Neural Architecture Search (NAS) for Designing
Optimal Power Quality Disturbance Classifiers

Qianchao Wang, Itamar Kapuza, Dmitry Baimel, Juri Belikov, Yoash Levron, Ram Machlev

Abstract—Deep learning techniques have recently
demonstrated outstanding success when used for Power
Quality Disturbance (PQD) classification. However, a core
obstacle is that deep neural networks (DNN)s are complex
models, and their architecture is designed using trial and error
processes. Accordingly, the problem of finding the optimal
architecture can be considered as a problem that consists of
high-dimensional solutions. Meanwhile, in the last couple of
years, Neural Architecture Search (NAS) techniques have been
developed to efficiently find the best possible performance
architecture for a specific task. In this light, the goal of this
research is to develop a method to find optimal PQD classifiers
using the NAS technique, based on an evolutionary algorithm.
This method can converge efficiently to an optimal DNN
architecture. Thus, a classifier that achieves high accuracy for
PQDs classification is provided using limited resources and
with minimal human intervention. This idea is demonstrated
on two different DNN typologies- convolutional neural networks
(CNN) and Bi-directional long short-term memory (Bi-LSTM).
By adopting this method, the results of the generated PQD
classifiers are more accurate when compared to recently
developed classifiers.

Keywords—Deep-Learning, Genetic algorithm, NAS, Neural
architecture search, Power quality, PQD.

I. INTRODUCTION

OWER quality is a measure of the degree to which
onltage and current waveforms comply with established
specifications [1]. Several power quality measures are
harmonic distortions, variations in peak voltage, spikes and
sags in voltages and currents, and variations in frequency [2].
In the last decade, Power Quality (PQ) monitoring tools are
becoming a necessity [3]. One reason for the popularity of
such tools is the continuing integration of nonlinear generators
and loads in power grids, most of them based on power
electronics technology, which may inject high-order voltage
and current harmonics into the grid [4], [5].

In this light, many recent studies have focused on the
detection and classification of Power Quality Disturbances

R. Machlev, I. Kapuza and Y. Levron are with the Andrew and Erna
Viterbi Faculty of Electrical & Computer Engineering, Technion—Israel
Institute of Technology, Haifa, 3200003, Israel (ramm@campus.technion.ac.il,
itamarkapuza@campus.technion.ac.il, yoashl @ee.technion.ac.il).

Q. Wang is with the Key Laboratory of Energy Thermal Conversion
and Control of Ministry of Education, School of Energy and Environment,
Southeast University, Nanjing, 210096, China (230208053 @seu.edu.cn).

D. Baimel is with the Shamoon College of Engineering, Beer-Sheva 84100,
Israel (dmitrba@sce.ac.il).

J. Belikov is with the Department of Software Science, Tallinn University
of Technology, Akadeemia tee 15a, 12618 Tallinn (juri.belikov@taltech.ee).

The work of Y. Levron was partly supported by Israel Science Foundation,
grant No. 1227/18. The work of J. Belikov was partly supported by Estonian
Research Council grant PRG1463.

(PQD)s. Up until the year 2018, most of the proposed
algorithms merge feature extraction methods that are based
on signal processing techniques with classification methods
that stem from the theory of machine learning. One familiar
approach is to use the Wavelet transform with a support-vector
machine classifier [6]. Another well-known technique is to
use the S-transform combined with different classifiers [7].
Other signal processing techniques that are being used are
the fast Fourier transform [8] and sparse signal decomposition
methods [9]. Moreover, in the last few years, with the evolution
of Deep Learning (DL) techniques, better classifiers are now
available in multiple fields and applications [10]. As part of
this development, many works focusing on PQD classification
such as [11]-[16] have implemented deep learning techniques,
which in certain cases outperform the traditional classification
algorithms. All of the above mentioned works seem to
have advantages compared to traditional algorithms in terms
of efficiency, noise immunity, and accuracy. Recently, a
comprehensive review of deep learning for power quality
has been published [17]. This survey aims to introduce deep
learning to the power quality community by reviewing the
latest applications and discussing the open challenges of using
DL for PQD. Furthermore, review [17] also covers traditional
algorithms of signal processing and feature extraction and
compare them to DL approaches.

However, despite their evident success, deep neural
networks (DNN) are very complex models since their
architecture is designed using trial and error processes and
they may consist of hundreds of layers and millions of
parameters [18]. Accordingly, the problem of finding the
optimal architecture can be considered as a problem that
consists of high dimensional solutions. In addition, the
development of DL models is computationally intensive with
no guarantees on compute limits and performance, thus power
experts may limit their practical usefulness [18].

Considering the above gap, the aim of this research is
to develop an efficient method with low-complexity to find
optimal PQD classifiers using Neural Architecture Search
(NAS) technique [19]. NAS techniques can find a DNN
model with high accuracy from large search space of possible
network typologies and operations using limited resources and
with minimal human intervention. The suggested method is
based on evolutionary algorithm [20], [21] and operates as
follows: first, a few random architectures for PQD classifier
are generated. Then, at each iteration, these architecture are
trained and ranked based on an accuracy metric using the
testing data. At the final stage, the candidate architectures are
updated based on a specific mechanism, which is inspired by

the process of natural selection, allowing to search and obtain
new architectures in the next iterations. This process continues
until reaching a certain condition. It is shown that the method
converges efficiently to an optimal architecture. Thus, a
classifier which achieve high accuracy for PQDs classification
is provided using limited resources and with minimal human
intervention. This idea is demonstrated on two different neural
network topologies - convolutional neural networks (CNN)
and Bi-directional long short term memory (Bi-LSTM). The
suggested NAS technique is tested on synthetic data-set and
compared to reference classifiers from work [22].

Note that, as far as we know, the use of NAS for power quality
classifiers and energy applications, is still new and no studies
have been published so far.

II. NAS METHOD FOR PQD CLASSIFIERS
A. NAS - General

Neural Architecture Search (NAS) is an automatic
architecture engineering process aiming to build a DL model
with the best performance on a specific task while using
limited resources and minimal human intervention. NAS
was already proven to outperform manually designed DL
architectures [23], [24], and has significant overlap with
hyperparameter optimization [25]. In NAS the search space
defines which architectures can be represented including
different properties and hyperparameters of the model. Such
parameters are number of layers, type of layers (e.g.,
convolution, fully connected, recurrent, pooling), activation
functions (e.g., ReLU, softmax), type of optimizer (e.g.,
RMSProp, Adagrad, Adam), learning rate, and batch size.
Furthermore, incorporating prior knowledge about typical
properties of architectures well-suited for a task can reduce
the search space size and simplify the search. In our case,
properties of known DL-based PQD classifiers are used
to define the search space. The search strategy describes
how to explore the search space of the neural architectures.
From one hand, it is desirable to find well-performing
architectures quickly, while on the other hand premature
convergence to a region of sub-optimal architectures should
be avoided. Nowadays, different search strategies for NAS
have been introduced, including random search, Bayesian
optimization, evolutionary methods, reinforcement learning,
and gradient-based techniques.

B. Evolutionary Search Strategy

Evolutionary algorithms are population-based metaheuristic
optimizers. These algorithms consist of several essential
components inspired by biological evolution [25]. An
evolutionary algorithm starts with initialization, the first
generation of population, followed by the subsequent steps
until termination:

1) Select parents from the population for reproduction.

2) Apply recombination and mutation to create new
classifiers.

3) Evaluate the fitness of the new classifiers.

4) Select the survivors of the population.

Recombination and mutation operators are chosen to balance
population diversity and similarity. Then, survivor selection
enables competition among the best classifiers of the
population based on the chosen fitness function. First, parent
architectures are selected for recombination and mutation,
leading to a subset of network architectures in the search space.
Then, each classifier, i.e. network architecture, is then trained
and evaluated for fitness. Since recombination and mutation
steps cause population growth, there is a need for the survivor
selection component, which seeks to reduce the population size
and enable competition among the classifiers. Several policies
are used to achieve this, ranging from selecting only the best
(elitist selection) to selecting all classifiers.

In this work, evolutionary algorithm named genetic algorithm
(GA) is used for NAS [26]. In GA the classifiers are
represented using a fixed-length encoding called the genome.
A genome consists of genes, each gene contains a property or
hyperparameter of the network.

C. Implementation of NAS for POD

The suggested framework of NAS for PQD is described in
Fig. 1. In addition, Table I presents the layers’ properties of the
corresponding genes, where the options {0, 1} mean whether
the mentioned property is used or not. In this way, each
network is represented by a fixed-length genome encoding
information about the network’s architecture. Based on this
table, an exmaple which illustrates a genome representation
for CNN classifier is shown in Fig. 2. In this figure, each
gene describes a specific layer’s property (1D convolution or
dense) and the final gene is the optimizer parameters.

riginal

Time.

Search Space §
(Possible properties
and hyperparameters)

PQD Database

Best DL-based
PQD Classifier

Neural Architecture Search
using Genetic Algorithm

Fig. 1: Framework of proposed NAS for PQD classifier.

TABLE I: Properties of Layers.

1D-Conv (pair)
Activee {0,1}

Bi-LSTM (pair)
Active € {0,1}

Dense
Active € {0,1}

Filterse NCF Units € NBLU Nodes € NDN
Batch normalization Batch normalization Batch normalization
€ {0,1} €{0,1} € {0,1}

Activatione AF - Actication € AF
Max poolinge {0,1} - -

The NAS for PQD process can be summarized in the form
of Algorithm 1. Initialization of the first generation is done
using a uniform probability on the search space S. The fit
function that is used to evaluate each network is cross-entropy.
The selection operator used is rank selection, where in each
generation the best 8% of the classifiers are kept for the

1D_conv_
pair_1

1D_conv_

pair_2 dense_2

dense_out | optimizer

‘ dense_1

Batch
normalization=1

Number of

filters=16 Activation=ReLU

Max pooling=1

Active=1 ‘

Fig. 2: GA genome which represents a CNN-based PQD
classifier, including zoom in on the genes representing the
properties of the first pair of 1D convolution layers

next generation, thus (100 — 5)% of the next generation are
the result of reproduction from classifiers of the previous
generation. Single-point crossover is used as the reproduction
operator, and the mutation operator is done by changing one
or several genes of an offspring using uniform sampling on
the proper search space. The number of optional mutations
increases during the evolution process.

Algorithm 1: NAS for PQD using Genetic Algorithm

Input:
D: PQD dataset,
S: search space,
G': number of generations,
N: number of classifiers in each generation.
Initialization: generating a set of randomized classifiers
{MG:M};V:l from S, and training and tesing their PQD
classification accuracy on D using cross-entropy.

forg=1,...,G do

Selection: producing a new generation {M, ,, })_; with
a rank performance process on {Mg,1,7L}fY:1: keeping
the best 5% architectures and reproduce (100 — /)%
architectures.

Recombination: performing single-point crossover with
uniform probability according to the genome length.

Mutation: for each classifier in the new generation
{My,}N_,, performing mutation on
max{0.3- N, | %]} genes using uniform sampling on
the proper options from S.

Evaluation: for each classifier in { M, , }5_, training
and testing its PQD classification accuracy on D using
cross-entropy loss function.

end
Output a set of classifiers in the final generation
{Mg,, Yh_, with their PQD classification accuracies.

Also, Table II presents the search space for both CNN and
Bi-LSTM PQD classifiers.

TABLE II: Search Space: Architecture Parameters.

Parameter Description

NCL Number of 1D convolutional layers’ pairs
NCF Number of filters

NBLL Number of Bi-LSTM layers’ pairs
NBLU Number of units in a Bi-LSTM

NDL Number of dense layers

NDN Number of nodes in a dense layer

AF Activation functions

OPT Number of optional optimizers

In this work the next definition for comparing computational

complexity between brute force search and NAS is suggested:

O(solutions(brute force))
O(solutions(NAS))
_OPT-L-(NDL-NDN - AF)
N N.-G ’
where L = NBLL - NBLU for Bi-LSTM classifier and
L = NCL - NCF - AF for CNN classifier.

complexity ratio =

(D

ITI. REPRESENTATIVE EXAMPLES BASED ON DIFFERENT
NEURAL NETWORK TYPOLOGIES

A. Dataset and the reference classifiers for PQD

The data-set is based on work [22], a PQDs Signals
Generator. In this work, sixteen PQDs are generated and used
by the Synthetic Generator shown in Table III. Our generated
dataset contains 11200 signals, which are around 700 signals
for each disturbance type. Each disturbance has a predefined
number of copies with random parameters and additive white
Gaussian noise.

TABLE III: PQDs Used by the Synthetic Generator.

Oscillatory transient | 15 Flicker with sag

Disturbances
1 Normal 9 Notch (periodic)
2 Sag 10 Spike
3 Swell 11 Sag with harmonics
4 Interruption 12 Swell with harmonics
5 Harmonics 13 Interruption with harmonics
6 Flicker 14 Flicker with harmonics
7
8

Impulsive transient 16 Flicker with swell

Four reference classifiers were used for comparison with the
architecture generated by the NAS method. These reference
classifiers are taken from [22], [27] and are based on different
neural network typologies. The first network is convolutional
neural network (CNN) shown in Table IV including 1-D
convolution with a Rectified Linear Unit (ReLU), maxpooling
layers, batch normalization layers and fully-connected layers
which are designed to capture 1-D features. The kernel size
is 3 and the stride value is 1 for both convolutional and
maxpooling layers. The second network is Bi-directional long
short-term memory (Bi-LSTM), shown in Table V which
consists of Bi-LSTM and fully-connected layers to processes
sequential inputs. Each Bi-LSTM layer contains 64 hidden
units.The last two networks are CNNs named ResNet and
Inception-Residual neural networks. The ResNet is based on
[28], and uses Residual layers as shown in Fig. 3a. The
architecture of this network is presented in Table VI. In this
CNN, for all convolutional layers the kernel size is 16 and
the stride value is 1 and for all max-pooling layers the kernel
size is 2 and the stride value is 2. The Inception-Residual
neural network is based on [29] which uses Inception-Residual
blocks as shown in Fig. 3b. The architecture of this network is
presented in Table VII. The implementation of the reference
classifiers are done by ‘Keras’ and ‘Tensorflow’ frameworks
in Python.

TABLE IV: Baseline CNN Architecture.

Layer Parameters Activation
1 Convolution (1x3) Filter size = 32, Stride = 1 ReLU
2 Convolution (1x3) Filter size = 32, Stride = 1 ReLU
3 MaxPooling (1x3) , Stride = 1
4 Batch normalization
5 Convolution (1x3) Filter size = 64, Stride = 1 ReLU
6 Convolution (1x3) Filter size = 64, Stride = 1 ReLU
7 MaxPooling (1x3) , Stride = 1
8 Batch normalization
9 Convolution (1x3) Filter size = 128, Stride = 1 ReLU
10 Convolution (1x3) Filter size = 128, Stride = 1 ReLU
11 Global MaxPooling
12 Batch normalization
13 Flatten
14 Fully connected Size = 128 ReLU
15 Fully connected Size = 128 ReLU
16 Batch normalization
17 Fully connected Size = 16 Softmax
TABLE V: Baseline Bi-LSTM Architecture.
Layer Parameters Activation
1 Bi-LSTM hidden units = 64
2 Bi-LSTM hidden units = 64
3 Bi-LSTM hidden units = 64
4 Fully connected Size = 128 ReLU
5 Fully connected Size = 128 ReLU
6 Fully connected Size = 128 ReLU
7 Fully connected Size = 16 Softmax
TABLE VI: ResNet Architecture [28]
Layer Parameters Activation
1 Convolution (1x16) Filter size = 64, Stride =1 ReLU
2 MaxPooling (1x2) Stride = 2 -
3 Residual block
4 Residual block
5 MaxPooling (1x2) Stride = 2 -
6 Residual block
7 Residual block
8 MaxPooling (1x2) Stride = 2 -
9 Fully connected Size = 256 ReLU
10 Fully connected Size = 16 Softmax

TABLE VII: Inception-Residual Architecture [29]

Layer

Parameters

Activation

Inception-Residual block

Inception-Residual block

Inception-Residual block

Inception-Residual block

Inception-Residual block

fully connected

size = 256

dropout = 0.1

#
1
2
3
4
5
6
7

fully connected

size = 16

Softmax

Previous layer

‘lxlconv‘xl ‘lxlconv‘xl ‘1><1(:onv‘><1

l

‘1><3cunv‘><32 ‘1><5<:unv‘><16 ‘IXTC()HV‘XS

uondauuod dys

uonsauuod dnjg

‘ ReLu ‘ ‘ ReLu ‘ ‘ ReLu ‘

Filter concatenation

(b) Inception-Residual block used for
CNN-4

(a) Residual block used
for CNN-3
Fig. 3: Special Convolution layers that were used in this work
based on [28] and [29].

For all networks the fitting parameters are shown in
Table VIII. The size of each mini-batch is set to 64 signals,
which are selected randomly for the back-propagation stage in
the training process. The number of epochs, which indicates
the number of times the network run on the entire training
dataset, is 50 for the CNN, ResNet and Inception-Residual,
and 60 for the Bi-LSTM. The selected loss function is based on
cross-entropy, and the optimizer is “Nadam” for the CNN, and
“Adam” for the Bi-LSTM. The built-in ‘ReduceLROnPlateau’
is utilized in both classfiers to reduce learning rate.

TABLE VIII: Fitting Parameters for reference classifiers.

Parameters Values
Batch size 64
Epcoch 50 (CNNs), 60 (Bi-LSTM)

Loss function Cross-entropy

‘Nadam’

Optimizer

The training set includes 90% of the samples in the complete
data-set, and the testing set includes the remaining 10%. The
accuracy is defined as:

Number of correct predictions

2

Accuracy = Total number of predictions

The training process for the reference classifiers is shown
in Fig. 4 and the confusion matrices representing the
classification results are shown in Fig. 5. The accuracy of
CNN, Bi-LSTM, ResNet and Inception-Residual is 93.5%,
90.41%, 88.48%, 89.64% respectively. Although the accuracy
of both classifiers tends to be 1 in training process, there
is some bias when the classifiers are validated. From the
confusion matrix it can be seen that the trained networks have
errors when classify the flicker as spike . There are also other
errors in both classifiers which means they can be further
improved.

B. Results of NAS for POD

Although the the reference classifiers have good results,
the structure of networks might not be optimal in terms of
accuracy. The performance of the classifiers can be improved
if better network architecture can be found using the suggested

1.0 200000008 P00000000 I C00TGREERT0oR0000ES:
) m BRTHI T A
WW?YW FECOA V7| I P e
0.8 A * ¥
T
>
§ 061 i » CNN_train_acc
3 E CNN_val_acc
< f BiLSTM_train_acc
0.4 1 BiLSTM_val_acc
ot ResNet_train_acc
" +#— ResNet_val_acc
0.2/ Inc_train_acc
¥ f Inc_val_acc
0 10 20 30 40 50 60
Epoch
(a) Accuracy of the reference classifiers
25 4 _ .
©® CNN_train_loss
CNN_val_loss
20 A BiLSTM_train_loss
BiLSTM_val_loss
ResNet_train_loss
15 1 #+— ResNet val_loss
§ Inc_train_loss
— Inc_val_loss
10 A
5 B
04 "
0 10 20 30 40 50 60
Epoch

(b) Loss of the reference classifiers

Fig. 4: Accuracy and Loss of the reference classifiers.

NAS method from Section. II as presented next. Basline CNN
and Bi-LSTM are chosen to optimize the neural architecture
using NAS. Each convolutional module has two 1-D
convolutional layers with activation functions: a maxPooling
layer and a batchnormalization layer. Each Bi-LSTM module
has a Bi-LSTM layer and a batchnormalization layer.
Each fully-connected module has a dense layer with an
activation function and a batchnormalization layer. For CNN,
the optimized parameters contain the number of filters in
convolutional layers, the number of hidden units in dense
layers, the types of activation, and the batchnormalization
layers. For Bi-LSTM, the optimized parameters contain
the number of hidden units in both Bi-LSTM layers and
dense layers, the types of activation functions, and the
batchnormalization layers. The boundaries of the optimized
parameters are shown in Table IX. The number of filters and
hidden units is selected according to the power of 2. During
the optimization process, the modules of layers will first be
confirmed whether they are active or not. The numbers of
generations and off-springs are [G = 10, N = 10] for CNN
and [G = 5,N = 5] for Bi-LSTM and for both network
types B = 20%. The other fit parameters are the same as
the reference classifiers, expect the optimizer which will be
optimized by NAS. The convergence of NAS optimization is
shown in Fig. 6 and the optimal structures searched by NAS

are shown in Table X and Table XI for CNN and Bi-LSTM.
Using these parameters it can be seen that the complexity
ratio (1) is bigger than 4500 for CNN and bigger than 2500
for LSTM.

TABLE IX: The Boundaries of Optimized Parameters.

Parameters Boundaries

NCF [29;27]

NBLU [20; 28]

NDN [20; 28]

AF [‘linear’,‘Relu’, ‘sigmoid’, ‘tanh’]
Batch normalization 0;1

NCL 10

NBLL 5

NDL 10

OPT [‘adam’,‘rmsprop’, ‘adagrad’, ‘adadelta’]

TABLE X: Optimal CNN Architecture using NAS.

Module Layer Parameters Activation
Convolution (1x3) Filter size = 16, Stride = 1 Sigmoid
1 Convolution (1x3) Filter size = 16, Stride = 1 Sigmoid
MaxPooling (1x2) , Stride = 1
Batch normalization
Convolution (1x3) Filter size = 128, Stride =1 Sigmoid
2 Convolution (1x3) Filter size = 128, Stride =1 Sigmoid
Batch normalization
Convolution (1x3) Filter size = 8, Stride = 1 Relu
3 Convolution (1x3) Filter size = 8, Stride = 1 Relu
MaxPooling (1x2) , Stride = 1
Convolution (1x3) Filter size = 16, Stride = 1 Tanh
Convolution (1x3) Filter size = 16, Stride = 1 Tanh
Batch normalization
Convolution (1x3) Filter size = 8, Stride = 1 Relu
Convolution (1x3) Filter size = 8, Stride = 1 Relu
MaxPooling (1x2) , Stride = 1
Convolution (1x3) Filter size = 64, Stride = 1 Relu
6 Convolution (1x3) Filter size = 64, Stride = 1 Relu
MaxPooling (1x2) , Stride = 1
Batch normalization
7 Flatten
8 Fully connected Size = 32 Tanh
9 Fully connected Size = 16 Tanh
10 Fully connected Size = 64 Sigmoid
1 Fully connected Size = 64 Tanh
Batch normalization
12 Fully connected Size = 16 Softmax

The average classification accuracy of the testing sets for
the CNN and Bi-LSTM classifiers using NAS are 98.59%
and 96.79%, respectively as can be seen from Table XII. For
CNN using NAS, note that the ‘Relu’ is not the only activation
function since ‘Sigmoid’ and ‘Tanh’ are used as well (although
they considered to be less common for CNNs). For Bi-LSTM
using NAS, the optimized structure are similar to the baseline
except considering the usage of batchnormalization layers in
the structure. Both the optimized models use ’Adam’ as the
optimizer. The confusion matrices of both optimized CNN

Normal o o o o 0 o o o o 0 0 0 70
Sag 00 0 0 0 0 0 0 2 0 0 0
Swell{ 0 o o o o o 0 o o 1 o 0 0 0
60
Interruption{ 0 0 0 00 0 0 0 0 0 0 0 0 0 0
Harmonics{ 0 0 0 0 00 0 0 0 0 0 4 0 0 1
Flicker{ 0 0 0 0 0 0 0 028 0 0 0 0 0 0 50
Oscillatory transient{ 1 0 0 0 0 0 00 0 0 0 1 0 0 0
$ impusivetransient 10 0 0 0 0 0 0 000 0 0 0 0 0 0
2 40
H Notch (periodic){ © 0 0 0 0 0 0 0 000 2 0 0 1 0
spke{ 0 0 0 0 0 2 0 0 03 0 0 0 0 0 0
Sag+harmonics{ 0 0 0 0 0 0 0 0 0 0 H 0 0 0 0 o0 30
Swell+harmonics{ 0 0 0 0 0 0 0 0 0 0 0 E 00 0 0
Interruption+harmonics{ © 0 0 0 0 0 0 0 0 0 0 0 0o 0 o 2
Flicker+harmonics{ 2 0 0 0 1 0 4 0 0 0 14 0 1 0 0
Flicker+sag{ 0 0 0 0 0 2 0 0 0 5 0 12 0 0 0
Flicker+swell{ 0 1 0 0 ©0 0 0 6 0 0 0 0 6 0 0 10
T 2 3§ L g g g2 L L L L LR T
E & ¢ 2 2 ¢ 8 5 5 3 ¢ ¢ ¢ ¢ 8§ %
s A8 E e e EEEEL
z E - H g T | S—
f: $E£8 5523 °
= gL og PR
2e 8 F3d
i igg
3 E g
2
£
Predicted label
(a) Baseline CNN.
80
Normal o 1 3 o o o o 0 o o o 0 0 0 0
Sag{ 0 0O 0 4 0 0 0 0 0 0 0 0 0 0 2 70
swell{ 0 0 100 0 0 0 0 0 0 0 0 0 0
Interruption 0 o o o o o o 0 o o o o [) 0 60
Harmonics{ 0 6 0 0 0 0 0 0 0 0 0 0 0 0 O
Flicker{ 0 o o o o o o 1 o o o o 0 [0
50
Oscillatory transient{ 0 0 1 0 0 0 01 0 0 0 0 0 0 0
& Impuisivetransient { 0 0 0 0 0 0 0 0 0 0o o 0 0 o
§ Notch (periodic){ 0 0 0 0 0 1 2 0 0 0 0 0 0 0 o0 40
Spke{ 0 0 0 0 0 0 0 0 0O 0 0 0 0 0 0
Sag+harmonics { 0 o o o o o o o 0 o o 0 [1 0 30
Swell+harmonics{ 0 0 0 0 0 0 0 0 0 0 1 10 1 0
Interruption-+harmonics1 0 0 0 0 0 0 ©0 24 0 0 0 0 33 0 0 0
20
Flicker+harmonics{ 1 0 0 0 ©0 0 0 0 0 0 0 0 0 0 o
Flicker+sag7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Flicker+swell{ 0 o o o o o o o 0 o o [0 [[10
T 2 3 5§ L § g g 3T £ L5 8 L L 8 T
£ 8 2 g ¢85 5% 3% ¢ ¢ ¢ ¢ 8¢
5 6 8 § 2 3 5 & & 5§ § 5 § f @°
z g E T § 5 % EEEE g ¢ Lo
g 2 £ 2oz
£ §25 FiiiEog
2 2: 8%
T 3 5 8 2
3 E £
g

Predicted label

(c) ResNet.

Ncrmal o o o o o 0 o o o o o 0 0 0 0
7
sag{ 0 © 0 0 0 0 0 0 0 0 0 0 0 0 °
Swell{ 0 1 o o o o 2 o o 3 0 0 0 0
Interruption{ 0 0 0 00 0 0 0 0 0 00 0 0 0 60
Harmonics{ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Flicker{ 0 2 o o o o o o o 6 0 0 2 0
50
Oscilatory transient{ 0 0 0 0 0 0 000 0 1 0 0 9 0 0
S impuisivetransient 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
é Notch (periodic){ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40
Spike{ 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0
Sag+harmonics{ 0 0 0 0 0 0 0 0 0 0 00 0 0 0 20
Swell+harmonics{ 0 0 0 0 0 0 0 0 11 0 0 0 0 8 o0
Interruption+harmonics{ © 0 0 0 3 0 0 0 0 0 0 0 0o 0 o
20
Flicker+harmonics{ 0 0 0 0 ©0 0 0 0 0 0 0 0 0 0 0
Flicker+sag{ © 0 0 0 0 0 0 0 0 0 0 0 0 0 E 0
Flicker+swell{ © 0 0 0 0 0 0 0 0 0 0 0 0 0 O 10
5 2% 5§ & 5 £ 3 g8 888 Y%
E 8 £ 2 £ £ & 538 a €ttt § %
§ a8 s 2w B8 Bt t s
z E - H g T | S—
g8 S & 5555 3% °
£ §rg triiceg
528 5 28 %
3 E LI
° = §
€
Predicted label
(b) Baseline Bi-LSTM.
80
Normal o 1 4 o o o o o o o [0 0) 0
Sagq 0 o o 5 o o o o o o 0 0 0 0 1 70
swell{ 0 0 E © 0 0 0 000 0 2 0 0 0 0
Interruption 4 1 o o o o o o o o o) 0 [) 0
60
Harmonics{ 0 5 0 0 00 0 0 0 0 0 0 0 0 0
Flicker{ 0 o o o o o o 2 o o [0 0) 0
Oscillatory transient{ 0 0 0 0 0 0 0O 0 0 0 0 0 0 0 O 50
2 impuisivetransient {0 0 0 0 0 0 0 32 0 0 0 0 0o 0 o
§ Notch (periodic){ 0 0 0 0 0 8 2 0 0o 0 0 0 0 0 0 a0
Spike{ 0 0 0 0 0 0 0 0 0 00 0 0 0 0
Sag+harmonics { 0 o o o o o o o o o [0 0 0 0 30
Swell+harmonics{ 0 0 0 0 0 0 0 0 0 0 1 0 0 0 o0
Interruption+harmonics{ © 0 0 0 0 0 0 34 0 0 0 0 4 0 0 0
20
Flicker+harmonics{ 0 0 0 0 ©0 0 0 0 0 0 0 0 0 0 o
Flicker+sag{ © 0 0 3 0 0 0 0 0 0 0 0 0 0 0
Flicker+swell{ 0 0 0 0 ©0 0 0 0 0 0 0 0 0 0 0 10
T 23 58 5 82 888 LY
E 8 22 £ £ 8 58 2 € 2 £ £ 8§ 32
5 6 8 § 2 3 5 & & 5§ § 5§ § f ©
2 g E® § 5 % EEEE st Ll
g: $$ S Effz2czog
= §25 pitittx
2 % 3 23 5 &
3 8 ° R
3 E g =
g

Predicted label

(d) Inception-Residual.

Fig. 5: Confusion Matrix of reference classifiers.

TABLE XI: Optimal Bi-LSTM structure using NAS.

TABLE XII: Simulation Average Accuracy Results.

Module Layer Parameters Activation
1 Bi-LSTM hidden units = 128
2 Bi-LSTM hidden units = 128
Batch normalization
3 Bi-LSTM hidden units = 256
4 Bi-LSTM hidden units = 256
4 Fully connected ~ Size = 256 Relu
5 Fully connected Size =128 Relu
6 Fully connected Size =256 Relu
7 Fully connected Size = 16 Softmax

Training

Testing

CNN baseline

97.97%

93.5%

CNN with NAS

99.09%

98.59%

Bi-LSTM baseline

96.41%

90.41%

Bi-LSTM with NAS

98.83%

96.79%

ResNet

95.35%

88.48%

Inception-Residual

94.17%

89.64%

and Bi-LSTM are shown in Fig. 7. It can be seen that when
comparing the classifiers optimized by NAS with the reference
classifiers, there are less errors.

In addition, the computational complexity of CNN and
BiLSTM baseline models and the classifiers optimized by

brute force procedures are reported in Table XIII, based on the
search space defined in Table IX according to the parameters
in Table II. Also, the computational complexity of NAS
procedure is included, based on number of generations and
population in each generation. It can be seen that the NAS
procedure for finding the optimal classifier saved a significant
amount of training time compared to brute force, which can
be also described by complexity ratio defined in eq (1).

0.95 -]
2 09t ,
£
3
o~ 085 B
o
>
S 08 .
-
3
o
;j 0.75 - B
0.7+ Average_acc |
Max_acc
065 Il Il Il Il Il Il Il Il
1 2 3 4 5 6 7 8 9 10
Iteration
(a) NAS CNN
1
wp 0.95 - .
g
e}
wn
2
o
S 09F B
>
Q
&
-
=}
o
o
< 0.85]
Average_acc
Max_acc
0.8 i i ; . | | |]
1 1.5 2 2.5 3 3.5 4 4.5 5
Iteration

(b) NAS Bi-LSTM

Fig. 6: The convergence of NAS optimization through
iterations (generations).

TABLE XIII: Training Time Results.

Architecture Scenario Computational complexity
Baseline 1
CNN Brute force 460800
NAS 100
Base-line 1
BiLSTM Brute force 64800
NAS 100

IV. CONCLUSION

In the last decade, many studies focus on classification
of power quality disturbances using deep neural networks
(DNNs). However, despite their high performance, DNNs
are complex models and their architecture, which consist of
hundreds of layers and millions of parameters, is designed
using trial and error processes. Furthermore, training such
models is considered computationally intensive with no
guarantees on compute limits and performance. In this light,
this research suggests a method to find optimal PQD classifiers
efficiently using Neural Architecture Search (NAS) technique,
based on genetic algorithm. By using NAS an architecture
of high-accuracy PQD classifier is generated efficiently using
limited resources and with minimal intervention. This idea
is demonstrated on two different neural network typologies-

80

NormalJ:0l@ 0 0 0 o0 O O O O O O O O O O O
Sag{ 0O gl 0 o o o o O O O O O O O O O

Swell{ 0 0 0o o0 o 0o 0 0 O O 4 0 O O0 O
Interruption{ 0 0 0O 0o 0o o o 0 0 0o 0O O O O O 60
Harmonics{ 0 0 0 0 H 0 0 o0 o 0 0 0 1 0 0 O
Flicker{ 0 0 0 0 0 50
Oscillatory transient{ 1 0 0 0 0

Impulsive transient 0O 1 0 0 o
40

True label

Notch (periodic)f 0 0 1 0 0

spke{ 0 0 0 0 o0
Sag+harmonics { 1 0 0 0 0 30
Swell+harmonics{ 0 0 3 0 0

Interruption+harmonics{ 0 0 0 0 0

o

Flicker+harmonics {1 0 [0 0

Flicker+sag{ 0 0 0 0
Flicker+swell{ 0 4 0 0o o 0 0 o0 0 o 10
2 2 = £ 8 & £ - 5 8 8 8 8 8 o=
E & 2 2 2 £ 8 § 3 4 2 2 2 2 8 2
5 6 &8 5§ 2 8 3 2 & § 5 § § t @
= g E* 5 5 @ EEEE gt Ll
gz s s 222z g
= £ ¢ s A A
2 & 3 g 3T 5§ ¢
= 3 z w oz = 3
s 2 5 8 ¥
z g S £
° = g

£
Predicted label
(a) NAS CNN

80
Normal o 0o 0o o o0 0 0 O O O O O 0 o0 O
Sagq{ 0 ﬂ 0 0 0 0 0 0 0 0 0] [[o [

Swell{ 0 O k@ o o o o0 0 o0 1 0 1 0 0O 0 0

Interruption { 0 0 0 0 0 0 0 0 0 1] (] [[} [
60
Harmonics{ 0 0 0 0 0o 0o 0 0o o0 0 0 1 0 0 O

Flicker{ 0 0 0 [
50

Oscillatory transient{ 0 0 0 0 0 0o o
% impulsivetransient { 0 1 0 0 0 o o
2
o 40
H Notch (periodic){ 0 0 0 0 0 o o
Spike o o 0 o 0 0 0
30
Sag+harmonics{ 0 0 0 0 0 o o
Swell+harmonics{ © 0 1 0 0 o o
Interruption+harmonics{ 0 0 0 0 0 o o 20
Flicker+harmonics{ 0 0 0 0 0 o o
Flicker+sag{ 0 0 1 1 0 ©0 0 0 0 o 2 o0 o 0 10
Flicker+swell{ 0 2 0 0 0 o0 o 0o 0o 0o 0 o0

Normal
sag

Swell

Interruption

Harmonics

Flicker

Oscillatory transient
Impulsive transient
Notch (periodic)

Spike

Sag-+harmonics
Swell+harmonics
Interruption+harmonics
Flicker+harmonics
Flicker+sag
Flicker+swell

Predicted label

(b) NAS Bi-LSTM

Fig. 7: The confusion matrices by NAS optimization.

CNN and Bi-LSTM. From the results, it can be seen that
the accuracy of the proposed method has increased by more
than 5% when compared to state-of-the-art classifiers. Another
key result is that the suggested NAS method operating with
lower computational complexity and convergences faster to the
optimal solution when compared to brute force search.

More broadly, we believe that NAS techniques have
high potential to improve the performance of deep learning
algorithms, which are increasingly being used nowadays in the
power system community. Therefore, there may be significant
room for future research, which may focus on the use of NAS
techniques in other energy related applications.

[1]

[2]
[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

M. H. J. Bollen, Understanding Power Quality Problems. John Wiley &
Sons, 1999.

C. Sankaran, Power Quality. CRC Press, 2017.

M. H. J. Bollen and I. Y.-H. Gu, Signal Processing of Power Quality
Disturbances. John Wiley & Sons, Inc., 2006.

E. Hossain, M. R. Tur, S. Padmanaban, S. Ay, and I. Khan, “Analysis
and mitigation of power quality issues in distributed generation systems
using custom power devices,” IEEE Access, vol. 6, pp. 16 816-16 833,
2018.

S. K. Khadem, M. Basu, and M. Conlon, “Power quality in grid
connected renewable energy systems: role of custom power devices,”
Renewable Energy and Power Quality Journal, vol. 1, no. 08, pp.
878-881, 2010.

D. D. Yong, S. Bhowmik, and F. Magnago, “An effective power quality
classifier using wavelet transform and support vector machines,” Expert
Systems with Applications, vol. 42, no. 15-16, pp. 6075-6081, 2015.
R. Kumar, B. Singh, D. T. Shahani, A. Chandra, and K. Al-Haddad,
“Recognition of power-quality disturbances using s-transform-based
ANN classifier and rule-based decision tree,” IEEE Transactions on
Industry Applications, vol. 51, no. 2, pp. 1249-1258, 2015.

F. A. S. Borges, R. A. S. Fernandes, I. N. Silva, and C. B. S. Silva,
“Feature extraction and power quality disturbances classification using
smart meters signals,” IEEE Transactions on Industrial Informatics, vol.
12, no. 2, pp. 824-833, 2016.

M. S. Manikandan, S. R. Samantaray, and I. Kamwa, “Detection
and classification of power quality disturbances using sparse
signal decomposition on hybrid dictionaries,” IEEE Transactions on
Instrumentation and Measurement, vol. 64, no. 1, pp. 27-38, 2015.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436-444, 2015.

N. Mohan, K. P. Soman, and R. Vinayakumar, “Deep power: Deep
learning architectures for power quality disturbances classification,” in
2017 International Conference on Technological Advancements in Power
and Energy (TAP Energy), 2017.

H. Liu, F. Hussain, Y. Shen, S. Arif, A. Nazir, and M. Abubakar,
“Complex power quality disturbances classification via curvelet
transform and deep learning,” Electric Power Systems Research, vol.
163, pp. 1-9, 2018.

Y. Deng, L. Wang, H. Jia, X. Tong, and F. Li, “A sequence-to-sequence
deep learning architecture based on bidirectional GRU for type
recognition and time location of combined power quality disturbance,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 8, pp.
4481-4493, 2019.

S. Wang and H. Chen, “A novel deep learning method for the
classification of power quality disturbances using deep convolutional
neural network,” Applied Energy, vol. 235, pp. 1126-1140, 2019.

Y. Zhang, Y. Zhang, and X. Zhou, “Classification of power quality
disturbances using visual attention mechanism and feed-forward neural
network,” Measurement, vol. 188, p. 110390, 2022.

R. S. Salles and P. F. Ribeiro, “The use of deep learning and 2-d wavelet
scalograms for power quality disturbances classification,” Electric Power
Systems Research, vol. 214, p. 108834, 2023.

R. A. de Oliveira and M. H. Bollen, “Deep learning for power quality,”
Electric Power Systems Research, vol. 214, p. 108887, 2023.

S. Chatzivasileiadis, A. Venzke, J. Stiasny, and G. Misyris, “Machine
learning in power systems: Is it time to trust it?” IEEE Power and Energy
Magazine, vol. 20, no. 3, pp. 32-41, 2022.

T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” The Journal of Machine Learning Research, vol. 20, no. 1, pp.
1997-2017, 2019.

L. Xie and A. Yuille, “Genetic CNN,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 1379-1388.
M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming
approach to designing convolutional neural network architectures,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
2017, pp. 497-504.

R. Machlev, A. Chachkes, J. Belikov, Y. Beck, and Y. Levron,
“Open source dataset generator for power quality disturbances with
deep-learning reference classifiers,” Electric Power Systems Research,
vol. 195, p. 107152, 2021.

B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Aging evolution for
image classifier architecture search,” in AAAI Conference on Artificial
Intelligence, vol. 2, 2019, p. 2.

[25]
[26]

[27]

[28]

[29]

M. Feurer and F. Hutter, “Hyperparameter optimization,” in Automated
Machine Learning. Springer, Cham, 2019, pp. 3-33.

S. Mirjalili, “Genetic algorithm,” in Evolutionary Algorithms and Neural
Networks. Springer, 2019, pp. 43-55.

R. Machlev, M. Perl, J. Belikov, K. Y. Levy, and Y. Levron,
“Measuring explainability and trustworthiness of power quality
disturbances classifiers using xai—explainable artificial intelligence,”
IEEE Transactions on Industrial Informatics, vol. 18, no. 8, pp.
5127-5137, 2021.

H. Li, B. Yi, Q. Li, J. Ming, and Z. Zhao, “Evaluation of DC power
quality based on empirical mode decomposition and one-dimensional
convolutional neural network,” IEEE Access, vol. 8, pp. 34 339-34 349,
2020.

R. Gong and T. Ruan, “A new convolutional network structure for power
quality disturbance identification and classification in micro-grids,” IEEE
Access, vol. 8, pp. 88 801-88 814, 2020.

