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Abstract—This paper investigates the numerical performance 

of the Wedepohl series and of the Gauss-Kronrod quadrature to 

calculate ground- and sea-return impedances of power cables. 

Many computational routines to calculate ground-return 

impedances of cables used in EMTP-type programs have been 

proposed without technical justification of their application range. 

In this paper, we explore the convergence and accuracy of the 

Wedepohl series based on the number of terms in the series and as 

a ratio test. As a result, an accurate and stable numerical 

algorithm to compute ground- and sea-return impedances is 

proposed. The proposed method is capable of accounting for very 

low resistivity values and large depths. 

Index Terms— Offshore transmission system, power cables, 

time-domain transient response, sea-return impedances. 

I. INTRODUCTION

HE growing necessity of electrical energy surpasses current

global production [1]. For this reason, integration of new 

energy resources such as offshore wind and photovoltaic are of 

paramount importance. Today, there are many ongoing and 

future projects to electrically connect countries or islands to the 

mainland via undersea cables. An example of this is the case of 

the longest undersea electrical link connecting Morocco to the 

United Kingdom through a 3,800 km cable, sending 3.6 GW of 

power coming from solar and eolic sources. In México, there is 

a new cable link project of 30.4 km to provide electrical energy 

from Playa del Carmen to Isla Cozumel feeding three lines of 

115 kV to provide power for more than eighty thousand 

inhabitants. The increasing number of undersea power energy 

transmission projects makes the computation of ground- or sea-

return impedances of extreme technical importance. 

New formulations to compute earth-return impedance have 

been recently proposed [2-5] to extend its valid range. 

However, Pollaczek-Sunde’s approximation to the earth-return 

impedance remains valid for transient analysis of up to 10 MHz; 

this range includes switching transients which are the main 

concern when realizing interconnection analysis. 

In [6] Wedepohl presented a solution to the Pollaczek-

Sunde’s integral through a set of low-frequency infinite series 

tied to a closed-form approximation. This formulation is valid 

for high frequencies up to 100 kHz for cables buried in the same 
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trench [6]. A critical frequency cut-off of D/p0.25 (where D 

is depicted in Fig. 1 and p is the Skin-Effect layer thickness) 

was also proposed to switch between the series solution and the 

closed-form approximation [6]. To the best of the authors’ 

knowledge, an efficient solution of the Wedepohl series has not 

yet been implemented nor included in any commercial EMTP-

type software. Even more, in [6] it is argued that the series 

solution is rather complicated, and the ground impedance may 

be obtained directly from solving Pollaczek-Sunde’s integral, 

numerically [7, 8]. 

The main objective of this paper, inspired by the research 

performed in [6], is to develop an efficient numerical algorithm 

for calculating ground- and sea-return impedances for power 

cables that guarantee absolute convergence, accuracy, and 

stability. This is achieved here by using the rapidly converging 

Wedepohl series for the low-frequency range and a trapezoidal 

integration rule for the high-frequency range. 

Furthermore, to validate the here proposed numerical 

algorithm we test three different techniques commonly applied 

to numerically solve the Pollaczek-Sunde’s integral [7, 8]. The 

first one is based on solving the Wedepohl series for the low-

frequency range and the use of the closed-form approximation 

for the high-frequency range as directed in [6]. The second 

method consists in applying the Gauss-Kronrod quadrature [9] 

for the whole frequency range. The third methodology consists 

in applying the trapezoidal numerical integration routine 

directly to the unexpanded Pollaczek-Sunde’s integral 

expression [7]. 

Finally, the proposed numerical algorithm is validated in a 

wide range of practical engineering application cases for 

studying cable transient overvoltages. This is achieved through 

the use of normalized dimensionless variables according to [10-

11]. This validation shows that the proposed algorithm is 

accurate and computationally fast. 

II. GROUND- OR SEA- RETURN IMPEDANCES

A. Fundamentals

The self and mutual earth-return impedances for a quasi-

TEMz propagation mode for a cable system as the one depicted 

in Fig. 1 is calculated with [6-8] 
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Fig. 1.  Geometry of the underground system 
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where α is the integration constant,  represents the angular 

frequency (in rad/s),  corresponds to the magnetic 

permeability (H/m) of the soil, and p is the complex depth 

considering displacement currents as given by [10]. 
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where 𝜀0= 8.8541878176×10−12 F/m is the vacuum permittivity 

and 𝜀𝑟 is the material relative permittivity. 

Substituting the second integral in (1a) through its 

equivalents Bessel functions, (1a) becomes 
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where the physical parameters x, y, h, D and d are distances 

between conductors as shown in Fig.1. 

The solution for I2 (3b) and I4 (3d) is given by 
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where K1 and K2 represent the modified Bessel functions of the 

first and second order, respectively. For I3, the solution is given 

by [6, 7] 
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The first integral in (4c) can be easily evaluated by traditional 

quadrature routines; the second integral is equivalent to 

K2(D/p), which can be approximated through polynomial series. 

In [6] it is proposed to evaluate the third integral of (4c) by a 

series expansion of the exponential function and then to 

integrate it term-by-term to obtain Sser(D/p, |x|, l), where the sum 

of cables depth is ℓ=h+y. 

Substituting the solution of each integral in (4c) we obtain 
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The study of the numerical behavior of the component Sser, 

which corresponds to the series solution in (4d), is analyzed in 

detail in the following sections. 

 

B.  Wedepohl Series solution 

Despite some typographical errors in [6] regarding the 

converging series, Sser can be split up into four terms 

𝑆𝑠𝑒𝑟 (
𝐷

𝑝
, |𝑥|, ℓ) = 𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 (5) 

S1 to S4 are displayed here differently than in [6] for clarity 

of programming implementation. For instance, an analysis of 

S1, given by (6a), reveals that the leading terms 1 𝑘(𝑘 + 2)!⁄  

and (𝐷 𝑝⁄ )𝑘+2, 𝑘=2, 3, …, can be stored in two separate vectors 

which can be used as required. In addition, the telescopic 

nesting nature of the series solution remaining terms can be 

observed in (6)-(9). 

As a programming example, a pseudo-code (based on 

MATLAB® notation [12]) has been added after the first term, 

given by (6a); for the second, third, and fourth terms, very 

similar pseudo-codes can be generated. 

It is noted that the aforementioned leading terms are 

frequency dependent whereas the nested terms depend only on 

the geometry of the cable system. 
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First series term S1 
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Pseudo-code for S1 
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Second series term S2 
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Third series term S3 
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Fourth series term S4 
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III.  ANALYSIS OF SERIES CONVERGENCE 

A.  Wedepohl Series vs Trapezoidal Integration 

Consider as a test case the three phase underground cable 

circuit described in [6] and shown here in Fig. 2. Each cable is 

buried at a 0.75 m depth and consists of a nucleus as a main 

conductor and a metallic sheath insulated with an extruded 

polymer and it is surrounded by a soil with a resistivity of 20 

m. The cable data is available in Fig. 11a. 

As a first evaluation, we implemented the series solution Sser 

given in (5) using 100 frequency samples uniformly spaced 

from 1 Hz to 10 MHz. 

In a second evaluation, we applied the trapezoidal numerical 

integration to the third integral term of (4c) to the 

aforementioned frequency samples, labeled as Sint, taking an 

arbitrary integration time-step of 1×10–4. 

The behavior of both sets of solutions Sser (in gray dashed 

lines) and Sint (in blue continuous dotted lines) is shown in Fig. 

3 for its real and imaginary components. 

The effect of varying the number of terms (N) in the series 

solution Sser, can be appreciated in the same figure for N = 1 to 

N = 4, evidencing a rapid convergence with respect to the 

trapezoidal numerical solution Sint. 

From Fig. 3 it can be noted that in practice the cut-off 

frequency convergence criterion of D/p2 for N4 Sser series 

terms can be acceptable in comparison to Sint. However, after 

several numerical evaluations, we have noticed that using more 

than four N terms did not meaningfully change the results of 

Sser, which obeys to the theory of convergence of a series 

solution around a given point [9]. 

 

 
 

Fig. 2. Underground cable transmission system described in [6]. 
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B.  Ratio Test 

The uniform convergence of a sequence of partial sums (or 

of a series solution set Sn) can be estimated using the following 

ratio test for n = 1, 2, 3, and 4 of the sequences [9] 

 1lim  <1 10k

k

n

k
n

S

S





 

The results of applying (10) to each of the series sequences of 

(6a), (7), (8) and (9) are shown in Fig. 3b with different colors 

and markers. From this test one can observe the smooth 

behavior of the four sets of curves of Sn tending uniformly to 

Sser, which indicates a uniform convergence as indicated in [9]. 

 

C.  Proposed Numerical Algorithm 

The four sequences (6a), (7), (8) and (9) of the series solution 

Sser are in good agreement with the trapezoidal integration 

technique Sint when the number of series terms N ≥ 4 for |D/p| < 

2, as can be observed from Fig. 3a using the test case from [6] 

and reproduced in Fig. 2. 

The series Sser in Fig. 3a give accurate results with very low 

computational expense up to D/p  2, and therefore it is 

proposed here to be used as a criterion to switch between the 

series solution Sser and the numerical integration Sint. 

This criterion contrasts with the one proposed in [6, 8, 10, 

11], where D/p  0.25 is used to switch between a series based 

and a closed-form solution of (2) [6]. 

The numerical procedure applied to calculate the ground-

return impedances of the underground cable system shown in 

Fig. 2 is general. This means that it can also be extended to a 

broad range of practical application cases. 

IV.  WIDE RANGE GROUND-IMPEDANCE DATA 

To synthesize the electromagnetic transients of the cable 

system shown in Fig. 2 one has to use (1a) to calculate the 

ground-return impedances of the current loops formed inside 

each cable, as well as between near and far cables with respect 

to ground [11]. The geometrical distances (radii of the 

conductors and cables depth) and the media properties 

(resistivity of conductors, dielectric insulation permittivity, and 

magnetic permeability) of the system have to be measured or 

estimated. However, there are cases when it is impractical or 

very difficult to measure or obtain the necessary data to perform 

a transient study of an electrical equipment or system. On the 

other hand, the nameplate data that many manufacturers usually 

provide are only for 60 Hz. 

Thus, in this section a wide range solution of JPoll, in (2), to 

calculate ground-return impedances for several practical cases 

which can also be used as a benchmark or as a look up-table is 

presented. Furthermore, the results can be used to assess the 

accuracy of any other ground-impedance solution method or 

formula [10]. 

Consider the following normalized dimensionless parameter 

definitions inspired from Carson´s theory [13] for wave 

propagation in transmission lines shown in Fig. 4 and are 

expressed by [8, 13]: 

 

(a)  

(b)  

 

Fig. 3.  Wedepohl series convergence test. (a) Convergence of series solution 

and trapezoidal integration with respect to the number of terms. (b) Ratio test. 
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After some mathematical manipulations, we obtain the wide-

range representation of (2) in terms of (11a) as [8] 
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where now the term JPoll has been transformed into the 

following normalized parameters version of the Pollaczek-

Sunde’s integral [7, 8] 
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where the variable change α=u/p used in (1a) is also used here 

to obtain (11c). Moreover, the transformation to normalized 

parameters is of general applicability, for instance, consider the 

following closed-form expression derived by Wedepohl from 

the series expansion [6] 
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Which in the normalized form (11d) now becomes a function 

of , , and , as follows [8] 
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Fig. 4.  Vector data normalization and research basis according to Carson's 
theory for calculating ground-wave return-impedances [13]. 

 

The physical and normalized variable ranges are presented in 

Table I.

 
 

TABLE I 
 

PHYSICAL AND NORMALIZED DATA 
 

Description Physical 

variables 

Normalized 

parameters 

Conductor depth (m) 0.5 < h, y < 100  

Distance between cables (m) 0 < x < 500  

Conductivity of soil (S/m) 10−4 < σ < 1  

Angular frequency (rad/s) 2π < ω < 2π×109  

Defined in (11a)  10−6 < ξ< 102 

Defined in (11a)  10−3 < η< 104 

Defined in (11a)  0 < χ < 1 

 

Fig. 5 presents the numerical solution of JPoll (,), given by 

(11c). This solution was obtained applying the here proposed 

numerical algorithm of section 3-C, taking 100 samples for  

and 10 samples for , logarithmically spaced. 

As can be seen from these figures, there are no numerical 

oscillations present in the curves for the 1,000 samples, which 

were computed in less than 1 s. For this reason, the numerical 

algorithm presented here is taken as a reference to validate the 

numerical accuracy and processing time of other numerical 

methods and formulas to approximate the Pollaczek-Sunde 

integral for the calculation of ground-return impedances. 

V.  COMPUTATIONAL PERFORMANCE 

The wide range solution data shown in Fig. 5 was obtained 

with the here proposed numerical algorithm that uses the 

convergent series in (5) combined with the trapezoidal 

integration of the third integral of (4c). 

The here proposed algorithm is used as a reference to test the 

trapezoidal integration method applied to the third integral of 

(4c), the Wedepohl series that uses convergent series for the 

low-frequency range and the closed-from solution of (11d) or 

(11e) for the high-frequency range [6], and the Gauss-Kronrod 

quadrature method applied to (11c) using the default absolute 

tolerance of 1×10–10 (with a double precision format). 

Table II resumes the RMS error and the computer processing 

time for each case, choosing three different values of the 

normalized variable  taken from the table curves in Fig. 5. 

 
(a) 

 

 
(b) 

 
Fig. 5.  Numerical algorithm wide range solution data of JPoll(,). 

(a) Real component, (b) Imaginary component. 

 

The results in Table II were obtained running MATLAB® 

r7.8 [12] on a 3.4 GHz processor with 8 GB of RAM. Windows 

7 Professional 64 bits, and an Intel Core i7-2600 CPU. 

As can be seen in Table II, the processing time for the Gauss-

Kronrod method is larger than for any other method tested here 

(much larger for 10), as expected. The Wedepohl series 

processing times are comparable to the trapezoidal routine and 

the numerical algorithm proposed here; however, the RMS 

error increases for large values of . This is due to the “weak” 

switching criterion between the series and the closed-form 

approximation in [6]. 

VI.  TRANSIENT RESPONSE OF UNDERGROUND CABLE SYSTEM 

The transient response of the underground cable system 

shown in Fig. 2, with 500 m length, is synthesized here through 

the Numerical Laplace Transform (NLT) [11]. This is obtained 

with a unit-step voltage source injected into the core of cable 1 

at the sending-end of the system. The voltage at the receiving-

end is shown in Fig. 6a for the energized-core, whereas the 

induced voltages for cores 3 and 5, and sheaths 2, 4, and 6are 

shown in Fig. 6b. The cable data for this numerical experiment 

is available in Fig. 11a of the Appendix. 

It should be mentioned here that, when the core of cable 1 is 

energized, the magnitude of the induced voltages and 

circulating currents becomes smaller as the ground-loop 

distances through the ground increases. 

In these types of cases, the accuracy in the ground-return 

impedance calculation is of high importance to identify 
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electromagnetic couplings and interferences with any other 

transmission or communication system in the vicinity [13, 14]. 

The transient responses corresponding to Fig. 6 have also 

been obtained with: 1) the Gauss-Kronrod quadrature applied 

to (11c), 2) the EMTP methodology [10], and 3) the Wedepohl 

series [6]. 

In the EMTP-type software, the evaluation of the Pollaczek’s 

integral is replaced by using the Carson’s integral as indicated 

by Professor A. Ametani [10, 13, 14]. 

Fig. 7 depicts the relative differences for the induced voltages 

formed between the loop of cable 1 core-1 and the sheath-6 of 

cable 3, calculated with 

 

𝜀𝑟𝑒𝑙 
% = |1 −

𝑓𝑢𝑛𝑐 𝑎𝑝𝑝𝑟𝑜𝑥

max (𝑓𝑢𝑛𝑐 𝑒𝑥𝑎𝑐𝑡) 
 | × 100   (12) 

 

where funcexact is the value taken as a reference and corresponds 

to the here proposed algorithm, and funcapprox are the 

aforementioned approximations to calculate ground-return 

impedances. 

 
TABLE II 

CPU PROCESSING TIME RMS ERROR 

 

 Test methodology 

  Trapezoidal 

rule 

Numerical 

algorithm 

Wedepohl 

series 

Direct 

Gauss-

Kronrod 

η1 

CPU 

time (s) 
0.06240040 0.07800050 0.09360059 0.3588020 

rms 

error 
0.00001041 base 0.03823930 0.0000030 

η5 

CPU 

time (s) 
0.07800050 0.07800050 0.07800050 0.3900024 

rms 

error 
0.00429982 base 0.04447860 0.0006413 

η10 

CPU 

time (s) 
0.06240040 0.09360060 0.09360060 6.3024403 

rms 

error 
0.00000092 base 0.20897890 0.0071932 

 

VII.  TRANSIENT RESPONSE OF SUB-SEA CABLE SYSTEM 

In this section, the transient step-responses for the sub-sea 

cable system with 1 km length and 60 m depth, shown in Fig. 

8, are synthesized through the NLT using the here proposed 

ground-sea-return impedances numerical algorithm. 

The transient step response of the core at the remote-end of 

the energized cable is shown in Fig. 9a, whereas the induced 

voltages at the remote-end of cable cores 2-3 and cable sheaths 

4-5-6 are shown in Fig. 9b. The cable data for this numerical 

experiment is available in Fig. 11b in the Appendix. 

According to the observed behavior of induced voltages in 

Fig. 6b and Fig. 9b, one can observe that the voltage magnitudes 

of cores and sheaths of the sub-sea power cables are magnified 

compared to the underground case, probably due to the smaller 

thickness of the interlayers between conductors and dielectrics. 

This also means that the diameter of the sea-cable nucleus is 

more than two times greater than the one used in the 

underground cable distribution system. In addition, the sea-

resistivity plays a very important role in the solution of sub-sea 

cable projects. 

There are many research challenges in finding a general and 

practical frequency-dependent ground resistivity equation that 

can consider the resistive and displacement currents regions. 

It can be observed from the results that transient overvoltages 

are highly sensitive to the ground-sea-return impedances.  

Fig. 7 and Fig. 10 shows the relative differences in the 

induced transient voltages for the loop formed between the 

energized core and sheath of the far-cable, for both the 

underground and sub-sea cable systems testing the numerical 

algorithms. The relative differences are calculated with the 

three aforementioned methodologies. From these methods, the 

one proposed by Ametani [14] presented the best numerical 

performance in accuracy and computer processing time. 

 

VIII.  CONCLUSIONS 

The Wedepohl series formulation to approximate the ground- 

sea- return impedance, as given by the Pollaczek-Sunde 

equation, has been implemented and numerically studied in this 

paper. An accurate and robust numerical algorithm to reliably 

solve the Wedepohl series and thus reliably compute the 

ground- sea- return impedance has been proposed and analyzed 

here. It has been demonstrated that the proposed solution can 

be applied can be applied to a wide range of practical cases and 

can be used to assess other numerical methods such as direct 

numerical integrations, closed-form approximations or 

automatic quadrature rules. It has been shown via transient 

analysis that the proposed algorithm is capable of handling 

underground cable systems as well as subsea cable systems that 

present very low resistivities and large depths.  

 

(a)  

 

(b)  

 

 
Fig. 6.  Voltage step-responses at the receiving end. (a) Energized core of 

cable 1. (b) Induced transient voltages in (mV) at cores 3 and 5 and sheaths 2, 

4, and 6. 
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From the obtained results, it is noticed that a precise 

calculation of such impedances is needed to obtain accurate 

time-domain transient responses which are highly sensitive to 

physical and geometrical variables and media properties such 

as ground or seawater resistivity. 

 

 

 
 

Fig. 7.  Relative differences for induced voltage responses formed between 

the loop of cable core-1 and the cable sheath-6. 

 

 
 

Fig. 8.  Sub-sea power cable prototype transmission system. 

 

 

(a)  
 

(b)  
 

 

Fig. 9.  Voltage step-responses at the receiving-end of the sub-sea cable 

system test. (a) Energized core of cable 1. (b) Induced transient voltages in 
(mV) at cores 3 and 5 and sheaths 2, 4, and 6. 

 

 
 

Fig. 10.  Relative differences in the induced transient responses for the loop 
formed between cable core-1 and sheath-6. 

 

IX.  APPENDIX 

 

a)  

 

b)  

 

 
Fig. 11.  Cable design data. a) Underground distribution electrical cable. b) 

Sub-sea power electrical prototype cable. 
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