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Abstract—Parallel operation of grid-forming inverters
(GFMIs) is often achieved using droop characteristics
implemented in converter controllers. Converters’ recovery after
a disturbance depends on the dynamics of each individual GFMI,
and the droop characteristic alone is unable to ensure successful
parallel operation. This work proposes a dynamic-phasor
based modeling approach that enables eigenvalue analysis
of multi-converter systems to identify the underlying factors
that affect the interactions among parallel GFMIs. Network
dynamics are included through dynamic phasor modeling of its
elements, and controller dynamics are fully included. Modeling
modularity is preserved, which allows to easily extend the test
system to any topology of interest. The results presented for an
exemplar two-converter system prove that the virtual inertia
time-constant plays a significant role in exciting interactions,
and that network and control system parameters are vital in
extending the stability margins of the systems. EMT simulation
results from PSCAD/EMTDC are included to verify the validity
of the predictions of the dynamic-phasor based model.

Keywords—Eigenvalue analysis, grid-forming inverters, inertia,
interactions, parallel operation.

I. INTRODUCTION

TECHNOLOGICAL advances in power electronics and
control methods have led to large-scale adoption of

grid-tied inverters for the connection of renewable generation
resources and energy storage devices. Replacing conventional
generation units with inverter-based resources deteriorates
the inertia and strength of the grid that would, otherwise,
have been provided by synchronous machines (SMs).
Advanced inverter control techniques have been suggested
to address these issues [1], [2], including emulation of
synchronous machine characteristics, commonly known as
virtual synchronous machine (VSM) methods. Depending on
the order of the emulated SM, a number of VSM methods
are suggested [1], [2]. Active power-frequency (P-f ) droop
and reactive power-voltage (Q-v) droop characteristics are
commonly found in VSM topologies and provide primary
frequency and voltage regulation functionalities, respectively.
To emulate the inertial characteristics of a SM, the dynamics
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of its swing equation may be incorporated in the P-f controller.
An inverter operating with such control abilities is often
termed a grid-forming inverter (GFMI) and presents as a
controlled voltage source to the grid.

Due to the low thermal capability of power electronic
switches [2], current-limiting algorithms have to be
incorporated into grid-forming control methods. There
are a number of current-limiting algorithms in the literature
[2], [3], including the virtual-impedance-based current limiter
that allows the GFMI to continue to operate as a voltage
source when current-limiting is invoked. This paper uses a
current-dependent virtual-impedance method [3] to reduce
the inrush current following large disturbances.

Although the droop controller enables parallel operation
of GFMIs, it does not guarantee parallel operation at all
times. Poorly selected controller parameters and network
conditions may easily lead to sustained or growing oscillations.
Frequency-domain models have been developed for single
GFMIs for parameter selection [4]; however, extending
their conclusions is invalid for parallel-connected GFMIs
as such systems are prone to interactions. In a few
references, active power oscillations have been observed in
parallel-connected GFMIs [5]–[7]. These oscillations have
been reduced by introducing more damping to the system
via controller modifications. The impact of inertia in exciting
post-disturbance oscillations is explained in [5], but it has
ignored the network dynamics by modeling the network
using constant admittances. The root causes of interactions
in multi-inverter systems are not fully known and various
network and control parameters lead to the excitation of
critical modes in the system. This paper addresses this critical
problem by conducting an eigenvalue-based analysis of a
system that includes all the control and network dynamics.

Impedance-based [8] and eigenvalue-based methods are
commonly used to analyze the stability margins of inverters
[7]. Eigenvalue-based analysis is more attractive in power
system applications due to its ability to identify the states
that significantly participate in the oscillatory mode(s) [9].
This paper uses small-signal modeling [10], [11], wherein
each paralleled inverter is modeled in its own reference frame;
one of the reference frames is then selected as the common
reference frame. Relevant variables are transformed to and
from the common reference frame using proper transformation
matrices. This modeling method preserves modularity, which
enables the addition or removal of any dynamic device.
An eigenvalue-based analysis is then conducted to identify
critical modes. Participation factors of the critical modes
are calculated to identify major participating state variables.



Control and network parameters that influence those states are
changed to identify their sensitivity on the inverter interactions.
This study gives a detailed analysis of the impact of the VSM
controller and the network on post-disturbance oscillations in
paralleled GFMIs.

The main contributions of this study include:
• A small-signal modeling approach is applied to the

adopted grid-forming controller with P-f control, Q-v
control, and transient virtual impedance path.

• This study shows that interactions can happen even
between GFMI with identical control and network
parameters.

• The possibility of expanding the stable region of
operation without introducing additional damping paths
and merely by properly matching the dynamics of P-f
and Q-v controller paths has been demonstrated.

The rest of the paper is arranged as follows. Section II
explains the test system, the controller topology, and the
small-signal modeling of the test system. The eigenvalue
analysis and results are given in Section III. Conclusions are
given in Section IV.

II. DESCRIPTION AND MODELING OF THE TEST SYSTEM

In the system shown in Fig. 1, two grid-forming voltage
source converters are connected to the same point of
interconnection (POI) using LC filters, step-up transformers,
and 10 km long transmission lines. As shown in Fig. 2, the
grid-forming controller consists of an active power-frequency
(P-f ) controller, reactive power-voltage (Q-v) controller and
virtual-impedance (VI) based current controller path. The
(P-f ) droop and swing equation-based P-f controller and
(Q-v) droop-based Q-v controller are given in Figs. 3 and 4,
respectively. The VI-based controller in Fig. 5 consists of the
current-dependent VI path and transient VI paths.

The current dependent VI path will activate only if the
converter current (icvrms) exceeds the set current threshold
(ithreshold) value. Rvi is the virtual resistance proportional to
this current difference. The dq components of the converter
current are multiplied by Rvi. This action mimics a virtual
voltage drop between the converter terminal and filter
inductance (Lf ). The transient VI path activates following
the transients in the converter current and, therefore, acts
as an active damping path to the converter currents. In the
transient VI path, a constant virtual resistance value (Rvi0) is
multiplied by the high-frequency components of the converter
currents’ dq components. This path also emulates a voltage
drop between the converter terminal and the filter inductance.
These two VI paths provide transient virtual voltage drops
to control the converter current, given that the criterion to
activate each path is met. The continuous control of the
grid-forming inverter’s terminal voltage is carried out through
Q-v droop-based PI controller. Tables I-II give the parameters
that are used in the simulations of this test system in the paper.

In the development of the model, switching transients are
ignored as their frequency lies above the frequency range of
interest; dc-side dynamics are also excluded, although they
can be easily augmented onto the model. Unlike conventional

TABLE I
TEST SYSTEM PARAMETERS

Srated = 500 kVA Vdclink = 820 V Lf = 85 µH
RL = 172.8 Ω LL = 0.917 H Cf = 828.9 µF
Ltf = 0.1 pu Rtf = 0.01 pu Rf = 0.0755 Ω

Rtx = 0.103 Ω/km Xtx = 0.405 Ω/km Ytx = 4.117 µS/km

TABLE II
GRID-FORMING CONTROLLER PARAMETERS

H = 3 s Tp = 0.001 s Dp = 0.03 pu Pref = 0.7 pu
Tv = 0.001 s Tq = 0.001 s Dq = 0.03 pu Qref = 0.35 pu
Kp = 0.1 pu Ti = 0.25 s f0 = 60 Hz ωref = 1.0 pu
Rvi0 = 0.25 fhp = 0.5 Hz fsw = 4 kHz Eref = 1.0 pu

ithreshold = 1.1 pu KpRVI = 5

synchronous-machine dominated power systems, the short
response time of an inverter may lead to interactions with the
network [10]. Therefore, the developed model includes the
dynamics of the network using dynamic phasor representation
of network elements.

This paper uses “Component Connection Method” [11] to
develop the small-signal model (SSM). Here the power system
is decomposed into its subcomponents (e.g., grid-forming
and grid-following inverters, synchronous machines, filters,
π-sections etc.) and each subcomponent is linearized locally
to obtain its linear, time-invariant model. Then these
component models are interconnected by linear algebraic
relationships defined by their input-output variables. The
linear algebraic interconnection of these components reduces
the computational effort greatly, compared with a generic
state-space model [11]. The block diagram in Fig. 6 provides
a visual representation of how the method used in this study
may be used to develop models for systems comprising a large
number of network components and grid-forming inverters. In
this figure, the GFMI-i block represents any GFM controller
topology with the average-value model of the inverter as well
as its converter controller. Dynamic devices are not limited to
grid-forming inverters and may include any dynamic device,
e.g., synchronous machines, grid-following inverters, etc.

In developing the small-signal model, the system in Fig. 1
is divided into four sub-sections: the control system (bordered
in red), LC filter and transformer (bordered in blue), network
(bordered in green), and load (bordered in orange). The first
three sub-sections for each inverter are modeled using an
individual reference frame whose rotational speed is governed
by the inverter’s own P-f controller. The reference frame
of one of the GFMIs is selected as the common reference
frame, which is also used to model the load dynamics. The
transformation angle (δi) is obtained as shown in Fig. 7, where
(D − Q) represents the common reference frame rotating at
ωcom, and (di − qi) represents the ith inverter’s reference
frame, which rotates at ωi. The direction of the transformation
angle is modified from [10] to match the Park’s transformation
matrix used in this work. To obtain the overall small-signal
model, relevant state variables are transformed to and from
the common reference frame. The variables in each individual
inverter reference frame can be transformed into the common
reference frame as in (1) using the transformation matrix [Ti]
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Fig. 1. Schematic diagram of the test system.
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given in (2). The corresponding inverse transformation, [Ti]
−1,

is given in (3). The small-signal model for each sub-section
is described next.

[
xDQ

]
=

[
Ti

] [
xdq

]
(1)

[
Ti

]
=

[
cos(δi) − sin(δi)
sin(δi) cos(δi)

]
(2)

[
Ti

]−1
=

[
cos(δi) sin(δi)

− sin(δi) cos(δi)

]
(3)

A. Power Controller

The power controller consists of P-f and Q-v paths. The
inverter’s output active power, Pt, and reactive power, Qt, are
calculated at the terminals of the LC filter of each inverter.
The dynamics of the proportional-integral (PI) controller in
the Q-v control loop is modeled by the state variable x1. The
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Fig. 4. Block diagram of the Q-v controller.
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resulting set of non-linear equations that describes the power
controllers is given by (4)-(9).

dδ/dt = ωcom − ω (4)

dω/dt = −Pf/2H−ω/2HDp+1/2H(Pref +ωref/Dp) (5)

dPf/dt = −Pf/Tp + Pt/Tp (6)

dQf/dt = −Qf/Tq +Qt/Tq (7)

dEf/dt = −Ef/Tv + Et/Tv (8)

dx1/dt = Dq(Qref −Qf) + Eref − Ef (9)

where

Pt = [vfd + (icvd − itd)Rf ]itd + [vfq + (icvq − itq)Rf ]itq

Qt = −[vfq + (icvq − itq)Rf ]itd + [vfd + (icvd − itd)Rf ]itq

Et = [[vfd + (icvd − itd)Rf ]
2 + [vfq + (icvq − itq)Rf ]

2]1/2
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The state equations in (10) are obtained after linearizing
(4)-(9).

˙[
∆XP

]
=

[
APd1

] [
∆XP

]
+
[
APd2

] [
∆XLCL

]
+

[
APd3

] [
∆XN

]
+
[
APd4

] [
∆XL

]
+
[
BPd

] [
∆Uinv

]
(10)

The Q-v controller’s output, v∗cvq, is given by (11) and is
linearized as in (12).

vcvq
∗ = Kp(Dq(Qref −Qf) + Eref − Ef) + x1/Ti (11)[
∆vcvq

∗] = [
CPd

] [
∆XP

]
+
[
DPd

] [
∆Uinv

]
(12)

where[
∆XP

]
=

[
∆δ ∆ω ∆Pf ∆Qf ∆Ef ∆x1

]T
[
∆XLCL

]
=

[
∆icvd ∆icvq ∆vfd ∆vfq ∆itd ∆itq...

...∆icvdhp ∆icvqhp

]T
[
∆XN

]
=

[
∆vpid ∆vpiq ∆itxd ∆itxq

]T
[
∆XL

]
=

[
∆vLD ∆vLQ ∆iLD ∆iLQ

]T
[
∆Uinv

]
=

[
∆ωref ∆Pref ∆Qref ∆Eref

]T
The expanded forms of the matrices in (10)-(12) can be readily
derived, but are not shown due to space limitations.

B. LC Filter

The dynamics of the LC filter and the transformer are
included as explained in this section. High-frequency converter
current components, which are introduced by the transient
VI-based current controller, are included in this section for
convenience. In this study the converter is operated below
ithreshold; therefore, the dynamics of the current-dependent VI
path are excluded. The dq domain non-linear equations that
govern the dynamics of the considered subgroup are given in
(13) to (20).

dicvd/dt = (Rf(itd− icvd)−ωLf icvq+ vcvd− vfd)/Lf (13)

dicvq/dt = (Rf(itq − icvq)+ωLf icvd + vcvq − vfq)/Lf (14)

dvfd/dt = (−ωCfvfq − itd + icvd)/Cf (15)

dvfq/dt = ( ωCfvfd − itq + icvq)/Cf (16)

ditd/dt = (−(Rf +Rt)itd+Rf icvd−ωLtitq+vfd−vpid)/Lt

(17)

ditq/dt = (−(Rf +Rt)itq+Rf icvq+ωLtitd+vfq−vpiq)/Lt

(18)

dicvdhp/dt = −icvdhp/Thp + dicvd/dt (19)

dicvqhp/dt = −icvqhp/Thp + dicvq/dt (20)

where Thp = 1/2πfhp. Linearization of (13) - (20) results in
(21).

˙[
∆XLCL

]
=

[
ALCL

] [
∆XLCL

]
+
[
BLCL1

]
∆ω+[

BLCL2

] [∆vcvd
∆vcvq

]
+
[
BLCL3

] [∆vpid
∆vpiq

]
+ (21)

After accounting for the output of the Q-v controller and
the transient VI path the relationships given in (22) and
(23) are obtained for the expected dq components of the
converter terminal voltage. Note that the transformer’s winding
configuration introduces a 30

◦
phase shift, which is considered

in these equations to refer all the low-voltage side quantities
to the high-voltage side.

vcvd = (vcvq
∗) sin(30

◦
)−Rvi0icvdhp (22)

vcvq = (vcvq
∗) cos(30

◦
)−Rvi0icvqhp (23)

Linearizing (22) and (23) yields the following.[
∆vcvd
∆vcvq

]
=

[
E11

E12

] [
∆XP

]
+

[
E12

E22

] [
∆XLCL

]
+

[
F1

F2

] [
∆Uinv

]
(24)

Substituting (24) in (21) yields (25). The expanded forms of
the matrices in (25) are not shown for brevity.

˙[
∆XLCL

]
=

[
ALCLd1

] [
∆XP

]
+

[
ALCLd2

] [
∆XLCL

]
+[

ALCLd3

] [
∆XN

]
+
[
ALCLd4

] [
∆XL

]
+
[
BLCLd

] [
∆Uinv

]
(25)



C. Network

The inverter-side capacitor and the inductance of the
π-section are considered in developing the dynamic equations
in (26) - (29).

dvpid/dt = −ωvpiq + (itd − itxd)/Cpi (26)

dvpiq/dt = ωvpid + (itq − itxq)/Cpi (27)

ditxd/dt = −ωitxq + (−Rtxitxd + vpid − vLd)/Ltx (28)

ditxq/dt = ωitxd + (−Rtxitxq + vpiq − vLq)/Ltx (29)

where vLd and vLq are the d and q components of the load
voltage after converting from the common reference frame to
an individual reference frame as shown in (30).[

vLd
vLq

]
=

[
Ti

]−1
[
vLD
vLQ

]
(30)

The equations in (31) are obtained after linearizing (26) - (29).

˙[
∆XN

]
=

[
AN

] [
∆XN

]
+
[
BN1

] [
∆ω

]
+[

BN2

] [∆itd
∆itq

]
+
[
BN3

] [∆vLd
∆vLq

]
(31)

The linearized form of (30) is given in (32).[
∆vLd
∆vLq

]
=

[
Tsd

] [∆vLD
∆vLQ

]
+
[
Tvd

]
∆δ (32)

By substituting (32) in (31) the state equations of the network
are obtained as follows.

˙[
∆XN

]
=

[
ANd1

] [
∆XP

]
+
[
ANd2

] [
∆XLCL

]
+[

ANd3

] [
∆XN

]
+

[
ANd4

] [
∆XL

]
+
[
BNd

] [
∆Uinv

]
(33)

The above state equations are developed in individual
inverter reference frames. Therefore, the overall state equations
for the ith inverter are obtained as follows.

˙[
∆Xinv

]
i
=

[
Ainv

]
i

[
∆Xinv

]
i
+
[
AinvLoad

]
i

[
∆XL

]
+[

Binv

]
i

[
∆Uinv

]
i

(34)

where
[
∆Xinv

]
i
=

[
∆XP ∆XLCL ∆XN

]T
i

. The matrix
that relates the states of the above-identified three sub-groups
is given in (35).

[
Ainv

]
i
=

 APd1 APd2 APd3

ALCLd1 ALCLd2 ALCLd3

ANd1 ANd2 ANd3

 (35)

The matrix given in (36) shows the relationship between the
inverter states and the load states.[

AinvLoad

]
i
=

[
APd4 ALCLd4 ANd4

]T
(36)

The relationship between the inverter states to the inverter
input matrix is described using (37).[

Binv

]
i
=

[
BPd BLCLd BNd

]T
(37)

The states of a particular inverter are independent of the states
of other inverters, except for the transformation angle, (δi).
Therefore, the relationship between the ith inverter’s states to

the states of the jth inverter (not the common reference frame
generator) is represented as follows.[

Ainv

]
i−j

=
[
0
]
18×18

(38)

The matrix (
[
Ainv

]
i−com

), which relates the states of the ith

inverter to the states of the inverter in the common reference
frame, is the same as in (38), except the element that relates
the common reference frame’s rotational speed (ωcom) to the
individual frame’s transformation angle (δi) is equal to 1.

D. Load

The dynamics of the load-side capacitances of each
transmission line and the load inductance are modeled in the
common reference frame. The non-linear dynamic equations
of this sub-group are given in (39)-(42). CL is the total
shunt capacitance and N is the number of parallel inverters.
Current flows in the transmission lines are the inputs to this
section. These current injections must be transformed from
the corresponding individual reference frames to the common
reference frame as shown in (43).

dvLD/dt = −ωcomvLQ + (−vLD/RL − iLD +

N∑
i=1

itxDi)/CL

(39)

dvLQ/dt = ωcomvLD + (−vLQ/RL − iLQ +

N∑
i=1

itxQi)/CL

(40)
diLD/dt = −ωcomiLQ + vLD/LL (41)

diLQ/dt = ωcomiLD + vLQ/LL (42)[
itxDi

itxQi

]
=

[
Ti

] [itxdi
itxqi

]
(43)

After linearization of (39) - (42) and (43) the state matrices
given in (44) and (45) are obtained, respectively.

˙[
∆XL

]
=

[
AL

] [
∆XL

]
+
[
BL1

]
∆ωcom+[

BL2

] N∑
i=1

[
∆itxDi

∆itxQi

]
+

[
BL3

]
∆RL (44)

[
∆itxDi

∆itxQi

]
=

[
Tsd

]−1
[
∆itxdi
∆itxqi

]
+

[
Tid

]
∆δ (45)

Substituting (45) in (44) yields:

˙[
∆XL

]
=

N∑
i=1

[
[
ALd1i

] [
∆XPi

]
+

[
ALd2i

] [
∆XLCLi

]
+[

ALd3i

] [
∆XNi

]
] +

[
ALoad

] [
∆XL

]
+

[
BLoad

] [
∆RL

]
(46)

Equation (46) may be rewritten in a simplified form as in (47).

˙[
∆XL

]
=

N∑
i=1

(
[
ALoadinv

]
i

[
∆Xinv

]
i
)+[

ALoad

] [
∆XL

]
+

[
BLoad

] [
∆RL

]
(47)

where
[
ALoadinv

]
i

=
[
ALd1i ALd2i ALd3i

]
. The

expanded forms of the matrices in the above equations are
not shown for brevity.



E. Overall System

The small-signal model for the entire system can be
obtained by combining the linearized equations of the various
subsystems. For the considered two-converter system, and
assuming that GFMI-1 is in the common reference frame, state
equation shown in (48) are obtained. This approach can be
easily extended to any number of parallel-connected GFMIs.

˙[
∆X

]
=

[
A
] [
∆X

]
+
[
B
] [
∆U

]
(48)

where [
∆X

]
=

[[
∆Xinv

]
1

[
∆Xinv

]
2

[
∆XL

]]T
[
∆U

]
=

[[
∆Uinv

]
1

[
∆Uinv

]
2

[
∆RL

]]T
[
A
]
=


[
Ainv

]
1

[
Ainv

]
1−2

[
AinvLoad

]
1[

Ainv

]
2−1

[
Ainv

]
2

[
AinvLoad

]
2[

ALoadinv

]
1

[
ALoadinv

]
2

[
ALoad

]


[
B
]
=

 [
Binv

]
1

[
0
] [

0
][

0
] [

Binv

]
2

[
0
][

0
] [

0
] [

BLoad

]


III. SMALL-SIGNAL ANALYSIS

A small-signal model is developed for the test system
given in Fig. 1, using the parameters given in Table I-II. The
required operating point data are taken from a separate detailed
simulation. This section validates the developed small-signal
model against a detailed EMT model in PSCAD/EMTDC.
A number of control and network parameters are selected
following the eigenvalue analysis and are perturbed to identify
their impact on inverter interactions.

A. Model Validation

To validate the developed small-signal model, its response
is compared with that of a fully-detailed EMT model of
the system in PSCAD/EMTDC. Fig. 8 compares the traces
obtained from the two models for three types of disturbances,
namely, a 0.1 pu decrement of RL, 0.1 pu of impulse to
Pref1 for 0.1 s, 0.1 pu increment of Eref of both the GFMIs.
These tests and others (not shown for brevity) verify that
the developed small-signal model tracks the low-frequency
contents of the response of the EMT model for adequately
small disturbances around an operating point.

B. Eigen-Value Analysis

The eigenvalues of
[
A
]

are obtained to identify the critical
modes in the system. A complex conjugate pair at −0.11 ±
11.35j shows a mode with a damping ratio of 0.94% and an
oscillation frequency of 1.8 Hz; it is identified as critical due
to its low damping. Participation factors are calculated, which
reveal that the following states have significant participation
in the critical mode: δ2 (100%), ω1 (45%), ω2 (45%),
icvd1 (41%), icvd2 (41%), icvdhp1 (40%), icvdhp2 (40%). In
calculating the participation factors, the magnitude of each
participation factor is per unitized using the magnitude of the
highest participating factor as the base quantity.

The dominant states are chiefly associated with the P-f
controller and the transient VI paths. The inertia time
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Fig. 8. Small signal model validation vs. EMT results (a) ∆RL = -0.1 pu,
(b) ∆Pref1=0.1 pu for 0.1 s (c) ∆Eref1 = ∆Eref2 = 0.1 pu, at t = 5 s.

constant (H) and droop co-efficient (Dp) mainly govern
the dynamics of the P-f controller, while the dynamics of
the transient VI are determined by the gain (Rvi0) and the
cut-off frequency (fhp). These control parameters are changed
to assess their impact on the critical mode. Other than
the controller states, converter currents’ d-components have
significant participation. Therefore, the LC filter’s inductance
is changed to evaluate its impact. The results obtained for
the above parameter changes are presented in the following
sections.

C. Impact of Inertia Time Constant (H)

The inertia time constant of GFMI-2 is set to 3 s and the
inertia time constant of GFMI-1 is varied from 0.1 s to 5 s.
The locus of the eigenvalues corresponding to the critical mode
is given in Fig. 9, which shows that at least one GFMI with
fast-acting capability (i.e., with a small inertia time constant)
damps the oscillations quickly. When the inertia time constants
of both inverters are large and in close vicinity, there is a higher
likelihood of interactions and reaching instability.

Although the increment of inertia constant moves the system
towards instability, the stable region of H values can be
slightly extended by increasing the time constant of the Q-v
droop, as shown in Fig. 10. This is because the increment
of inertia time constant increases the response time of the
P-f controller, which is given by 2HDp. Therefore, slowing
down the PI controller in the Q-v path to match the dynamics
of the slowed down P-f controller reduces the likelihood of
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Fig. 9. Locus of the critical eigenvalues for changes in H1.

reaching instability. Note that this slows down the entire GFMI
operation and diminishes their fast-acting abilities.
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Fig. 10. Locus of the critical eigenvalues for changes in H1, Blue trace: Ti

= 0.25 s, Orange trace: Ti = 0.45 s.

Even with identical control and network parameters, this
low-damping mode exists, although it is not visible with a load
disturbance as identical inverters share the load equally. This
low-damping critical mode can be excited through a different
disturbance, for example ∆Pref of one of the machines. Fig.
11 compares each identical GFMI’s virtual rotor oscillation
obtained from PSCAD/EMTDC for a 0.1 pu reduction of RL

( Fig. 11 (a)) and for a ∆Pref increment of 0.1 pu for 0.1 s in
the GFMI-1 (Fig. 11 (b)). As expected for the load disturbance
the parallel connected GFMIs respond identically and have no
observable interactions. However, with the Pref1 impulse two
GFMIs start to oscillate against each other. This shows the
credibility of the small-signal modeling, which is carried out
in the frequency domain in predicting the system oscillation
modes as EMT results depend on the disturbance type.

In this study, though the network dynamics were modeled
using dynamic phasors to reveal high-frequency interactions,
the tested conditions result in an oscillatory mode of 1.8 Hz,
which is in the electromechanical oscillation range. However,
as shown in Fig. 12 depending on the GFMI control parameters
the frequency of interactions can be high such that it requires
the network to be modeled using dynamic phasors. To obtain
these fast-acting GFMIs, each GFMI’s H has been reduced
from 3 s to 0.5 s and the integral time constant (Ti) has
been reduced from 0.25 S to 0.01 s. This has resulted in
an interaction frequency of 5.6 Hz, which certainly requires
dynamic phasor modeling.
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Fig. 11. Virtual rotor oscillation following (a) ∆RL = -0.1 pu and ∆Pref1

= 0.1 pu for 0.1 s.
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Fig. 12. Virtual rotor oscillation for ∆Pref1 = 0.1 pu for 0.1 s (a) H1 = H2=
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D. Impact of Droop Coefficient (Dp)

The effect of Dp on the critical mode is evaluated by
changing Dp of both GFMIs from 0.01 pu to 0.06 pu; Fig.
13 shows the shift of the critical eigenvalues, which confirms
that large Dp values cause the system to reach instability.
This is expected as large Dp values reduce the GFMIs’ power
injections for a given frequency shift, therefore, raising the
chance of oscillations following a disturbance.

E. Impact of the Transient VI Path

To evaluate the ability of the transient VI path to damp the
critical mode, Rvi0 is changed from 0.05 pu to 10 pu and
fhp is varied from 0.1 Hz to 10 Hz. As shown in Fig. 14
significant contribution from the transient VI path (i.e., with
large Rvi0 and small fhp (in a certain range)) makes the system
unstable. Therefore, it is concluded that the active damping
path introduced through the transient VI path does not provide
acceptable damping characteristics to the test system.
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Fig. 13. Locus of the critical eigenvalues for changes in Dp for both inverters.
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Fig. 14. Locus of the critical eigenvalues for changes in (a) Rvi0 and (b)
fhp for both inverters.

F. Impact of LC Filter Inductance (Lf )

Due to the substantial participation of the d-components
of the converter current in the critical mode, the LC filter
inductances of both GFMIs are changed from 0.06 pu to 0.11
pu. The upper and lower limits of Lf are selected to avoid
unnecessary voltage drops across the filter inductance and
large THD levels in the converter current, respectively. Fig. 15
shows the trajectory of the critical eigenvalues following the
increase of filter inductance. The tendency to reach instability
is increased with lower filter inductance values. Oscillation
frequency and damping ratio of the critical mode change
negligibly with Lf .
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Fig. 15. Locus of the critical eigenvalues for changes in Lf in both inverters.

IV. CONCLUSIONS

The paper developed a small-signal model for a system
of parallel-connected grid-forming inverters. The model is
able to capture the low-frequency dynamic behavior of such
systems. Eigenvalue analysis showed a critical interaction

frequency in the electro-mechanical frequency range. This
low-frequency interaction is due to the low bandwidth of
the tested grid-forming controller. However, grid-forming
controllers with wide bandwidth can lead to high-frequency
interactions requiring network dynamics to be modeled using
dynamic phasors. The eigenvalue analysis further showed
the impact of GFMI’s controller and network parameters on
the critical mode of the system. It was shown that large
inertial constant (H) and droop co-efficient (Dp) values push
parallel-connected GFMIs to oscillate against each other.
Maintaining matching dynamics between the P-f controller
and the Q-v controller paths shows to improve the stable
region of operation without adding additional damping paths.
Active damping introduced to the converter current through
the transient VI path is not capable of providing improved
damping characteristics to the system. The filter inductance
can be selected to avoid undesired interactions between
GFMIs. Even GFMIs with identical control and network
parameters can oscillate against each other, although for some
disturbance types these oscillations may not be visible. The
study quantified the role of control and network parameters
on a parallel-connected GFMI interactions.
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