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Abstract This paper proposes an improved method to 
enhance the dc response of a frequency-dependent transmission 
line model used in EMT studies. A modification to the rational 
function approximation of propagation and characteristic 
admittance matrices of a transmission line is introduced to 
enforce exact dc values at 0 Hz. Furthermore, weighting factors 
are applied to improve accuracy at low frequencies. Finally, the 
order of the propagation function is reduced to decrease the 
computational effort.   

The validity of the proposed approach is demonstrated using 
examples involving underground cables and overhead lines. First, 
the effect of dc correction is demonstrated by comparing 
transmission line frequency domain characteristics. In addition, 
time domain simulations via open and short circuit conditions 
show a more accurate simulation of HVDC transmission lines 
with the proposed method.   
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I. INTRODUCTION

IGH Voltage direct current (HVDC) transmission lines 
are preferred to transmit power over long distances for 

the sake of lower cost compared to traditional ac transmission 
[2]. In addition, HVDC transmission lines can also be used to 
connect two unsynchronized networks and to integrate 
renewable energy resources such as wind into the main 
transmission grid. The transient simulations involving HVDC 
cable and overhead line models require accurate representation 
of a wide frequency range from dc to a few MHz. 
   The Universal Line Model (ULM) [1] is widely used in 
EMT transient studies including switching, lighting, and faults 
analysis, etc. The curve-fitting of transmission line 
propagation and characteristic admittance functions is required 
in frequency-dependent transmission line models such as 
ULM. This curve-fitting process is typically performed for 
frequencies from a few Hz to 1 MHz. Difficulties arise when 
trying to obtain accurate curve-fitting at very low frequencies 
with the traditional method [2,3,4]. These include (a) incorrect 
dc value in time domain simulations, (b) unstable simulations 
due to large residue/pole ratios (c) the presence of artificial 
overshooting in dc response (d) increased order of curve-fitted 
functions. To relieve these difficulties, numerous solutions 
have been proposed in the past by various researchers. 
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Reference [2] proposed a method to enforce exact dc value by 
modifying the functional form of rational function. However, 
for the propagation function, an optimization algorithm is 
necessary to eliminate errors at high frequencies. Such an 
algorithm increases complexity and there is a possibility of a 
non-convergence solution. Although this method guarantees 
the exact dc value, the curve-fitting accuracy at low 
frequencies may be poor. It is observed that this may lead to 
an artificial overshooting in some time domain simulations 
[3]. 
In [3], a two-stage fitting procedure is introduced to enhance 
fitting at low frequencies. First, frequency-dependent 
characteristics (such as propagation and characteristics 
admittance) at high frequency range are curve-fitted (e.g. 1 Hz 
to 1 MHz) and then the difference between actual and fitted 
curves is computed for the low frequency range (e.g. from 
0.001 Hz to 1.0 Hz). The characteristics at the low frequency 
range are then approximated (curve-fitted) to enhance 
accuracy at low frequencies and to reduce the presence of 
large residue/pole ratios. Finally, high and low frequency 
curve-fitted functions are combined to represent the entire 
frequency range.  
   In [4], the frequency-dependent characteristics are curve-
fitted for a wide frequency range from 1 mHz to 1 MHz. 
Additional low order fitting function is applied to compensate 
for the curve-fitting discrepancy for the propagation and 
characteristic admittance functions at low frequencies.  
   However, increased curve-fitting accuracy does not 
guarantee exact dc values, as the curve-fitting error at 
frequencies approaching dc is unavoidable. A slight deviation 
of curve-fitted characteristics can cause noticeable mismatch 
in dc response [1].   
   This paper introduces modified rational function formulas 
to enforce the exact dc value without additional constrained 
optimization as discussed in [2]. The following improvements 
are utilized to achieve the exact dc enforcement. 
(a) Residue computation via dc enforcement.
(b) Use of weighing function to improve the accuracy at very
low frequencies and to mitigate overshooting in time domain
simulations.
(c) The rearrangement of the propagation function and order
reduction at low frequency section are used to decrease the
order of the rational function.
(d) Large residue/pole ratios in curve-fitted function can be
present due to the selection of a wide frequency range for
approximation. It is well known that this can cause unstable
time domain simulations. The instability can be eliminated by
incorporating a modified recursive convolution algorithm as
reported in [5].

H



II.  UNIVERSAL LINE MODEL 

This section briefly summarizes the ULM [1], a widely 
used transmission line model in EMT studies. For multi-
conductor lines, the frequency-dependent characteristics are 
represented by the characteristic admittance matrix (Yc(s)) and 
propagation matrix (A(s)). These matrices can be derived from 
per-unit length impedance and admittance matrices [7,9,10]. 
The relationship between voltages and currents at terminals of 
a transmission line can be expressed in frequency domain as 
[6,8]  

 
 (1) 

 
 (2) 

 
Where, Vk, Ik, Vm, Im are the sending-end voltages, 

sending-end currents, receiving-end voltages, and receiving-
end currents respectively. The complex frequency term (s, s = 
j ) is removed for simplicity. 

In ULM, the elements of Yc(s) matrix are approximated by 
a proper rational function of order (M) as shown in (3). A 
common set of poles (aq) can be estimated by curve-fitting 
trace of Yc(s) matrix. Residues (cq) are then calculated by 
curve-fitting phase elements. The well-known Vector fitting 
technique is used for curve-fitting [6].  The order (M) is 
gradually increased until the desired accuracy is achieved [1].  

  

 (3) 

 
For the A(s), first modal delays are estimated. Then modes 

of unwound A(s) (after removing the time delay) are 
approximated using rational functions as shown in (4). N(p), 

p, api, cmodepi are the order, delay, poles, and residues of pth 
mode respectively. Note that the modes that have close 
characteristics are grouped together to improve the 
conditioning of the solution and to reduce the presence of 
large residue /pole ratios. 

 

 (4) 

 
Using the modal poles and delays in (4), the phase elements 

of A(s) matrix are approximated in the form as shown in (5) 
using least square method. 

  

 (5) 

 
Where, Ng is the number of modes and cpi  are the 

residues of A(s). Once the Yc(s) and A(s) are expressed in 
rational form, (1) and (2) can be represented as  EMT Norton 
equivalent circuits using recursive convolution technique [1].   

 

III.  PROPOSED MODIFIED FORMULAS TO ENFORCE EXACT DC 

VALUE 

A.  Enforcing exact dc values 

  To enforce dc for Yc(s), the functional form described in [2] 
is used. The residue computation procedure of Yc(s) is 
modified to obtain the exact dc value. At 0 Hz, the fitted Yc(s) 
is set to its exact dc value (Yc dc) in (6). This dc value can be 
computed analytically [2].  

 

 (6) 

Re-arranging (6), the term d can be written as  
 

 (7) 

Substituting (7) into (3), the modified equation for Yc(s) 
can be obtained [2] 

 (8) 

Residues (cq) can be calculated using Vector-fitting 
technique. Note, that curve-fitting error does not affect the dc 
value of the function.  

In [2], modified propagation function has a constant term as 
shown in (9). 

 (9) 

 
 This is different from the propagation function in (5). This 

causes a deviation at high frequencies and a constrained 
optimization method is required to mitigate the error [2]. This 
paper presents a different approach, which does not change the 
functional form in (5), hence there is no deviation at high 
frequencies (note that at high frequencies, the propagation 
function approaches zero). Therefore, optimization procedure 
is unnecessary. 

Once the poles of the propagation function are calculated 
(see section II), the following modified procedure is used to 
compute residues to enforce the correct dc value. At 0 Hz, the 
propagation function in (5) becomes,  

 

 (10) 

 
Where, Adc is the exact dc value, which can be computed 

analytically. The first residue can be written as,  
 

 (11) 

 
Where, q = 1; if p = 1 and q = 2  1. Substituting (11) 

into (5), the modified propagation function can be written as, 



 

 

 
(12) 

 
From (12), the residues (except for the first one) can be 

computed using least squares without disturbing the exact dc 
value. The first residue is then calculated by evaluating (11). 
As a result, the exact dc value is enforced without deviating 
the functional form of the propagation function in (5). 

B.  Improving accuracy and reduction of low frequency 
oscillations 

Although the proposed curve-fitting method enforces the 
correct dc values, there can be noticeable approximation errors 
specially at low frequencies (e.g. between 0 Hz to 1 Hz). The 
approximation error can cause overshooting (or sometimes 
oscillatory behavior) in the dc response of a transmission line 
model and possible unstable simulations. It is observed that 
this can cause a serious problem when dc line is connected to 
an inverter or rectifier station, where a proper operation of 
control and power electronic devices requires smooth behavior 
of voltages and current at the terminals.  

The approximation error can be eliminated by increasing 
weighing factors at low frequencies and reducing the lower 
bound of curve-fitting. The weighing factor is selected using 
the following formula. 

 
 (13) 

 
Where, W is the weighting factor, Wmax is the maximum 

weighting factor defined by user (e.g. Wmax = 100)  is a 
constant, which defines the rate of decay (e.g.  = 1.0) and f is 
the frequency. At low and high frequencies, weighting factor 
approaches its maximum value and 1.0 respectively as shown 
in Fig. 1.  

 
Fig 1: weighting factor vs frequency [Hz] 

 
The lower bound for curve-fitting is selected typically as 

0.5 Hz, 0.1 Hz etc. in commercial EMT software. However, 
the accuracy at low frequencies can be further increased by 
reducing the lower bound. As suggested in [3], a suitable 
value of the lower bound can be selected as 1.0 mHz. 

 

C.  Unstable simulations due to large residue pole 
ratios 

It is reported that presence of large residue/pole ratios can 
cause unstable simulations [3,5]. In this paper, an improved 
recursive convolution algorithm in [5] was implemented to 
eliminate unstable simulations due to the large ratios. Authors 
have tested stability of the simulations with transmission lines 
having extremely large ratios. This is done by disabling the 
aggregation of close modes of A(s) (this can result in ratios 
greater than 1e6) and a stable simulation is always observed. 
Although there may be large residue/pole ratios, when 
extending lower bound of fitting range to 1 mHz, the 
simulation is stable with the improved convolution algorithm. 

D.   Order reduction for the propagation function 

Since the modes of the propagation matrix are fitted 
independently (see section II) and phase elements of A(s) 
matrix employ poles of all modes, there can be close poles 
aggregated at low frequencies. Since the effect of difference in 
modal delays at low frequencies is negligible, small poles of 
each mode can be moved to the first mode. Then the presence 
of close poles in first mode (if one pole is closer to another 
less than a certain tolerance at low frequencies) are checked 
and removed. The reduction of poles reduces order of rational 
function and hence decreases the computational effort. 

With the optimal set of poles, the dc correction procedure 
described in section III(A) is applied. 

IV.    SIMULATION EXAMPLES 

A.  HVDC Underground cable example 

   The proposed method is demonstrated using 100 km long 
underground cable system example is shown in Fig. 2. The 
cable data is tabulated in Table 1. The ground resistivity is 
selected as 100 .m. 

 
 

Fig 2: HVDC cable system 
 

TABLE I 
CABLE DATA 

Conductor outer radius 0.022 m 
Conductor resistivity 1.724e-8  
Insulator 1 capacitance  0.3 uF/m 
Insulator 1 outer Radius 0.0395 m 
Sheath outer radius 0.044 m 
Sheath dc resistance 0.046 ohm/km 
Insulator 2 outer radius 0.0475 m 
Ins. 2 relative permittivity 2.3 
Armour outer radius 0.0583 m 
Armour dc resistance 0.046 ohm/km 

 
   A short circuit test is conducted to check the dc response 
of cable system as in Fig 3. The sending-end of the second 



cable is energized with 100 kV dc voltage and all other 
The default 

curve-fitting parameters are shown in table II. 

 
Fig 3: Test circuit setup 

 
TABLE II 

CURVE-FITTING DEFAULT PARAMETERS 
Curve-fitting starting frequency  0.5 Hz 
Curve-fitting end frequency 1.0 MHz 
Maximum fitting error for propagation function 0.1% 
Maximum fitting error for propagation function 0.1% 
Number of frequency samples 100 

 
   Fig. 4 shows the sending-end current of energized 
conductor without dc correction and depending on the 
selection of curve-fitting starting frequency, the dc value of 
current can be noticeably different from the theoretical 
calculation (88 kA). 

 
Fig 4: Sending-end current of second conductor 

 
   Table III compares the order of approximation, largest 
residue/pole ratio and dc value of short circuit current for A(s).  
 

TABLE III 
EFFECT OF CHANGE IN CURVE-FIT STARTING FREQUENCY 

FMIN (HZ) ORDER RESIDUE/POLE 

RATIO 
DC VALUE OF 

SHORT CIRCUIT 

CURRENT 
1 26 1.138 117.08 

0.1 33 1.2401 91.28 
0.01 29 1.3352 87.92 
0.001 30 1.2434 88.08 

 
   The dc correction method with curve-fitting starting 
frequency of 1 mHz is applied in the cable model. The 
comparisons between actual and curve-fitted curves in 
frequency domain are shown in Fig 5, 6 and 7. The solid and 
dotted curves represent actual and curve-fitted characteristics 
respectively.  The first column of Yc(s) is shown in Fig. 5 
verifying the accuracy with proposed dc correction method.    
 

 
Fig 5: Magnitude of Yc(s) as a function of frequency (dotted curve: 

approximated function, solid curve: actual function) 
 
   The comparison of A(s) at very low frequencies (from 1 
mHz to 100 Hz) is shown in Fig. 6 and the characteristics of 
A(s) for the entire frequency range is shown in Fig. 7. The 
accuracy of A(s) is enforced with dc correction for the entire 
frequency range including very low frequencies. 
   Fig. 8 shows the sending-end current with dc correction. 
The sending-end current approaches to the correct dc value 
regardless of the selection of lower bound for fitting. 
However, if the lower bound is selected as a 1 mHz or 10 
mHz, a better dc response can be seen. For 1 Hz and 0.1 Hz, a 
noticeable transient behavior can be seen between 0 to 50 sec. 
   Table IV summaries the parameters of A(s). Compared 
with table III, regardless of curve-fitting starting frequency, 
the dc value is guaranteed. The order of the propagation 
function is further reduced as described in section III(D).   

 
Fig 6: Magnitude of fist column of A(s) at very low frequencies (dotted curve: 
approximated function, solid curve: actual function, green curve: error) 

 
Fig 7: Magnitude of fist column of A(s) for entire frequency range (1 MHz to 
1 MHz; dotted curve: approximated function, solid curve: actual function) 



 

 
 

Fig. 8: Sending-end current with dc correction 
 

TABLE IV 
EFFECT OF CHANGE IN CURVE-FIT STARTING FREQUENCY 

Hz Order of 
A(s) 

Order of 
A(s) with 
order 
reduction 

Residue/pole 
ratio 

dc value of 
short circuit 
current 

1 28 26 1.3424 88.04 
0.1 33 29 1.8475 88.04 
0.01 40 33 1.2344 88.04 
0.001 36 30 1.2736 88.04 

 
   Fig. 9 shows the induced voltage of second conductor for 
an open circuit test with and without dc correction. The 
sending-end is energized with 100 kV AC source and a fault is 
applied at 0.05 sec to the receiving-end terminal and all other 
conductors are open. The fault duration is 0.05s. It is evident 
that the accuracy at high frequencies does not change with the 
dc correction.     
 

 
Fig. 9: Induced voltage of second conductor for an open circuit test with and 

without dc correction 
 
Fig 10 compares the short circuit current with and without dc 
correction for the same cable, but the length is changed to 20 
km. The lower bound is set to 0.001 Hz for both cases. 
Without dc correction, an initial overshooting of sending-end 
current can be observed, and the current did not converge to 
the correct dc value. With dc correction, the proper dc 
response can be achieved. Therefore, by merely reducing the 
lower bound of fitting, a good dc response cannot be achieved 
for all scenarios.     
 

 
 

Fig. 10: Sending-end current with and without dc correction for short line 
 

B.  AC and DC parallel overhead line example 

   A 100km long parallel AC and DC overhead line 
configuration is shown in Fig. 11 with data for both AC and 
DC towers in Table V. The ground resistivity is assumed 100 

 

 
 

Fig. 11: AC and DC parallel transmission line system 
 
 
 

 TABLE V 
TRANSMISSION LINE DATA 

Outer radius of conductor 0.0203454 m 
DC resistance of conductor 0.03206 ohm/km 
Sag 10 m 
Number of sub-conductors  2 
Distance between sub-conductors 0.4572 
Outer radius of ground wire  0.0055245 m 
DC resistance of ground wire 2.8645 ohm/km 

 
   As shown in Fig. 12-14, the rational function 
approximations of both Yc(s) and A(s) are satisfactory for the 
entire frequency range.  

 
 

Fig 12: Magnitude of Yc(s) as a function of frequency (dotted curve: 



approximated function, solid curve: actual function) 

 
 

Fig 13: Magnitude of fist column of A(s) at very low frequencies (dotted 
curve: approximated function, solid curve: actual function, green curve: error) 
 

 
 
Fig 14: Magnitude of fist column of A(s) for entire frequency range (1 mHz to 

1 MHz; dotted curve: approximated function, solid curve: actual function) 
 
   A short circuit test is performed to verify the validity of 
the dc correction method. The second conductor of the dc line 
is energized with a dc voltage and all other conductors are 
connected to the ground via a small resisto ). Without 
dc correction, the sending-end current is not always converged 
to the exact dc value (62 kA) depending on the selection of 
curve-fitting starting frequency (see Fig 15). However, with dc 
correction, the exact dc value is guaranteed irrespective of the 
selection of the curve-fitting starting frequency as shown in 
Fig. 16. Also, a better dc response can be obtained if the 
curve-fitting starting frequency is selected as 1 mHz or 10 
mHz. 
 

 
 

Fig. 15: Sending end current without dc correction 

 

 
 

Fig. 16: Sending-end current with dc correction 
 
   The dc response of a cable may vary depending on curve-
fitting parameter options, complexity of cable system and 
many other factors. In general, it is not always possible to 
obtain a good dc response by simply reducing the lower bound 
of curve-fitting. However, the proposed dc correction method 
(with 1 mHz lower bound for curve-fitting) always ensures 
consistent accurate dc response.  

V.  CONCLUSIONS 

The proposed dc correction method enforces the exact dc 
values irrespective of the curve-fitting error. With suitable 
curve-fitting starting frequency (0.001 Hz or 0.01 Hz) the dc 
correction method guarantees a better dc response for cables 
and overhead lines.  

The modified residue calculation procedure for A(s) and 
Yc(s) confirms exact dc value. The proposed weighting 
function enhances the accuracy of frequency dependent 
characteristics at low frequencies. The order of the 
propagation function is reduced to decrease the computational 
effort. For any EMT software, this method can be easily 
implemented in existing frequency dependent transmission 
line models such as ULM. 
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