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Abstract—This paper introduces a grid forming (GFM) 

control method – detailed synchronous machine emulation 
virtual synchronous generator (VSG). The proposed method 
makes a voltage source converter exactly emulate a synchronous 
generator (SG), using a current source interface. The precise 
emulation of an SG gives tighter control over overcurrent and 
improved transient damping. Electromagnetic Transients (EMT) 
simulation is used to demonstrate the operation, and small signal 
model is used to assess the stability performance. Small signal 
analysis shows that the resulting VSG operates stably, and 
oscillatory modes can be damped by appropriate optimization of 
the virtual damping windings resistances.  
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I.  INTRODUCTION 

OLTAGE source converters (VSCs) are increasingly 
being used in modern power grids for interconnecting 

renewable energy sources (RES), distributed energy resources 
(DER) and high-voltage dc (HVdc) transmission [1]-[2]. Since 
R. Marquardt developed the modular multilevel converter 
(MMC) in 2005 [3], this type of converter is fast becoming the 
preferred VSC topology due to the lower power loss and near-
sinusoidal output waveform that eliminates the need for 
additional filtering. Nowadays, the MMC is widely used in 
applications such as HVdc transmission [4], variable-speed 
drives [5], wind turbine generators [6], flexible ac 
transmission systems (FACTS) [7] and so on. 

Typically, the VSC control mode can be either the grid 
following (GFL) or grid forming (GFM) type. In the GFL 
mode, a phase-locked loop (PLL) is used to track the phase of 
the system voltage waveform and generate the reference signal 
for generating the on/off signals for the VSC’s IGBT switches. 
On the other hand, the GFM itself generates its output 
waveform and can be used for connecting to passive loads or 
very weak systems. With high penetration of RES and DER, a 
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GFL converter becomes very susceptible to ac voltage 
changes, as the PLL’s tracking capacity becomes 
compromised [8]. To improve the transient response and 
steady-state stability, the GFM is proposed. The Virtual 
synchronous generator (VSG) is one possible GFM control 
strategy, in which the converter is controlled to mimic the 
behaviour of a synchronous generator (SG). In most cases, a 
simplified model of the SG is used, as in the ‘synchronverter’ 
[9], where the electro-mechanical swing equation and a 
simplified representation of damping are included. Additional 
blocks, such as an extra damping loop [10] can be added to 
such a model to improve dynamic performance. Similarly, a 
virtual impedance controller can be combined with the VSG 
representation to emulate the slow time-varying (quasi-
stationary) impedance characteristic of a real SG [11][12]. 
These type of controllers typically provide d- and q-axis 
current orders which can be passed to a decoupled dq 
controller to generate the modulation index for the converter’s 
firing pulse generation block. A current limiting feature, to 
prevent damage to valves can be embedded into such a 
controller by adding suitable limits to the dq current orders. 
However, [13] shows that such an ‘embedded’ current 
controller may cause the GFM converter to become unstable 
when connected to a strong system. 

In this paper, a novel current-controlled VSG, which 
emulates the mechanical and electrical dynamics of an actual 
SG is incorporated. Reference [14] introduced the basic 
algorithm and compared its operation with a simple swing 
equation-based implementation and an actual SG. In contrast, 
this paper investigates the performance with different levels of 
detail in the SG’s representation (e.g., different number of 
damper windings, etc.). It also develops small signal models 
of these representations and validates them using 
Electromagnetic Transients (EMT) simulation. In addition, the 
VSG configurations are investigated when connected to ac 
networks of different strengths - represented by short circuit 
ratios (𝑆𝐶𝑅) - ranging from weak (𝑆𝐶𝑅 <  2.0) to ultra-strong 
(𝑆𝐶𝑅 >  30). Root locus analysis is carried out to investigate 
the stability and damping performance when the VSG 
representation uses different number of damper windings. 
Also, as the VSG parameters need not be constrained to the 
values of a physical machine, the use of artificially large 
parameters is investigated. It is shown that including damper 
windings inside the VSG results in a well-damped transient 
response.  
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II.  SYSTEM LAYOUT 

The proposed VSG control method is tested in a VSC of 
the MMC type with 200 submodules (SMs) per arm. It is 
connected to an ac network with a short circuit ratio (SCR) of 
4.5 as shown in Fig. 1. 

 

 

 
Fig. 1.  Overall system layout and control diagram. 
 

From the figure, the output variables of the proposed VSG 
controller are current references 𝑖௥௘௙

௔௕௖ = [𝑖௥௘௙
௔ , 𝑖௥௘௙

௕ , 𝑖௥௘௙
௖ ]. With 

this, it is very easy to limit the current to a safe level, merely 
by limiting the magnitudes of 𝑖௥௘௙

௔௕௖ . The MMC’s current 
controller block then generates the required voltage references 
𝑣௥௘௙

௔௕௖  so that the MMC currents 𝑖௔௕௖ are essentially equal to 

𝑖௥௘௙
௔௕௖ . Methods available to achieve this include the non-linear 

vector current source (NLVCS) control [15] and hysteresis 
current control [16] to name a few.  

In hysteresis current control, the current is confined to a 
narrow envelope of width ℎ𝑦 around the current reference 
𝑖௥௘௙ . If the measured phase current is above the envelope (i.e., 
𝑖 > 𝑖௥௘௙ + ℎ𝑦 ), the output voltage is reduced to restore the 
current to be within the envelope. Similarly, if it is below the 
envelope, the voltage is increased. The method is widely used 
in two-level converters, but it has been adapted here for an 
MMC based on the approach of [16]. With this current 
controller, the MMC can be operated as a high-bandwidth and 
high-precision current source to generate any desired current 
waveforms. 

In addition, a circulating current suppression controller 
(CCSC) is required to cancel circulating current harmonics in 
the MMC’s arms [17]. It injects compensating voltages (𝑣௖௖

௔௕௖) 
which are added to the reference voltages 𝑣௥௘௙

௔௕௖  to produce the 
final voltage orders. Then, the firing block calculates the 
required number ‘N’ of the activated submodules in each arm 
based on the voltage order and generates the necessary turn-
on/turn-off commands for the appropriate submodules. In this 
paper, we use the commonly used ‘nearest level control’ 
(NLC) algorithm [17]. The objective of this paper is to achieve 
the behaviour of a real synchronous generator. The specific 
control strategy for generating 𝑖௥௘௙

௔௕௖  for this purpose is 
discussed below.  

III.  CURRENT CONTROLLED VIRTUAL SYNCHRONOUS 

GENERATOR CONTROL 

A.  Overall VSG controller 

The structure of the proposed VSG controller is in Fig. 2. 
The VSG controller can be mainly divided into two parts, 1) 
Mechanical model and 2) Electrical equations, which 
exchange information with each other. The “Electrical 
equations” are used to generate the phase current references 
𝑖௥௘௙

௔௕௖ using the SG equations as will be discussed later. An 
excitation controller is added to generate the field voltage 
(𝐸௙ௗ) based on the terminal voltage reference.  

Current limiting is easily achieved by adding a maximum 

limit to the VSG’s current orders 𝑖ௗ
௥௘௙ and 𝑖௤

௥௘௙  as shown in 
Fig. 2. Several limiter algorithms can be used for the GFM 
converter [18]. The circular magnitude limiter as shown in 
Fig. 3 is used in the examples in this paper to make sure the 

magnitude of the current reference ට൫𝑖௥௘௙
ௗ ൯ଶ + ቀ𝑖௥௘௙

௤ ቁ
ଶ

 is 

always below the allowed limit 𝐼ெ஺௑ , while the angle 
maintains the same. 

 

 
Fig. 2.  Overall control structure. 
 

 
Fig. 3.  Current magnitude limiter 
 

Different models of SG with varying levels of modelling 
complexity are available in [19]. In the paper, we use the 
following: 

1) An accurate representation with one damper winding 
each in the d- and q-axes 

2) A less accurate representation without d- and q-axis 
damper windings.  

Note that the only difference between these two VSG 
options is in the set of electrical equations. 

B.  Mechanical System Model   

The mechanical modelling in the VSG controller contains 
the core swing equations of the SG as in (1) [19].  
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In (1), 𝐻 is the inertia constant, 𝑃௥௘௙  is the active power 
reference, 𝑇௠  is the mechanical torque and 𝑇௘  is the 
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electromagnetic torque. The grid frequency and the machine’s 
virtual angular speed are 𝜔଴ and 𝜔, respectively, while 𝜃 is 
the virtual rotor angle. 

C.  Electrical Equations 

Two different electrical structures are shown in this section. 
1) VSG Control with Damper Windings: The d- and q-axis 

equivalent circuits of this VSG controller are shown in Fig. 4. 
The model has a field winding and one damper winding (with 
currents 𝑖௙ௗ, 𝑖ଵௗ) on the d-axis whereas one damper winding 
(with currents 𝑖ଵ௤ ) on the q-axis. The d and q-axis stator 
currents are 𝑖ௗ and 𝑖௤ . Inductances 𝐿௔ , 𝐿௠ௗ , 𝐿ଵௗ  etc., are 
the inductances of the various windings as shown in Fig. 4. 
The flux linkages of the respective windings are 𝜓ௗ, 𝜓௤  etc., 
and ‘𝑝’ is the time derivative operator e.g., 𝑝𝜓ௗ = 𝑑𝜓ௗ/𝑑𝑡, 
etc. The d- and q-axis components of the voltage are 𝑣ௗ and 
𝑣௤ . A detailed explanation of these equivalent circuits can be 
found in [19]. 
 

 
Fig. 4.  Equivalent circuits of the VSG control with damper winding. 
 

Based on Fig. 4, the relationships between currents and flux 
linkages are given in (2)-(6). 

 𝜓ௗ = (𝐿௔ + 𝐿௠ௗ)𝑖ௗ + 𝐿௠ௗ𝑖ଵௗ + 𝐿௠ௗ𝑖௙ௗ  (2) 

 𝜓ଵௗ = 𝐿௠ௗ𝑖ௗ + (𝐿ଵௗ + 𝐿௠ௗ)𝑖ଵௗ + 𝐿௠ௗ𝑖௙ௗ  (3) 

 𝜓௙ௗ = 𝐿௠ௗ𝑖ௗ + 𝐿௠ௗ𝑖ଵௗ + ൫𝐿௙ௗ + 𝐿௠ௗ൯𝑖௙ௗ  (4) 

 𝜓௤ = ൫𝐿௔ + 𝐿௠௤൯𝑖௤ + 𝐿௠௤𝑖ଵ௤  (5) 

 𝜓ଵ௤ = 𝐿௠௤𝑖௤ + ൫𝐿ଵ௤ + 𝐿௠௤ + 𝐿௤௤൯𝑖ଵ௤  (6) 

The equations of voltages are given in (7)-(11). 

 
ௗట೏

ௗ௧
= 𝑣ௗ − 𝑖ௗ𝑅௔ − 𝜔𝜓௤  (7) 

 
ௗటభ೏

ௗ௧
= −𝑅௞ௗ𝑖ଵௗ   (8) 

 
ௗట೑೏

ௗ௧
= 𝐸௙ௗ − 𝑅௙ௗ𝑖௙ௗ  (9) 

 
ௗట೜

ௗ௧
= 𝑣௤ + 𝜔𝜓ௗ − 𝑅௔𝑖௤  (10) 

 
ௗటభ೜

ௗ௧
= −𝑅ଵ௤𝑖ଵ௤   (11) 

Using (2)-(11), the fluxes (𝜓ௗ, 𝜓௤  etc.) can be calculated 
by integration using a suitable numerical integration method 
(e.g., the trapezoidal rule) from which the currents (𝑖ௗ , 𝑖௤  
etc.) are determined using (2)-(6). Also, the electromagnetic 
torque 𝑇௘ required in (1) is calculated as in (12). 

 𝑇௘ = 𝜓ௗ𝑖௤ − 𝜓௤𝑖ௗ  (12) 

2) VSG Control Without Damper Winding: The d- and q-axis 
equivalent circuits of this VSG controller are shown in Fig. 5. 
Because of the similar structure, the electrical algorithm of 
this VSG controller without damper winding can also be 
obtained from (2)-(11) by simply dropping the terms related to 

damper winding currents (𝑖ଵௗ and 𝑖ଵ௤). The equations are not 
repeated here. 
 

 
Fig. 5.  Equivalent circuits of the VSG control without damper winding. 
 

This also shows the proposed VSG controller is very 
flexible. The emulated electrical part can be modified easily 
by removing or adding corresponding flux/voltage equations 
without changing the existing equations. And the overall VSG 
structure keeps the same as in Fig. 2. 

IV.  SMALL SIGNAL MODEL OF PROPOSED VIRTUAL 

SYNCHRONOUS GENERATOR CONTROL 

Root locus analysis is widely used for studying the 
influence of the control parameters [11][13][19]. Before this, 
the small signal (SS) models of these control systems are 
required. The process of mathematically deriving the SS 
models is introduced in this section. These SS models are then 
validated using Electromagnetic Transients (EMT) simulation 
as shown in the next section. 

A.  SS Model of VSG Control with Damper windings  

A small signal model is developed to analyze the effect of 
various parameters on the stability and dynamic behaviour of 
the VSG. The mathematical derivation is presented below. 

1) SS model of the Electrical Equations: From (2)-(6), the 
small signal expressions of these linearized equations are in 
(13)-(15). ‘𝑇’ represents the transpose of the matrix and the 
matrix 𝑳𝟏 is given in the Appendix. 

 Δ𝝍𝟏 = 𝑳𝟏Δ𝑰𝟏  (13) 

 Δ𝝍𝟏 = ൫𝛥𝜓ௗ  𝛥𝜓ଵௗ  𝛥𝜓௙ௗ  Δ𝜓௤  Δ𝜓ଵ௤൯்
  (14) 

 Δ𝑰𝟏 = ൫𝛥𝑖ௗ  𝛥𝑖ଵௗ  𝛥𝑖௙ௗ  Δ𝑖௤  Δ𝑖ଵ௤൯்
  (15) 

From (13), it is evident that: 

 𝚫𝑰𝟏 = 𝑳𝟏
ି𝟏Δ𝝍𝟏  (16) 

Also, converting (7)-(11) to their linearized equivalents, we 
get the flux differential equations as in (17)-(21). All the 
variables in per-unit (except ‘t’ (time) which is measured in 
seconds). Here 𝜔௡ = 2𝜋 × 60 𝑟𝑎𝑑/𝑠 is the nominal virtual 
rotor speed (60 𝐻𝑧  system). The superscript ‘0’ on any 
variable indicates that it is its steady-state value. 

 
ଵ

ఠ೙
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ௗ௧

= Δ𝑣ௗ − 𝑅௔Δ𝑖ௗ − 𝜔଴Δ𝜓௤ − 𝜓௤
଴Δ𝜔  (17) 

 
ଵ

ఠ೙

ௗ୼టభ೏
ௗ௧

= −𝑅ଵௗΔ𝑖ଵௗ  (18) 

 
ଵ

ఠ೙

ௗ୼ట೑೏
ௗ௧

= Δ𝐸௙ௗ − 𝑅௙ௗΔ𝑖௙ௗ  (19) 

 
ଵ

ఠ೙

ௗ୼ట೜
ௗ௧

= Δ𝑣௤ − 𝑅௔Δ𝑖௤ + 𝜔଴Δ𝜓ௗ + 𝜓ௗ
଴Δ𝜔  (20) 
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ଵ

ఠ೙

ௗ୼టభ೜
ௗ௧

= −𝑅ଵ௤Δ𝑖ଵ௤  (21) 

In the linearized differential equations above, the 
incremental flux linkages (Δ𝜓ௗ , Δ𝜓ଵௗ , Δ𝜓௙ௗ , Δ𝜓௤ , Δ𝜓ଵ௤) 
and the incremental field voltage (Δ𝐸௙ௗ) are state variables. 
The incremental currents (Δ𝑖ௗ , Δ𝑖ଵௗ, Δ𝑖௙ௗ , Δ𝑖௤, Δ𝑖ଵ௤) can be 
re-written in terms of their corresponding flux linkages based 
on (16). Δ𝑣ௗ  and Δ𝑣௤  are not state variables but will be 
substituted later with state variables by using the equations of 
the interconnected external system. 

2) SS model of Excitation Controller: From Fig. 2, the 
small signal model of the excitation control (ignoring the 

limits) is shown in Fig. 6, where 𝐾஺
ᇱ = 𝐾஺ ∙ ோ೑೏

௅೘೏
. Two state 

variables Δ𝑋ாଵ  and Δ𝑋ாଶ  are introduced to represent the 
internal states of the first-order lag blocks as shown in Fig. 6. 

 

 
Fig. 6.  Small signal model of excitation control. 
 

In the dq reference frame, the voltage magnitude 𝑉  is 

ට𝑣ௗ
ଶ + 𝑣௤

ଶ . Hence, Δ𝑉 is as in (22), where 𝑉௟ is the steady 

state magnitude of 𝑉 as in (23). 

 Δ𝑉 = ௩೏
బ

௏೗
Δ𝑣ௗ + ௩೜

బ

௏೗
Δ𝑣௤   (22) 

 𝑉௟ = ට(𝑣ௗ
଴)ଶ + (𝑣௤

଴)ଶ  (23) 

Using Fig. 6, the small signal equations of the excitation 
controlled can be summarized as in (24)-(26). The units of the 
time constants (𝑇௥, 𝑇஻, 𝑇஺) are in seconds. 

 
ௗ୼௑ಶమ

ௗ௧
= − ଵ

ೝ்
Δ𝑋ாଶ + ௩೏

బ

ೝ்௏೗
Δ𝑣ௗ + ௩೜

బ

ೝ்௏೗
Δ𝑣௤   (24) 

 
ௗ୼௑ಶభ

ௗ௧
= ଵ

்ಳ
Δ𝑉௥௘௙ − ଵ

்ಳ
Δ𝑋ாଵ − ଵ

்ಳ
Δ𝑋ாଶ  (25) 

ௗ୼ா೑೏
ௗ௧

= − ଵ
்ಲ

Δ𝐸௙ௗ + ௄ಲ
ᇲ

்ಲ
ቀ1 − ்಴

்ಳ
ቁ Δ𝑋ாଵ + ௄ಲ

ᇲ ்಴
்ಲ்ಳ

Δ𝑉௥௘௙   

 − ௄ಲ
ᇲ ்಴

்ಲ்ಳ
Δ𝑋ாଶ  (26) 

3) SS model of the External System: The relationship 
between 𝛥𝑣ௗ, 𝛥𝑣௤  and the state variables can be derived 
from the external power system which the converter connects 
to. The external system in Fig. 7 is equivalently represented as 
a Thevenin reactance 𝑋௦  and a Thevenin voltage source 
𝐸஻∠0. Any resistive component 𝑅௦, being much smaller than 
𝑋௦, is ignored. The positive direction of the current phasor 𝐼 
is as shown in Fig. 7 and 𝑉௧  is the converter’s terminal 
voltage. From Fig. 7, (27) can be obtained. 

 

 
Fig. 7.  Equivalent external power system. 
 

 𝑉௧ = 𝑉ோ + 𝑗𝑉ூ = 𝐸஻ − 𝑗𝑋௦𝐼 = 𝐸஻ + 𝑗0 − 𝑗𝑋௦(𝐼ோ + 𝑗𝐼ூ) (27) 

Equation (27) is in the real-imaginary (RI) coordinates 
which rotate at the fundamental speed (120𝜋 𝑟𝑎𝑑/𝑠 for a 
60 𝐻𝑧 system). This needs to be transformed into the dq 
reference frame (rotating at 𝜔 𝑟𝑎𝑑/𝑠) to be combined with 
the other VSG equations.  

Fig. 8 shows that the q-axis lags the d-axis by 90°, and I-
axis leads the R-axis by 90°. The angle between R-axis and d-
axis is defined as 𝛿  and 𝛿  is not the rotor angle 𝜃 
mentioned in (1). Then Δ𝛿 , as given by (28) becomes one of 
the state variables. 

 
ଵ

ఠ೙

ௗ୼ఋ
ௗ௧

= −Δ𝜔  (28) 

 
Fig. 8.  Phasor relationship. 
 

Also, the external system voltage 𝐸஻ in dq reference frame 
can be obtained from Fig. 8 as shown in (29)-(30). 

 𝐸஻ௗ = 𝐸஻ ∙ 𝑐𝑜𝑠𝛿  (29) 

 𝐸஻௤ = −𝐸஻ ∙ 𝑠𝑖𝑛𝛿  (30) 

Thus, (27) is rewritten in the dq frame as in (31)-(33). 

 𝑣ௗ − 𝑗𝑣௤ = ൫𝐸஻ௗ − 𝑗𝐸஻௤ ൯ − 𝑗𝑋௦൫𝑖ௗ − 𝑗𝑖௤൯  (31) 

 𝑣ௗ = 𝐸஻ௗ − 𝑋௦𝑖௤ = 𝐸஻𝑐𝑜𝑠𝛿 − 𝑋௦𝑖௤   (32) 

 𝑣௤ = 𝐸஻௤ + 𝑋௦𝑖ௗ = −𝐸஻𝑠𝑖𝑛𝛿 + 𝑋௦𝑖ௗ  (33) 

Then, the incremental values of the d- and q-axis 
components of the voltage (Δ𝑣ௗ , Δ𝑣௤) are in (34) and (35). 
These are used to replace the voltages in (17), (20) and (24). 

 Δ𝑣ௗ = −𝐸஻𝑠𝑖𝑛𝛿଴ ∙ Δ𝛿 − 𝑋௦Δ𝑖௤   (34) 

 Δ𝑣௤ = −𝐸஻𝑐𝑜𝑠𝛿଴ ∙ Δ𝛿 + 𝑋௦Δ𝑖ௗ  (35) 

4) SS Model of the Mechanical Part: From (12), the 
expression for the incremental torque Δ𝑇௘  is in (36). 

 Δ𝑇௘ = 𝑖௤
଴Δ𝜓ௗ + 𝜓ௗ

଴Δ𝑖௤ − 𝑖ௗ
଴Δ𝜓௤ − 𝜓௤

଴Δ𝑖ௗ  (36) 

Then combining (1) and (36), the differential equation for 
Δ𝜔 can be written as in (37). As Δ𝑇௠ is approximately equal 
to Δ𝑃௥௘௙ in the per-unit system, it is replaced by Δ𝑃௥௘௙ . Also, 
the unit of the inertia constant 𝐻 is seconds.  

ௗ୼ఠ
ௗ௧

= ୼௉ೝ೐೑
ଶு

− ஽ೢ
ଶு

Δ𝜔 − ௜೜
బ

ଶு
Δ𝜓ௗ − ట೏

బ

ଶு
Δ𝑖௤ + ௜೏

బ

ଶு
Δ𝜓௤   

 + ట೜
బ

ଶு
Δ𝑖ௗ  (37) 

Since the incremental rotor angle Δ𝜃 is only related to Δ𝜔 
and is not used in other small signal differential equations, Δ𝜃 
is neglected in the VSG small signal model. 

5) Complete Small Signal Model: Combining the various 
components of the small signal model derived above, the 
complete set of small signal equations can be written in matrix 
form as in (38)-(42). Where, the ‘𝟎’ in (42) is the 5 × 5 zero 
matrix. 







𝑉𝑡 𝐸𝐵∠0 

𝑋𝑠 

𝐼 

Converter

𝑅𝑠 ≈ 0 
External System

d-axis

q-axis

R-axis

I-axis



 
ௗ𝚫𝒙𝟏

ௗ௧
= 𝑨𝟏𝚫𝒙𝟏 + 𝑩𝟏𝚫𝒖  (38) 

 𝑨𝟏 = [𝑴𝟏 + 𝑵𝟏(𝑳𝟏
ᇱ )ି𝟏]  (39) 

𝚫𝒙𝟏

= ൫𝛥𝜓ௗ  𝛥𝜓ଵௗ  𝛥𝜓௙ௗ  Δ𝜓௤  Δ𝜓ଵ௤  Δ𝜔  Δ𝛿  Δ𝐸௙ௗ  Δ𝑋ாଵ  Δ𝑋ாଶ൯்
 

(40) 

 𝚫𝒖 = (Δ𝑃௥௘௙ Δ𝑉௥௘௙)்  (41) 

 𝑳𝟏
ᇱ = ቀ𝑳𝟏 𝟎

𝟎 𝟎ቁ  (42) 

Matrices 𝑴𝟏, 𝑵𝟏 and 𝑩𝟏 are given in the Appendix. 

B.  SS Model of VSG Control without Damper windings 

The small signal model of the VSG controller without 
damper winding can be easily obtained by removing the 
corresponding differential equations related to the damper 
windings. Therefore, the matrix equation for the VSG without 
damper winding is as in (43) to (47). 

 
ௗ𝚫𝒙𝟐

ௗ௧
= 𝑨𝟐𝚫𝒙ଶ + 𝑩𝟐𝚫𝒖  (43) 

 𝑨𝟐 = [𝑴𝟐 + 𝑵𝟐(𝑳𝟐
ᇱ )ି𝟏]  (44) 

𝚫𝒙𝟐 = ൫𝛥𝜓ௗ  𝛥𝜓௙ௗ  Δ𝜓௤  Δ𝜔  Δ𝛿  Δ𝐸௙ௗ  Δ𝑋ாଵ  Δ𝑋ாଶ൯்
 (45) 

 𝑳𝟐 = ቌ
𝐿௔ + 𝐿௠ௗ 𝐿௠ௗ 0

𝐿௠ௗ 𝐿௙ௗ + 𝐿௞௙ + 𝐿௠ௗ 0
0 0 𝐿௔ + 𝐿௠௤

ቍ (46) 

 𝑳𝟐
ᇱ = ቀ𝑳𝟐 𝟎

𝟎 𝟎ቁ  (47) 

The matrices 𝑴𝟐  and 𝑵𝟐  are obtained by removing 
columns 2, and 5, as well as rows 2 and 5 of 𝑴𝟏 and 𝑵𝟏 
respectively. Removing columns 2 and 5 from 𝑩𝟏 gives 𝑩𝟐. 

V.  MODEL VALIDATION USING EMT SIMULATION 

The proposed small signal (SS) models of the VSG 
controllers are validated by matching their transient responses 
with a fully detailed model in an EMT simulation program 
(PSCAD/EMTDC). The system layout for validation is the 
same as in Fig. 1, and its parameters are in Table I. 

The SS model is linearized at the operating point where the 
output power of the MMC (𝑃௧) is 1.0 𝑝𝑢. A step change in the 
active power reference (Δ𝑃௥௘௙ = −0.1 𝑝𝑢) is applied in the 
EMT simulation as well as in the SS models.  

Fig. 9 shows the transients of the virtual rotor speed 
obtained from the SS model 𝜔ௌௌ and EMT simulation 𝜔ாெ்  
of the proposed VSG with the damper windings. From Fig. 9, 
the traces are essentially overlapping and the maximum 
absolute error between these two curves is 1.39 × 10ିସ 𝑝𝑢 
(as in Fig. 9 (b)) or 0.0139 % of the nominal value of 𝜔ாெ் . 
Thus, this validates the small signal model derived earlier. 

The plot of the speed 𝜔 has an oscillatory component 
close to 1.85 𝐻𝑧 and an attenuation constant close to 0.78 𝑠. 
The curves show that the proposed control method is stable at 
the operating point as the speed 𝜔 recovers to 1.0 𝑝𝑢. This 
means the MMC synchronizes with the external ac system 
after the small disturbance. 

Similarly, the accuracy of the SS model of the VSG control 
without damper windings can also be validated (not shown). 

TABLE I 
MAIN PARAMETERS 

Main System Parameters 
Parameter Value Parameter Value 

𝑉ௗ௖ ±150 𝑘𝑉 𝑓௦௬௦௧௘௠ 60𝐻𝑧  
MMC 𝑆௕௔௦௘ 270 𝑀𝑉𝐴 MMC 𝑉௕௔௦௘  180𝑘𝑉  
System 𝑆𝐶𝑅 4.5 SMs per arm 200 

Main VSG Control Parameters 
𝐻 3.42 s 𝐿௔ 0.015 𝑝𝑢  

𝐷௪ 5.0 𝐿௠ௗ 2.0 𝑝𝑢  
𝑅௔ 0.0043 𝑝𝑢 𝐿௙ௗ  0.119 𝑝𝑢  
𝑅ଵௗ 0.01823 𝑝𝑢  𝐿ଵௗ 0.1097 𝑝𝑢  
𝑅ଵ௤ 0.0104 𝑝𝑢  𝐿ଵ௤ 0.395 𝑝𝑢  
𝑅௙ௗ 0.0008947𝑝𝑢  𝐿௠௤ 1.44𝑝𝑢  

Main Excitation Control Parameters 
𝑇஼ 1.0 𝑠  𝑇஻ 10.0 𝑠  
𝐾஺ 200.0  𝑇஺ 0.015 𝑠  
𝑇௥ 0.02 𝑠    

 

 
Fig. 9.  SS model and EMT results of VSG control with damper windings. 

VI.  ROOT LOCUS ANALYSIS 

Root locus analysis is conducted on the small signal model 
for the operating point of 𝑃௧ = 1.0 𝑝𝑢 to investigate how the 
parameters of the ac system (𝑋௦ ) as well as the damper 
windings ( 𝑅ଵௗ , 𝐿ଵௗ , 𝑅ଵ௤ , 𝐿ଵ௤ ) affect the stability and 
transient behaviour of the proposed VSG. The eigenvalues of 
matrix 𝐴ଵ  in (39) and  𝐴ଶ  in (44) can be plotted in the 
complex plane as a function of the parameters (e.g., 𝑋௦ , 𝑅ଵௗ 
etc.) being varied to generate a root locus plot from which the 
damping and the stability information can be garnered. 

In this section, only the most critical eigenvalues close to 
the imaginary axis are plotted in the root loci. 

A.  VSG Performance under Varying System Strengths 

Matrices 𝐴ଵ  and 𝐴ଶ  are functions of the ac system 
reactance 𝑋௦ which is inversely proportional to 𝑆𝐶𝑅. Hence, 
root loci for varying 𝑆𝐶𝑅 can be generated by varying 𝑋௦. 

Fig. 10 (a) and (b) respectively show the plot of the critical 
eigenvalues of 𝐴ଵ (X) and 𝐴ଶ (O), as the 𝑆𝐶𝑅 varies from 
𝑆𝐶𝑅 =  1.2 for a weak system to 𝑆𝐶𝑅 =  100 for an ultra-
stiff system. Other non-varying parameters are given in Table 
I. As the eigenvalues have negative real parts, both VSG 
options exhibit stable operation over the entire SCR range. 



This indicates a performance enhancement compared with 
previous VSGs that utilize embedded current controllers 
which may become unstable with high 𝑆𝐶𝑅 ac systems [13]. 
This could be attributed to the delays inherent in the 
proportional-integral (PI) controller. In contrast, the proposed 
VSG uses a hysteresis current controller to generate the 
currents which is extremely rapid with minimal delay. 

Additionally, from Fig. 10, an increase in the 𝑆𝐶𝑅 for the 
VSG model leads to a shift of the oscillatory eigenvalues to 
the left, which indicates an improvement in the damping of 
oscillations. For example, the damping ratio (𝜉), when the 
damper windings are included, is 0.059 for 𝑆𝐶𝑅 = 1.2 and 
𝜉 = 0.159 for 𝑆𝐶𝑅 = 20. Also, there is an increase in the 
oscillation frequency (𝑓௡) with a larger SCR. For example, 𝑓௡, 
when the damper windings are included, is 1.07 𝐻𝑧  for 
𝑆𝐶𝑅 = 1.2 and 𝑓௡ = 2.56 𝐻𝑧 for 𝑆𝐶𝑅 = 20. 

The step responses of 𝜔 with Δ𝑃௥௘௙ = −0.1 𝑝𝑢 in Fig. 
11 is consistent with the above conclusions. For example, 
measurements from the waveforms show that 𝜉 = 0.067 and 
𝑓௡ = 0.93 𝐻𝑧 for 𝑆𝐶𝑅 = 1.2, whereas 𝜉 = 0.155 and 𝑓௡ =
2.53 𝐻𝑧 for 𝑆𝐶𝑅 = 20. These values match the information 
obtained from the SS model. Similar conclusions can also be 
drawn from the transient waveforms of the VSG with no 
damper windings, which is omitted here for brevity. 

 

 
Fig. 10  Root loci with 𝑆𝐶𝑅 increasing. (a) VSG1 (with damper windings)  
(b) VSG2 (without damper windings). 
 

 
Fig. 11  Step responses for VSG1 (with damper windings) with different 
SCR Systems. 

B.  VSG Performance with Varying Damper Resistance 
𝑅ଵௗ  

Fig. 12 shows the plot of the eigenvalues of 𝐴ଵ (indicated 
by X), as the d-axis damper resistance 𝑅ଵௗ  changes from 
0.0 𝑝𝑢 to 1.0 𝑝𝑢. Other non-varying parameters are given in 
Table I. The eigenvalues of 𝐴ଶ are also shown in the same 
plot (represented by O), which remain stationary as the 
damper windings are not included in 𝐴ଶ.  

The eigenvalues of 𝐴ଵ move asymptotically towards the 
eigenvalues of 𝐴ଶ as 𝑅ଵௗ increases, which is to be expected 
as having no damper winding is tantamount to having a 

damper winding with 𝑅ଵௗ = ∞. As can be seen, the operation 
is stable over the entire range of 𝑅ଵௗ. 

A zoomed in plot of the oscillatory eigenvalues is shown in 
the right-hand frame in Fig. 12. The oscillation frequency is 
largely unchanged at around 11.8 𝑟𝑎𝑑/𝑠  ( 1.85 𝐻𝑧 ). The 
VSG controller with no damper windings has the least 
damping ratio of 0.084 for the dominant oscillatory mode. 
While with the damper winding, the real part of the oscillatory 
eigenvalues first increases with increasing 𝑅ଵௗ , attains a 
maximum for 𝑅ଵௗ  =  0.008 𝑝𝑢 and then decreases. Thus, in 
this example, the largest damping ratio of 0.119 occurs for 
𝑅ଵௗ = 0.008 𝑝𝑢. Hence, including the damper windings in the 
VSG does improve the damping ratio from 0.084 to 0.119. 

The above conclusions can be validated using a time 
domain simulation. Fig. 13 shows step responses of 𝜔 with 
Δ𝑃௥௘௙ = −0.1 𝑝𝑢 for three cases: i) VSG with no damper 
winding, ii) VSG with 𝑅ଵௗ = 0.008 𝑝𝑢, and iii) VSG with 
𝑅ଵௗ = 0.1823 𝑝𝑢 . As expected, damping ratio of the 
oscillatory mode is the largest for 𝑅ଵௗ = 0.008 𝑝𝑢  (𝜉 =
0.121) while it is the least (𝜉 = 0.086) for the controller 
without any damper windings. This is in excellent agreement 
with the values 𝜉 = 0.119 and 𝜉 = 0.084 obtained from the 
SS analysis. The oscillation frequencies vary marginally, 
being 1.95 𝐻𝑧  for 𝑅ଵௗ = 0.008 𝑝𝑢 , 1.86 𝐻𝑧  for 𝑅ଵௗ =
0.1823 𝑝𝑢  and 1.83 𝐻𝑧  for the no damper winding case, 
which also agrees with the SS analysis results. 

 

 
Fig. 12.  Root loci with 𝑅ଵௗ increasing. 
 

 
Fig. 13.  Simulation waveforms showing 𝑅ଵௗ effect. 

C.  VSG Performance with Varying Damper 
Inductance 𝐿ଵௗ  

Fig. 14 shows the plot of the eigenvalues of 𝐴ଵ (X), as the 
d-axis damper inductance 𝐿ଵௗ  changes from 0.0 𝑝𝑢  to 
10.0 𝑝𝑢. One of the dominant poles is zoomed in and shown 
on the right. The eigenvalues of 𝐴ଶ (O) are also plotted and 
remain stationary as the formulation of 𝐴ଶ does not include 
𝐿ଵௗ . Additionally, Fig. 15 shows the step responses of 𝜔 with 
Δ𝑃௥௘௙ = −0.1 𝑝𝑢 for three cases, viz. i) VSG with no damper 

SCR = 1.2 to 100
(With Damper 

Windings)

SCR = 1.2 to 100
(No Damper Windings)

Increasing SCR 

Dominant poles 

Oscillatory poles 

R1d = 0.008 pu
R1d = 0.1823 pu



winding, ii) VSG with 𝐿ଵௗ = 0.01 𝑝𝑢 , and iii) VSG with 
𝐿ଵௗ = 1.097 𝑝𝑢.  

 

 
Fig. 14.  Root loci with 𝐿ଵௗ increasing. 
 

 
Fig. 15.  Simulation waveforms showing 𝐿ଵௗ effect. 
 

From the zoomed-in plot of Fig. 14, the dominant pole first 
moves closer to and then turns away from the imaginary axis. 
Therefore, the worst operating situation from the point of view 
of system stability happens at the furthest right of the root 
locus, where 𝐿ଵௗ is around 2.5 𝑝𝑢. 

Observing the oscillatory poles in Fig. 14, the VSG 
controller without damper windings has the least damping 
ratio (𝜉) which is 0.084. For VSG with damper windings, a 
smaller 𝐿ଵௗ  gives better damping, for example 𝜉 = 0.114 
for 𝐿ଵௗ = 0.01 𝑝𝑢 . Also, the oscillation frequency is 
unchanged at around 1.83 𝐻𝑧 with varying 𝐿ଵௗ. 

The EMT simulation in Fig. 15 confirms the root locus 
results. The VSG with 𝐿ଵௗ = 0.01 𝑝𝑢 has the most damped 
response which is measured to be 𝜉 = 0.118 and the least 

transient settling time. In contrast, the damping ratio is the 
smallest for the VSG without damper windings, and 
measurement gives it as 0.086 . These results match the 
information (𝜉 = 0.114 and 𝜉 = 0.084) obtained from the 
SS analysis. It can be seen that the transient performance is 
marginally improved with the inclusion of the damper 
windings. 

The root loci (not shown here) obtained by varying the q-
axis damper resistance and inductance (𝑅ଵ௤  and 𝐿ଵ௤ ) are 
qualitatively similar, as those with varying 𝑅ଵௗ and 𝐿ଵௗ. 

VII.  CONCLUSIONS 

In this paper, a novel detailed synchronous machine 
emulation VSG control approach is introduced. The MMC 
interfaces to the network as a current source, with the current 
references being calculated using the full set of equations 
representing a synchronous generator. The proposed VSG 
control is flexible, as the number of windings as well as the 
winding parameters can be changed. Two VSG controllers 
with different modeling complexity based on SG structure are 
developed, one with, and the other without representing the 
damper windings.  

Small signal analysis, validated using EMT simulation, 
shows that with or without the damper windings, the overall 
VSG model remains stable not only in weak systems, but also 
in ultra-stiff systems, which was identified as a challenge for 
earlier VSG implementations. Also, for a given ac system, the 
d- and q-axis damper winding impedances in the model can be 
optimized to provide maximum damping and marginally 
improve the transient performance. From the view of 
modeling complexity and tuned parameters, the simplified 
VSG without any damper winding is easier to implement and 
tune as it has a smaller number of parameters. 

VIII.  APPENDIX 

Matrices 𝑴𝟏, 𝑵𝟏, 𝑳𝟏, and 𝑩𝟏 are given in (A-1) to (A-4) 
in this section. 
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