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Abstract--Numerous factors, including sudden load reductions, 

switching transient loads, lightning strikes, and malfunctions of 

control devices, can result in overvoltage. Overvoltage can harm 

associated power supply components and result in insulation 

failure, electronic component damage, flashovers, etc. A machine 

learning technique called a "neural network" estimates 

computation results that depend on a lot of inputs. For a variety 

of reasons, neural networks have recently been used to manage 

and optimize the power system. This paper presents an artificial 

neural network (ANN)-based approach to determining 

overvoltages in power systems. To simulate overvoltages, many 

simulations were performed in Electromagnetic Transient 

Program (EMTP). Variations of parameters of interest that have 

an influence on overvoltages were made using JavaScript that 

was connected to EMTP models. The extraction of characteristic 

parameters from overvoltage waveshape is a demanding task, 

and it was conducted in MATLAB, as was a overvoltage 

classification methodology based on neural networks. Results 

were presented and discussed. 

Keywords: artificial neural networks, lightning, modelling, 

overvoltages, switching, transmission line.  

I. INTRODUCTION

ROVIDING customers with a reliable and high-quality

power supply is the major objective of the power system.

Therefore, effective supervision and management of the power 

system are required. Electric power networks are evolving, 

and along with that, there are more potential issues that might 

occur. In addition to human resources, it is necessary to use 

computers and proper tools that provide quick analysis and 

reaction in order to respond to all potential scenarios in a 

professional manner.  
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Artificial intelligence may significantly reduce the burden 

on operational staff while simultaneously increasing the 

effectiveness of problem solving and problem handling. This 

is one of the leading reasons behind the investigation and use 

of artificial intelligence in electrical engineering and power 

systems [1]. 

Unfortunately, power system outages are common. In most 

cases, it is necessary to turn off the power in the part of the 

power system where the fault has occurred. Transient events, 

which can have a variety of sources, are one of the main 

factors that contribute to failures. They can result in electrical 

failure of the power system's components, damage to the 

insulation of the power system's components, and a number of 

other adverse effects [2], [3].  

Therefore, it would be important to observe, analyze, and 

classify surges in the power system to implement the 

appropriate management and operating changes for the 

system. 

IEC 60071 and IEEE Std. 1894 classify voltage stresses 

based on the length of a power-frequency voltage or the form 

of an overvoltage and how they affect the insulation or the 

protective device. The classes include slow front overvoltages, 

fast front overvoltages, extremely fast front overvoltages, 

temporary front overvoltages, and mixed overvoltages [4], [5]. 

Switching overvoltages and lightning-caused fast front 

overvoltages are common in power systems, and they are 

taken into consideration for this work. The main idea was to 

evaluate the occurrence of these overvoltages using artificial 

intelligence. Two software packages EMTP and MATLAB, as 

well as JavaScript were employed to put the idea into practice. 

This article's major contribution is a novel method for 

identifying overvoltages in power systems. This approach 

consists of a few steps, as follows: 

- Modelling of power system components for transient

studies in EMTP. This means developing two

different models, one for switching overvoltages, and

the other one for fast front overvoltages.

- Creating and deploying JavaScript to automate the

simulation process and parametric analysis.

- Overvoltage feature extraction from generated

overvoltage waveshape using harmonic analysis in

MATLAB.

- Overvoltage classification using neural network in

MATLAB.

The rest of the paper is organized as follows: Section II 

describes the basics of the artificial neural networks that were 

used for the purposes of this paper. Section III describes in 

detail the modeling procedure of power system components in 

EMTP as well as the overvoltage classification methodology. 
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Results and discussions are performed in Section IV, and the 

paper is concluded in Section V. 

II.  ARTIFICIAL NEURAL NETWORKS 

In an attempt of making the improvements in deep learning 

procedures, one of the greatest subfields of data science, an 

artificial neuron (AN) was made.  A potential of ANs reflects 

in handling a wide range of issues, including handwriting 

recognition, face detection, image recognition, finding optimal 

solution in specific case scenario, recognition of internal 

voltage in distribution network, fast assessments, 

classifications, and so forth. 

In the simplest, AN represents single threshold gate capable 

to process inputs and create appropriate output [6]. The 

appearance of the artificial neuron is presented in Fig. 1. 

 
Fig. 1.  Artificial neuron 

 

In the case of an AN, the signals which come to the input 

are summed up (x1, x2, …, xm), taking into account the 

weighting factor for each input parameter (w1, w2, …, wm). 

After addition with the AN’s bias value, output triggers only if 

the calculation result exceeds certain threshold. The activation 

principle is solely based on activation function φ(∙) used at the 

gate.  

Combining ANs on the basis of similar working 

mechanism, creates grid capable for data manipulation, named 

perceptron [7]. In a present comprehension, a perceptron can 

be perceived as simple single-layer or multi-layer network of 

ANs. This paper shows performance of the single-layer 

perceptron and how those results compare to the ones obtained 

with more complex installations. 

The foundation of neural networks lies in the idea that 

connections between neurons are not equally weighted. Based 

on its inputs, a neuron produces an output while taking the 

connections' strength with the previous one into account. By 

this concept, principle of the natural neural network is 

integrated into artificial neural networks (ANNs). Certain 

mathematical functions are used to form the output of neurons. 

This process is repeated throughout the entire structure of 

neurons, making the network "learn" to solve a variety of 

issues by using algorithms that mimic or replicate the 

operations of actual neurons [6]. 

Trying to reproduce information propagation paths with the 

processing of data, ANs are mainly based on supervised 

learning. For the quality functioning of ANNs, it is necessary 

to determine the strengths (weights) of the connections 

between neurons. This is obtained with training artificial 

neural networks by sending them a large set of data with 

known outcomes (solutions). Following this procedure, 

optimal strengths (weights) of connections between neurons 

are obtained. 

The representation of ANNs is shown in Fig. 2. It consists 

of multiple layer structure containing inputs, outputs and inner 

hidden layer(s). Fig. 2 shows a network where all the neurons 

of one layer (first with weights w11, w12, … wm1, … wmp) are 

connected to the neurons of the next layer, the second with the 

third and so forth as this represents a fully connected network. 

The type of problem being solved determines the neural 

network's topology and the connections between its layers. 

 
Fig. 2.  Artificial neural network 

 

More than the single-layered perceptron stated earlier, two 

other types of networks have been used in this paper. 

Feedforward neural network (FFNN) could consist minimum 

of the three layers (single hidden layer) as in [8], or differently 

organized multi-layered network with alternating nodes in 

each layer as in [9]. This paper shows results for ANNs with 

single and multiple hidden layers, as well as the results from 

neural networks with radial basis. The latter mentioned, 

represents network which contain a radial activation function 

in each ANs and propagation principle of FFNN as in [10]. 

III.  MODELLING PROCEDURE 

Two software tools, EMTP and MATLAB, were used to 

obtain proper modeling of all power system elements and all 

analyzed phenomena, as well as for data analysis and result 

presentation. Parametric analyses were conducted using self-

developed Java Script that is linked with EMTP to automatize 

simulating process due to many simulations. Block diagram of 

neural network training and proposed classification 

methodology is shown in Fig. 3.  

A 110 kV transmission line was modelled in EMTP. Two 

different models were developed, one for simulating switching 

overvoltages and the other one for simulating fast front 

transients. This section describes both models in detail.  

Also, surge arresters are modelled in both the cases, but some 

simulations are performed with surge arresters and some of 

them without using surge arresters.  

Parameters that were varied for the simulation of fast front 

overvoltages:  

- lightning stroke parameters (peak value, front and 

tail time),  

- stroke location (the distance from the beginning to 

the end of the transmission line),  

- stroke to the shield wire or phase conductor,  

- value of voltage when lightning strikes  



- and the presence of surge arresters.  

 
Fig. 3.  Block diagram of neural network training and classification 
methodology  

 

For simulation of switching overvoltages, the following 

parameters were varied:  

- types of short circuits that cause switching 

operations (one phase, two phase and three phase 

short circuit),  

- distance of short circuit from substation,  

- value of voltage when switching operations 

occurs,  

- and presence of surge arresters.  

Overvoltages of interest were recorded in all three phases 

and in all simulations. Furthermore, overvoltages were 

analyzed using MATLAB, and characteristic parameters were 

determined, including amount of overvoltage, duration, and 

harmonic analyses. MATLAB was also used for the 

implementation of neural networks for detecting overvoltages 

in power systems. 

A.  Modelling in EMTP  

Two models that were developed in EMTP are: 

- Model I for simulating switching overvoltages due to 

switching on transmission line, switching off 

transmission line, and due to automatic reclosing 

operation, which was initiated due to fault along the 

line; 

- Model II for simulating fast front transients that are 

caused by lightning. 

All simulations were run using three-phase models, but 

single-line schemes for the modelled parts of the system are 

shown in Fig. 4 and Fig. 5 for better illustration and 

presentation. 

 
Fig. 4.  Single-line scheme for simulating switching transients (model I) 
 

 
Fig. 5.  Single-line scheme for simulating fast front transients (model II) 

 

Model I consists of 110 kV transmission line and 

substations on both ends of the transmission line. In this 

model, parts of the power system are modeled as follows. 

Transmission line sections are modelled as constant 

parameter (CP) lines. To permit connection between the fault 

and the middle of the span for phase conductors, the phase 

conductors are subdivided into a number of segments.  

In the model I a 110 kV network is represented with a 

three-phase source with a maximum line voltage of 123 kV 

and positive and zero-sequence impedances. Coefficient α is 

ratio of reactance X to the resistance R of analyzed power 

system, it is given by (1) and values are selected according to 

the [11]. 

𝛼 =
𝑋

𝑅
 (1) 

Then, positive and zero-sequence Zd and Z0 respectively, 

are calculated according to equations given in [12]: 

𝑍𝑑 =
𝑈𝑚𝑎𝑥
2

𝑆𝑡𝑝𝑠𝑐
=

𝑈𝑚𝑎𝑥

√3𝐼𝑡𝑝𝑠𝑐
 

(2) 

 

𝑍0 = 𝑈𝑚𝑎𝑥
2 (

3

𝑆𝑠𝑝𝑠𝑐
−
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𝑆𝑡𝑝𝑠𝑐
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𝑈𝑚𝑎𝑥

√3
(
3

𝐼𝑠𝑝𝑠𝑐
−

2

𝐼𝑡𝑝𝑠𝑐
) (3) 

where Umax is maximum equipment voltage, Stpsc and Itpsc are 

three-phase short circuit power and current, Sspsc and Ispsc are 

single-phase short circuit power and current.  

Sequence data: zero resistance R0 and positive resistance Rd 

as well as zero reactance X0 and positive reactance Xd can be 

calculated based on (1), (2) and (3).  

𝑅𝑑 =
𝑍𝑑

√1 + 𝛼2
 (4) 

𝑋𝑑 = 𝛼𝑅𝑑 (5) 

𝑅0 =
𝑍0

√1 + 𝛼2
 (6) 

𝑋0 = 𝛼𝑅0 (7) 

The circuit breaker is modeled as an ideal switch. Phase 



voltage measurements were performed behind the circuit 

breaker, that is, at the beginning of the transmission line. 

In both model I and model II surge arresters were modelled 

with following characteristics. 

- Rated voltage: 108 kVrms 

- MCOV: 86 kV 

- IEC class: II 

- Nominal discharge current: 10 kA 

The nonlinear behavior of the line surge arrester is 

represented by the current-voltage (U–I) characteristic from 

[13].  

Model II, used for simulating fast front transients, is based 

on model I with additional elements. The substations are 

represented as the voltage sources with a impedance, as it is 

explained in model I. Towers, insulators, phase conductors, 

shield wire, line surge arresters, and tower footing resistance 

are some of the components used to represent the transmission 

line. The 110 kV transmission line under investigation has 144 

towers and is 42.09 kilometers long. A line or span between 

two towers is assumed to have a mean length of 300 meters. 

The soil resistivity is 1200 Ωm, while the tower footing 

resistance value is adjusted to account for the fact that the 

line's footing resistance varies throughout its path.  

There are four sections that represent each tower. The first 

section of the tower is the segment between the bottom 

crossarm and the ground, and the second segment is the 

section between the top of the tower and the top crossarm. 

Sections in between the crossarms make up the third and 

fourth parts. In EMTP software first section is modelled as 

single phase CP line element.  

Inductance branches are used as models for three other 

sections. On the tower top, transient calculations were 

achievable using this method. The tower shape theory is used 

to compute tower surge impedance [14]. According to the 

section length, tower surge impedance, and propagation speed, 

branch inductances are calculated. The velocity of light was 

assumed to be the same as the wave propagation speed on the 

tower. 

The Air Gap elements are used to simulate the insulators. 

This model operates based on the equal area flashover model 

and details of this model can be found in [15]. 

The shield wires and the phase conductors are subdivided 

into number of segments. Each segment is presented with a 

multiphase CP line (three phases and shield wire). 

To permit connection between the current source and the 

middle of the span for the shield wire and the phase 

conductors, each span of 300 m is split into two segments. The 

subcircuit element that represents the transmission line section 

is made up of a number of tower subcircuit components, 

including spans, line surge arresters, grounding footing 

resistances, and the associated pins (for connection with other 

elements). 

Lightning stroke is modelled with so called CIGRE model 

that is incorporated into EMTP. Lightning current parameters 

that were varied in simulations are: 

- Current peak; 

- Front time; 

- Tail time; 

- Steepness. 

Lighting strokes to shield wire and phase conductors were 

simulated and position of lightning stroke along the line was 

also changed. 

Overvoltage waveshapes simulated in EMTP due to 

switching operation, lightning stroke to shield wire and phase 

conductor are presented in Fig. 6. To make overvoltages more 

noticeable, Fig. 6 shows a single-phase representation.  

On graphs in Fig. 6 are shown different types of the 

waveshapes of simulated overvolages: 

1. On the first graph is shown overvoltage on one of 

phases due to lightning stroke to shield wire 

(parameters of stroke: Imax = 40 kA, tf = 2 µs, th = 75 

µs, Sm = 30 kA/µs, distance 5 km) 

2. On second graph is shown overvoltage due to lightning 

stroke to phase conductor (parameters of stroke: Imax = 

31 kA, tf = 3 µs, th = 75 µs, Sm = 26 kA/µs, distance 5 

km) 

3. On third graph is shown overvoltage due to switching 

on of transmission line. 

 
Fig. 6.  Overvoltage waveshapes simulated in EMTP 
 

B.  Parameters for determination of transients 

There are two types of overvoltages of interest, and these 

are switching and fast front overvoltages. These two types of 

overvoltages have different considerably features which 

include overvoltage peak, overvoltage duration and front and 

tail time.  

For the purpose of neural network training and testing 

following set of features were selected and extracted from 

simulation results:  

• Amount of overvoltage (in per unit); 

• Duration of overvoltage; 

• Total harmonic distortion (THD) factor. 

Total harmonic distortion (THD) is often used as a 

measurement of harmonic distortion of signal. It is defined as 

the ratio of the sum of the powers of all harmonic components 

to the power of the fundamental frequency.  

THD is calculated based on harmonic analysis using 

equation: 

𝑇𝐻𝐷 =
1

𝑉1
√∑𝑉𝑘

2

𝑁

𝑘=2

 (8) 



where Vk is RMS voltage of k-th harmonic. 

Selected features are calculated from the simulated voltage 

signal. The code that specifies these signal parameters has 

been created in MATLAB and it is based on harmonic 

analyses.  

IV.  RESULTS AND ANALYSES 

The results of artificial neural networks in MATLAB and 

their analysis from the point of view of efficiency and 

accuracy are presented below. The total number of examples 

used for training and testing is 1000, of which 650 are 

switching overvoltages (350 transmission line switching on 

overvoltages and 300 transmission line switching off 

overvoltages) and 350 fast front overvoltages. The codes are 

written in such a way as to enter the number of examples to be 

used in training and testing (equal number from each type). 

Examples for training and testing are chosen randomly each 

time the code is run. 

This section will present the results of artificial neural 

networks used to distinguish switching (designation S in table 

1) and lightning (designation A in table 1) overvoltages. The 

three types of artificial neural networks were used to classify 

overvoltages: 

- Perceptron; 

- Feedforward neural networks; 

- Neural networks with radial basis.  

Accuracy of classification, defined as number of correctly 

classified test examples in relation to total number of testing 

examples, was used for evaluation of neural network 

performance. The influence of the number of training 

examples and neural network parameters on the results will be 

presented. 

Perceptron 

Since perceptron is a single-neuron neural network, only 

the influence of the number of training examples is shown in 

table 1. 
TABLE I 

PERCEPTRON RESULTS 

 

Feedforward neural networks 

In FFNN number of hidden layers and the number of 

neurons in the hidden layers that were adjusted and influence 

of these parameters on accuracy of classification is presented. 

Size of training dataset was also evaluated.  

FFNN with one hidden layer was investigated first, with 

number of neurons in range from 1 to 100. Training and 

testing of NN was performed four times with different size 

datasets: from smallest, containing 40 training and 10 testing 

examples, to largest containing 300 training and 200 testing 

examples. In all training cases, performance of NN was 

evaluated using accuracy shown on Fig. 7-10.  

   
Fig. 7.  Feedforward NN with one hidden layer – case 1 

 

 
Fig. 8.  Feedforward NN with one hidden layer – case 2 

 

 
Fig. 9.  Feedforward NN with one hidden layer – case 3 

 

Attempt 

Number of 

examples for 

training 

Number of 

examples for 

testing 

Number 

of 

incorrect 

Accuracy 
(%) 

1 
S-20 

A-20 

S-5 

A-5 
0 100 

2 
S-50 

A-50 

S-10 

A-10 
0 100 

3 
S-50 
A-50 

S-20 
A-20 

0 100 

4 
S-100 

A-100 

S-30 

A-30 
0 100 

5 
S-100 
A-100 

S-50 
A-50 

S-2 98 

6 
S-100 

A-100 

S-100 

A-100 
0 100 

7 
S-100 
A-100 

S-130 
A-130 

0 100 

8 
S-100 

A-100 

S-150 

A-150 

S-7 

A-1 
97.33 



 
Fig. 10.  Feedforward NN with one hidden layer – case 4 

 

From obtained results, in all cases maximal classification 

accuracy is reached with relatively low number of neurons in 

hidden layer (1-5 neurons in layer). In general, for more than 

10 neurons in hidden layer accuracy becomes considerably 

variable, likely due to overfitting. Also, when using less than 

10 neurons in hidden layer high accuracy is achieved 

regardless of size of training dataset – there is no significant 

increase in accuracy with increase in size of training dataset.  

 

FFNN with two hidden layers is also investigated. Number 

of neurons in first layer was variable (from 1 to 5, based on 

best results from FFNN with one hidden layer) and number of 

neurons in second layer was set in range from 1 to 100. Due to 

larger number of neurons maximum size training dataset 

containing 300 examples was used. The Fig. 11 shows 

classification accuracy obtained with this FFNN structure.  

  

 
Fig. 11.  Feedforward NN with two hidden layers 

 

As in previous case, it can be noticed that high accuracy is 

achieved if there is a smaller number of neurons in the second 

hidden layer. For more than 10 neurons in second layer neural 

network is overfitted, and accuracy of classification is 

seriously diminished.  

 

Neural networks with radial basis 

In neural networks with radial basis, it is important to 

specify two parameters for activation function and simulation. 

Two parameters are spread constant and the maximal number 

of neurons. Spread constant affects on the process of 

designing of neural network and the response space of the 

hidden neuron, [16]. Too high or too low values of spread 

constant inhibit good function generalization.  

For neural network with radial basis with constant maximal 

number of neurons, influence of the spread constant in the 

range 0 to 1 on classification accuracy is shown on Fig 12. 

This type of neural network has one hidden layer.  

 
Fig. 12.  NN with radial basis – changing of spread constant 

 

The highest accuracy was obtained for a spread constant of 

0.265. The Fig. 13. shows the results when the maximum 

number of neurons was varied in range from 10 to 1000 with 

the spread constant set to value of 0.265. 

 

 
Fig. 13.  NN with radial basis – changing of maximal number of neurons 

 

Default mean square error was reached for 300 neurons, 

and the radial neural networks always interrupted the process 

of increasing the number of neurons when they reach default 

mean square error. Maximum accuracy is 95.5% for all cases 

where the maximum number of neurons is greater than 300. 

Based on the presented results, it is concluded that neural 

networks are very successful for purpose of distinguishing 

switching and fast atmospheric overvoltages. Perceptron 

shows in most cases 100% accuracy. In the case of more 

complex neural networks, high accuracy can be obtained with 

relatively small number of hidden layers and the number of 

neurons in each of them.  

Based on Fig. 7 - 11, the highest accuracy is obtained for a 

smaller number of hidden layers (one or two), each of which 

has up to 5 neurons (100% accuracy is achieved). In neural 



networks with radial activation function (according to Fig. 12-

13), the highest accuracy is 95.5%. 

V.  CONCLUSIONS 

The primary contribution of this study is a novel method 

based on artificial neural networks for classification of 

overvoltages in power systems. In this method, measured 

voltage is used to classify overvoltages into two distinct 

groups: switching and fast (atmospheric) transients. 

For the purpose of method evaluation, the overvoltages 

were simulated in the EMTP-RV software package from 

which the voltage signals were imported and further processed 

in MATLAB. Three features of simulated signals were 

selected as input parameters for neural network training and 

testing: overvoltage peak value, duration of overvoltage, and 

THD factor. These three features were shown to be most 

relevant for high accuracy of classification. 

Three types of neural networks available in MATLAB were 

used to perform classification and all gave satisfactory results. 

It is concluded that relatively simple neural networks with 

small number of neurons can be used for this task. Also, these 

neural networks can achieve high accuracy of classification 

when trained with relatively small training datasets (up to 300, 

depending on NN complexity). Based on the results presented 

in chapter IV, it can be concluded that the artificial neural 

networks performed their task very well, they distinguished 

the switching and fast front overvoltages with high degree of 

accuracy.  

Adding more features of overvoltage signal to input of 

neural network could further improve results and extend 

capabilities of classification to include more types of 

overvoltages. Future work might include improvements to 

accurately identify and classify all types of transients in power 

systems. Also, for the future work authors have a plan to train 

neural networks based on overvoltages measurements in the 

power system.  
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