulation loop. The real-time setup is the same as [26].

As depicted in Fig. 11, LD decoupling is used to parallelize

the network solution. The simulation runs in real-time with 40

μs time-step on three cores on an OP5031 target 64 bits Linux

with 16 cores (CPU Intel Xeon E5 3.2 GHz – 16 cores). The

power transit is set to 1000 MW from Les Mandarins to

Sellindge. A single phase-to-ground fault occurs on the Les

Mandarins side. It is eliminated after a duration of 40 ms. The

maximum admittance matrix size (Sellindge subnetwork

simulated on Proc 1, see Fig. 11) is 131x131 with a fixed part

of 30x30.

Fig. 11. IFA2000 HIL setup with LD decoupling.

Fig. 12 shows similar performance gains as for the SIL

simulation of section III.B. Fill-in reduction applied to the

whole matrix (RefactChg) is still the best strategy to save

computing times. Pivoting is still necessary for a stable

simulation. MKLU+RefactChg reaches a performance gain of

14% over GenCode during HIL real-time simulation. Fig. 13

demonstrates that MKLU gives the same results as GenCode.

Fig. 12. Execution time of the most loaded processor, LD using various
solvers for HIL real-time simulation.

Fig. 13. DC voltage validation during single-phase-to-ground fault.

IV. CONCLUSION

This paper presented the integration of a direct sparse linear

solver, named modified KLU (MKLU), for parallel real-time

electromagnetic transient simulations.

First, fill-in reduction techniques embedded in MKLU have

provided performance gains of 26% over an existing code

generation solver (GenCode) for linear networks. With the

compensation method (CM) parallelization technique, fill-in

reduction applied to the whole admittance matrix allows

reaching a speed-up of 3.9 over the sequential solution with

GenCode. For an HVDC network example, the combination

with partial refactorization (MKLU+RefactChg) improves by

50% over GenCode when several repetitive refactorizations

are required. When the matrix size decreases with further

parallel decoupling using LD+CM, fill-in reduction techniques

are less effective.

Second, MKLU offers pivoting which is required to have

fill-in reduction over the whole matrix combined with partial

refactorization (RefactChg). Without this technique, some

simulation cases can become unstable. Additionally, changing

the pivot improves the robustness of CM decoupling.

Lastly, a performance gain of 14% has been observed for

MKLU+RefactChg for HIL real-time simulation.

Further research is needed to improve the efficiency of

partial refactorization.

V. APPENDIX

Data of the test case presented in Fig. 10:

- For the voltage source, 𝑉𝑠𝑟𝑐 = 86.6 𝑘𝑉, 𝑅𝑠𝑟𝑐 = 1.5 , 𝐿𝑠𝑟𝑐 =
0.043 𝑚𝐻

- 𝑅1 = 0.01 𝛺, 𝐿1 = 0.1 𝐻

- For each diode, 𝑅𝑜𝑝𝑒𝑛 = 10−3 𝛺 , 𝑅𝑐𝑙𝑜𝑠𝑒 = 106 𝛺 ,

𝑅𝑠𝑛𝑢𝑏𝑏𝑒𝑟 = 100 𝛺, 𝐶𝑠𝑛𝑢𝑏𝑏𝑒𝑟 = 10−6 𝛺, 𝑉𝑚𝑖𝑛 = 0.8 𝑉

- For Transformers, Y ground for primary side, Y floating for

secondary, 𝑉𝑝𝑟𝑖𝑚 = 86.6 𝑘𝑉, 𝑅𝑝𝑟𝑖𝑚 = 0.43 𝛺 , 𝐿𝑝𝑟𝑖𝑚 =

0.458 𝑚𝐻 , 𝑉𝑠𝑒𝑐𝑜𝑛𝑑 = 8.66 𝑘𝑉, 𝑅𝑠𝑒𝑐𝑜𝑛𝑑 = 0.238 𝛺 ,

𝐿𝑠𝑒𝑐𝑜𝑛𝑑 = 0.025 𝑚𝐻 , for the magnetization branch 𝑅𝑚 =
1.08 𝑀𝛺, 𝐿𝑚 = 2.86 × 103 𝐻.

VI. REFERENCES

[1] S. Dennetiere, H. Saad, Y. Vernay, P. Rault, C. Martin and B. Clerc,

“Supporting Energy Transition in Transmission Systems: An Operator's
Experience Using Electromagnetic Transient Simulation,” IEEE Power

Energy Magazine, vol. 17, no. 3, pp. 48-60, May-June 2019.

[2] H. Saad, P. Rault, S. Dennetière, M. Schudel, C. Wikstrom and K.
Sharifabadi, “HIL Simulation to Assess Interaction Risks of HVDC

Systems for Upcoming Grid Development,” in Proc. Conf. IEEE Indus.

Electron. Soc. (IECON), Singapore, 2020, pp. 5041-5048.
[3] J. Mahseredjian, S. Dennetière, L. Dubé, B. Khodabakhchian and L.

Gérin-Lajoie, “On a new approach for the simulation of transients in

power systems,” Elect. Power Syst. Res, vol. 77, no. 11, 2007, pp.1514-
1520.

[4] A. Abusalah, O. Saad, J. Mahseredjian, U. Karaagac and I. Kocar,

“Accelerated Sparse Matrix-Based Computation of Electromagnetic
Transients,” IEEE Open Access Journal of Power and Energy, vol. 7,

pp. 13-21, 2020.

[5] V. Q. Do, J.-C. Soumagne, G. Sybille, G. Turmel, P. Giroux, G. Cloutier
and S. Poulin, “Hypersim, an integrated real-time simulator for power

networks and control systems,” in Proc. ICDS’99, Vasteras, Sweden,
May 1999, pp. 1-6.

[6] W. F. Tinney, “Compensation Methods for Network Solutions by

Optimally Ordered Triangular Factorization,” IEEE Trans. Power App.
Syst., vol. PAS-91, no. 1, pp. 123-127, Jan. 1972.

[7] O. Alsac, B. Stott and W. F. Tinney, “Sparsity-Oriented Compensation

Methods for Modified Network Solutions,” IEEE Trans. Power App.
Syst., Vol. PAS-102, no. 5, pp. 1050-1060, May 1983.

[8] B. Bruned, S. Dennetière, J. Michel, M. Schudel, J. Mahseredjian and N.

Bracikowski, “Compensation Method for parallel real-time EMT
studies,” Elect. Power Syst. Res., vol. 198, Sep. 2021.

[9] B. Bruned, J. Mahseredjian, S. Dennetière, J. Michel, M. Schudel and N.

Bracikowski, “Compensation Method for Parallel and Iterative Real-
Time Simulation of Electromagnetic Transients,” IEEE Trans. Power

Del., 2023, https://doi.org/10.1109/TPWRD.2023.3238422.

[10] I. S. Duff, A. M. Erisman, J. K. Reid, “Direct Methods for Sparse
Matrices Second Edition,” Oxford University Press, New York, 2017.

[11] T. A. Davis and E. P. Natarajan, “Algorithm 907: KLU, a direct sparse

solver for circuit simulation problems,” ACM Trans. Math. Soft., vol. 37,
no. 3, pp. 36:1-36:17, Sep. 2010.

[12] E. P. Natarajan, “KLU A high performance sparse linear solver for

circuit simulation problems,” M.S. thesis, Univ. Florida, Gainesville, FL,
USA, 2005.

[13] J. Mahseredjian, I. Kocar, U. Karaagac, “Solution Techniques for

Electromagnetic Transients in Power Systems”, In Transient Analysis of
Power Systems: Solution Techniques, Tools and Applications (pp. 9-38),

Wiley, 2014, https://doi.org/10.1002/9781118694190.ch2.

[14] Y. Saad, “Iterative Methods for Sparse Linear Systems, Second edition,”
SIAM, Philadelphia, PA, 2003.

[15] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, Yale

sparse matrix package, I: The symmetric codes, Internat. J. Nurner.
Methods Engrg, 18 (1982), pp. 1145-1151. (Cited on pp. 66, 131.).

[16] A. George and J. W. H. Liu, “The Evolution of the Minimum Degree

Ordering Algorithm,” SIAM Review, vol. 31, no. 1, pp. 1-19, Mar. 1989.
[17] P. R. Amestoy, T. A. Davis and I. S. Duff, “An Approximate Minimum

Degree Ordering Algorithm,” SIAM J. Matrix Analysis & Applic., vol.

17, no. 4, pp. 886-905, Dec.1996.
[18] T. A. Davis, J. R. Gilbert, S. I. Larimore, Esmond G. Ng, “A Column

approximate minimum degree ordering algorithm,” ACM Trans. Math.

Software, vol. 30, no. 3, pp. 381-376, Sept. 2004.
[19] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for

irregular graphs,” J. Parallel Distrib. Comput., vol. 48, no. 1, pp. 96–

129, 1998.

[20] F. Pellegrini, J. Roman, “SCOTCH: A Software Package for Static

Mapping by Dual Recursive Bipartitioning of Process and Architecture

Graphs,” in Proc. HPCN’96, Brussels, Belgium, April 15-19, 1996.
[21] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J.

Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney,

and D. Sorensen, “LAPACK Users' guide (third ed.),” Society for
Industrial and Applied Mathematics, USA, 1999.

[22] S. M. Chan and V. Brandwajn, “Partial Matrix Refactorization,” IEEE

Trans. Power Syst., vol. 1, no. 1, pp. 193-199, Feb. 1986.
[23] J. Dinkelbach, L. Schumacher, L. Razik, A. Benigni, and A. Monti,

“Factorisation Path Based Refactorisation for High-Performance LU

Decomposition in Real-Time Power System Simulation,” Energies, vol.
14, no. 23: 7989, Nov. 2021.

[24] B. Bruned, I. M. Martins, P. Rault and S. Dennetière, “Use of Efficient

Task Allocation Algorithm for Parallel Real-Time EMT Simulation,”
Elect. Power Syst. Res., vol. 189, Dec. 2020.

[25] R. Salcedo et al., “Banshee distribution network benchmark and

prototyping platform for hardware-in-the-loop integration of microgrid

and device controllers,” in The Journal of Engineering, vol. 2019, no. 8,

pp. 5365-5373, Aug. 2019.

[26] Y. Vernay, A. Drouet D’Aubigny, Z. Benalla and S. Dennetière, “New
HVDC LCC replica platform to improve the study and maintenance of

the IFA2000 link,” in Proc. Int. Conf. Power Syst. Transients (IPST),

Seoul, Republic of Korea, 2017, pp. 1-6.

