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On-Line Tracking of Inertia Constants Using

Ambient Measurements
Stelios C. Dimoulias , Eleftherios O. Kontis , and Grigoris K. Papagiannis

Abstract—In this paper, a new method for on-line inertia
estimation is developed. The proposed method is based on
the sliding window concept and uses ambient responses, i.e.,
responses obtained during the normal operation of the power
system, to identify inertia constants of generation devices. The
effectiveness of the developed method is evaluated by means of
simulations on two benchmark power system models, namely
the IEEE 9-Bus Test System and the IEEE 39-Bus Test System.
The conducted analysis reveals that the proposed method can
accurately identify inertia constants of conventional synchronous
generators (SGs), converter-interfaced units operated as virtual
SGs, and virtual power plants. The performance of the proposed
method is also evaluated under noisy conditions, by performing
Monte Carlo simulations. Finally, comparisons with conventional
methods are performed, demonstrating the superior performance
of the developed method.

Index Terms—Ambient data, frequency stability, inertia esti-
mation, power system dynamics, system identification.

I. INTRODUCTION

The worldwide drive for reduction of carbon emissions

has led to the gradual decommissioning of conventional syn-

chronous generators (SGs), driven by fossil fuels, and the

widespread introduction of inverter-based renewable energy

sources (RESs) [1]. Nevertheless, this shift towards non-

synchronous generation is expected to have a significant

impact on the operation and control of power systems [2].

The most important challenge, introduced due to the in-

creased penetration of inverter-based generation, is the reduc-

tion of the overall rotational system inertia [3], [4], which is

traditionally provided by the conventional SGs. The natural

inertial response contributes to the mitigation of frequency

excursions during system disturbances, while also limiting

the rate of change of frequency (RoCoF) [4]. Therefore, the

reduction of natural inertia leads to lower frequency nadirs and

higher RoCoF values, jeopardizing the overall grid stability

[2]. Additionally, the intermittent nature of RESs renders

inertia levels variable during the day, thus further complicating

the frequency control of modern power systems [2].

To overcome these challenges, inertial control function-

alities are embedded nowadays to RESs [5], [6]. System

operators can remotely adjust control settings of these sources

to modify their inertia constants, thus ensuring improved

frequency responses. These new control functionalities will

allow large-scale RESs to participate in ancillary service (AS)

markets, to trade inertia products [7]. Additionally, aggregator
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entities (or distribution system operators) can create portfolios

of small-scale RESs, connected to the distribution grid, so as

to participate in future energy markets, by providing inertia as

an AS to the transmission system (TS) [8].

In this context, TS operators (TSOs) shall be able to monitor

in real-time the inertia contribution of each generation unit, in

order to ensure the fair remuneration of all market participants.

Additionally, TSOs shall be able to assess, using real-time

measurements, the overall inertia levels of their grids. In case

of low inertia levels, remedial actions, such as re-dispatching

of controllable RESs and deployment of synchronous con-

densers, shall be activated to ensure grid stability [9].

Therefore, during the last years, several efforts have been

dedicated to the development of inertia estimation techniques

[10], [11]. For instance, in [12], a closed-loop identification

method is developed to estimate, in real-time, inertia time

constants of SGs. However, this approach requires the in-

jection of well-designed probing signals, which complicates

its implementation [1]. Non-intrusive methods have also been

proposed [13]–[15]. These methods are based on the develop-

ment of low-order transfer function models, that describe the

relationship between active power changes and the resulting

frequency deviations. Non-intrusive methods utilize either

ringdown (transient) responses or ambient data, i.e., responses

that reflect the dynamic behavior of the power system under

the random variations of load and RESs. The former approach

requires data from large disturbances to perform satisfactorily,

i.e., to provide accurate inertia estimates. Therefore, it is not

suitable for on-line tracking of inertia constants. The latter

approach uses data from normal operating conditions, thus

facilitating the development of on-line estimation techniques.

In non-intrusive methods, parameters of the required input-

output transfer functions are estimated using optimization

methods or system identification techniques [11]. Estimates of

inertia constants are derived on a second stage, by processing

the parameters of the developed transfer functions. Several

post-processing methods have been developed to derive in-

ertia constants from the parameters of the identified transfer

functions. For instance, in [15], the developed transfer func-

tions are reduced to first order counterparts, by eliminating

insignificant states. The resulted first order transfer functions

have the general form of the swing equation, thus allowing

for the determination of inertia constants. Nevertheless, order

reduction may introduce significant errors on inertia estimates.

This is especially true under noisy conditions [16]. To avoid

order reduction, in [14] and [17], the impulse response of

the identified transfer functions is used to determine inertia

constants, while in [13] and [18] the initial slope of the unit
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step response of the derived transfer functions is utilized.

Nevertheless, existing non-intrusive methods, that use am-

bient data to estimate inertia constants, present certain short-

comings and limitations. Indeed, these methods generally

require long observation periods, in the order of hundreds of

seconds, to perform satisfactorily [13], [14]. However, as the

length of the analysis window increases, the computational

burden increases as well, hindering the real-time update of

inertia estimates. Moreover, the accuracy of these methods is

highly affected by the approximation order, i.e., the order of

the developed transfer function. To handle this issue either

iterative procedures shall be adopted [13] or transfer functions

of various orders shall be developed [14]. Nevertheless, both

approaches increase the computational complexity. Addition-

ally, in these approaches, poorly identified models may arise,

resulting in unrealistic inertia estimates [11]. Finally, due to

data quality issues, the identification procedure may lead to

unstable transfer functions [16]. In these cases, the identified

models cannot be used for inertia estimation.

To overcome these issues, in this paper, a new method for

the on-line tracking of inertia constants is developed. The

proposed method is based on the sliding window (SW) concept

and uses ambient data, i.e., normal operation responses, that

are always available to system operators. More specifically,

ambient responses of frequency and active power are recorded

at the terminals of generation devices. Using these responses,

low-order transfer function models are developed by means of

the Auto-Regressive Moving Average eXogenous (ARMAX)

method. The derived models are further processed and inertia

constants are extracted using an automated procedure. The

accuracy of the proposed method is evaluated by means of

simulations on two benchmark power systems, namely the

IEEE 9-Bus Test System and the IEEE 39-Bus Test System.

The advantages of the proposed method are summarized in

the following aspects:

• Computational Complexity. Contrary to existing ap-

proaches, the proposed method utilizes short observa-

tion windows to identify inertia constants, thus present-

ing low computational complexity. This feature renders

the proposed method suitable for real-time applications.

Additionally, it is worth noting that the computational

performance of the developed method is practically not

affected by user-defined parameters, such as the order of

the developed transfer function models.

• Robustness. A fully automated procedure is developed for

the identification of unrealistic inertia estimates that may

arise due to data quality issues. Therefore, the accuracy

of the proposed method is not significantly affected by

exogenous factors, such as the level of noise contained

in measured responses.

• Enhanced Accuracy. The proposed method presents in-

creased accuracy compared to existing conventional ap-

proaches.

• Generic Applicability. The proposed method can be used

to identify inertia constants of: i) conventional SGs,

ii) converter interfaced RESs, operated as virtual SGs

(VSGs), and iii) virtual power plants (VPPs), hosting

VSGs and constant power loads.

The rest of the paper is organized as follows: In Section

II the theoretical background, required for the understanding

of the proposed method, is provided. Algorithmic details for

the implementation of the method are presented in Section

III. In Section IV, the performance of the developed method

is evaluated by performing RMS simulations on the IEEE 9-

Bus Test System. Moreover, the impact of several factors,

such as the noise level and the length of the analysis win-

dow, on the accuracy and the computational performance of

the proposed method is assessed by means of Monte Carlo

(MC) simulations. The application of the proposed method

in the IEEE 39-Bus Test System is discussed in Section V.

In Section VI comparisons with conventional techniques are

presented. Finally, Section VII summarizes the main findings

and concludes the paper.

II. THEORETICAL BACKGROUND

A. The Swing Equation

Rotor dynamics of a SG can be modeled using the following

form of the swing equation [12]:

2 ·H ·
d∆ω(t)

dt
= ∆pm

(t)−∆pe
(t)−D ·∆ω(t). (1)

Here, H and D denote the inertia constant and the damping

coefficient of the machine, respectively. ∆ω is the difference

between the synchronous and the actual rotational speed. ∆pm

and ∆pe
stand for the change of the mechanical and electric

power, respectively.

Eq. (1) can be further simplified to contain only variables

measured on the electrical side. Indeed, immediately after a

disturbance ∆pm
can be considered equal to zero [12], [15].

Moreover, rotor speed deviation ∆ω can be approximated

using the frequency deviation at the connection bus of the

machine, i.e., ∆ω ≈ ∆f [12], [15]. Based on the above, (1)

can be simplified to (2).

2 ·H ·
d∆f(t)

dt
= −∆pe

(t)−D ·∆f(t). (2)

The Laplace transform of (2) results in:

∆f(s)

∆pe
(s)

= −
1/2H

s+D/2H
(3)

Here, ∆f(s) and ∆pe
(s) are the bus frequency and the active

power variation in the Laplace domain, respectively.

B. Inertia Estimation via Transfer Function Modelling

The unit impulse response h(t) of (3) is given by (4), [14].

h(t) = −
1

2H
· e−

D

2H
·t (4)

Immediately after a disturbance, i.e., at t = 0, the value of the

impulse response is determined only by the inertia constant

H . Indeed, for t = 0, (4) gives:

h(0) = −
1

2H
(5)

Based on the above analysis, it is clear that the inertia constant

can be computed by applying a two-step procedure.
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In the first step, a transfer function that describes the

relationship between active power changes and frequency

deviations shall be developed. The generic form of this transfer

function is presented in (6).

G(s) =
∆f(s)

∆pe
(s)

=
βn−1s

n−1 + βn−2s
n−2 + ...+ β0

αnsn + αn−1sn−1 + ...+ α0

(6)

In the general case, the order n of G(s) is higher com-

pared to the order of (3), to allow for the accurate mod-

eling of system dynamics. The required set of parameters,

θθθ = [βn−1, βn−2, ..., β0, αn, αn−1, ..., α0], is identified by

applying system identification techniques, such as the AR-

MAX method, the subspace state-space system identification

(N4SID) technique, and the prediction error method (PEM).

In the second step, the impulse response of the identified

transfer function is computed. As already discussed, G(s) is

more complex than the transfer function of (3). Nevertheless,

even in this case, the inertial response is once again the fastest

acting dynamic phenomenon that practically determines the

first instance (value) of the impulse response [14]. Therefore,

the inertia constant can be estimated by the value of the

impulse response of G(s) at t = 0. In particular, inertia

constant can be computed as:

Hest = −
1

2 · g(0)
(7)

Here, g denotes the time domain impulse response of G(s).

III. PROPOSED METHOD

In this paper, a new method for the on-line tracking of

inertia constants is developed based on the SW concept. Each

SW contains ambient responses of active power changes and

frequency deviations, recorded at the terminals of generation

devices. The length of each SW (tw) is restricted to few

seconds to ensure low computational complexity. The data

refresh rate is equal to ∆trr.
For each SW, an identification procedure is initially ap-

plied and a low-order input-output transfer function model is

developed, describing the relationship between active power

changes and frequency fluctuations. The inertia constant of

the examined device is determined on a second stage, by

computing the impulse response of the identified transfer

function. The quality of the derived estimate is assessed using

three validation criteria, described in detail in Section III-B.

Nevertheless, it is worth noting that during the identification

process erroneous estimates may occur, due to data quality

issues. Therefore, in order to minimize the impact of erroneous

estimates, the following procedure is proposed: Values of

inertia constants, identified from several consecutive SWs,

are collected to a database. This database is updated every

∆trr. A statistical analysis of the observations, contained in

the database, is performed in order to remove outliers, i.e.,

individual inertia estimates that differ significantly from all

other observations. Outliers are removed using the interquartile

range (IQR) rule [19]. The inertia constant of the examined

generation device is finally defined as the mean value of the

remaining observations, i.e., those not identified as outliers.

Obtain PMU data for the 

next SW
Step 1

Clear database and move 

to the next SW

Data pre-processing

Number of 

observations in 

database � MN 

Does the SW contain 

ambient data? 

No

Apply Algorithm-1 to 

initialize the database

No

Apply Algorithm-1 and 

update database

Identify outliers and 

compute Hrep

Report Hrep and move to

the next SW

Yes
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Step 2

Step 3

Step 4 

Step 5

Step 6

Step 7

Database of the 

observations 

Sequence of actions

Writing to database

Reading from database

Data retrieval 

Remove outliers & update database

Fig. 1. Proposed method for the on-line tracking of inertia constants.

To apply the statistical analysis, a minimum number of

observations (MN ) must be available on the database. This

minimum number of observations is obtained via an initializa-

tion phase. During the initialization, no results are reported to

the system operator. The value of MN , and thus the duration

of the initialization phase, is a user-defined parameter.

A. Implementation Details

The proposed method is presented in Fig. 1. A detailed

analysis of all required steps is presented below:

Step-1: Phasor measurement unit (PMU) recordings for the

examined SW are forwarded as inputs to the proposed method.

The recordings contain ambient responses of frequency devi-

ations and active power changes, obtained at the terminals of

generation devices. The number of samples per second (sps)

and the refresh rate, ∆trr, of the SWs are determined by

the system operator, based on the capabilities of the existing

recording infrastructure. The length of the SW is set to tw.

Step-2: A pre-processing of the recorded responses is per-

formed. In particular, frequency and active power responses

are converted to p.u. values and detrended.

Step-3: Inertia constants of VSGs and VPPs could be altered

at any time for several reasons, e.g., reception of new dispatch

signals, disconnection of RESs, etc. In such cases, inertia con-

stants, derived by the proposed identification procedure (see

Algorithm-1 of Section III-B), may be classified as outliers

by the statistical analysis of Step-6, thus hindering accurate

tracking/monitoring. To overcome this issue, the database of
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inertia estimates shall be re-initialized every time the RoCoF

and/or the rate of change of active power deviate significantly,

compared to past values, i.e., every time a ringdown event oc-

curs. The ringdown event can be triggered either by the change

of individual inertia constants or by topological changes. Thus,

in this Step, the proposed method checks if the examined SW

contains only ambient data. If this is the case, the method

proceeds to Step-4. Otherwise, the database is cleared and the

method moves back to Step-1, i.e. to the next SW.

Step-4: The method checks if the number of observations con-

tained in the database is adequate for statistical analysis, i.e.,

if the number of available observations is higher than MN . If

this is the case, the method moves to the subsequent steps and

reports the identified inertia constant to the user. Otherwise, the

database shall be initialized. For this purpose, the identification

procedure of Algorithm-1 is executed and the identified inertia

constant is stored at the database. Subsequently, the method

moves back to Step-1, i.e. to the next SW, without reporting

the identified value to the system operator.

Step-5: Algorithm-1 is applied to the examined SW. The

identified inertia constant is used to update the database.

Step-6: Initially, all observations are retrieved from the

database and a statistical analysis is performed to determine

outliers, i.e., individual estimates that differ significantly from

all other observations contained in the database. To define out-

liers, the IQR is used [19]. In particular, the 25th percentile

(Q1) and the 75th percentile (Q3) of the data contained in

database are initially computed. Afterwards, IQR is calculated

using (8). Observations with values lower than Q1− 1.5IQR
or higher than Q3 + 1.5IQR are classified as outliers and

discarded. Hrep is defined as the mean value of the remaining

observations, i.e., those not classified as outliers. Finally, the

database is updated by removing all outliers.

IQR = Q3−Q1 (8)

Step-7:Hrep is reported to the system operator and the method

moves to the next SW.

B. Identification Procedure

The identification procedure, applied to each SW to identify

inertia constants, is presented in Algorithm-1, by means of

pseudo-code. Algorithmic steps are explained in detail below:

Step-1: For each SW, a low-order transfer function model,

G(s), of the general form of (6), is developed to describe

the input-output relationship between active power changes

and frequency deviations. To ensure reduced computational

complexity, the order n of the G(s) is pre-defined by the user

and remains constant throughout the analysis.

Step-2: Parameters of G(s) are computed using ARMAX

modeling. Further details concerning the parameter estimation

procedure can be found in [11] and [16].

Step-3: The quality of the identified model is evaluated by

means of fitting accuracy, i.e., by comparing the output of the

identified transfer function with the actual recorded data. For

this purpose, the error index (EI) of (9) is used.

EI =

(

1−
|x− y|

|x−mean(x)|

)

· 100%. (9)

Algorithm 1 Identification procedure

1: Determine approximation order n, i.e., the order of G(s)
defined in (6).

2: Estimate parameters of G(s) using ARMAX modeling.

3: Calculate the error index (EI) of (9).

4: Compute the impulse response of G(s).
5: Use (7) to estimate inertia constant (Hest).

6: Perform a sanity check to evaluate the quality of the

estimate.

7: if Sanity check is successful then

8: Forward the value of the computed Hest to the database.

9: else

10: Identification failed. No inertia estimate can be provided

for this specific SW.

11: end if

Here, x denotes the recorded data and y the corresponding

estimate. EI equal to 100% denotes a perfect approximation.

Step-4: The impulse response of the identified transfer func-

tion is computed.

Step-5: Eq. (7) is used to compute Hest.

Step-6: A sanity check is performed to evaluate the quality of

the estimate. Towards this objective, three discrete validation

criteria are considered. The first criterion is related to the sta-

bility of the identified transfer function. Indeed, only estimates

derived from stable transfer functions are used for further

analysis. The stability of the transfer function is assessed by

computing its poles. The second validation criterion is related

with the quality of the identified transfer function model. In

general, the better the quality of the approximation is, the more

accurate the inertia estimate [15]. Therefore, only estimates,

resulted from models that present EI higher than a user-

defined value/tolerance, are used. In this paper, EI tolerance is

set to 80%. Finally, the value of the derived estimate shall be in

a realistic range. Indeed, typical values for the inertia constants

of SGs lie in the range between 2 s and 10 s [11], [20]. In this

paper, a wider range is considered to also take into account

VSGs. In particular, realistic Hest values are considered those

that lie in the range (0 s, 15 s].

Step-7 to Step-11: A check is performed to verify that all

validation criteria are met, i.e., the identified transfer function

is stable, EI ≥ 80%, and Hest ∈ (0 s, 15 s]. If the check

is successful, then the derived estimate is forwarded to the

database. Otherwise, no action is performed, i.e., the identifi-

cation procedure failed to provide a reliable estimate, and thus

the process shall continue with the next SW.

IV. VALIDATION OF THE PROPOSED METHOD ON THE

IEEE 9-BUS TEST SYSTEM

In this Section, MC simulations are preformed to quantify

the impact of several factors on the performance of the

proposed method. In particular, the impact of: i) the approx-

imation order, ii) the length of the analysis window, iii) the

refresh rate of the data, and iv) the noise level, on the accuracy

and the computational performance of the proposed method is

investigated.
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Fig. 2. Topology of the IEEE 9-Bus Test System and the examined VPP.

A. System Under Study

The performance of the proposed method is evaluated by

means of RMS simulations performed on the DIgSILENT

software [21], using the power system depicted in Fig. 2. The

examined system consists of a high voltage TS and a VPP.

The TS is a modified version of the IEEE 9-Bus Test System

[22] and contains 3 conventional SGs. Their inertia constants

are HG1 = 2.63 s, HG2 = 4.13 s, HG3 = 4.77 s. The

VPP is based on the topology of the European benchmark

medium-voltage grid of CIGRE [23] and it is comprised by 9

constant power loads and 4 RESs, operated as VSGs. Details

concerning the modeling of the VSGs can be found in [6].

The rated power of all RESs is equal to 1 MVA. The inertia

constants of the VSGs are: HV G1 = 4 s, HV G2 = 5 s,

HV G3 = 6 s, HV G4 = 8 s. The equivalent inertia constant

of the VPP is computed as:

Heq
V PP =

∑

4

k=1
HV G,k · SV G,k

∑

4

k=1
SV G,k

= 5.75 s. (10)

In (10), HV G,k and SV G,k are the inertia constant and the

rated power of the k-th VSG, respectively.

B. On-line Tracking of Inertia Constants

Initially, the proposed method is used to identify under

ambient conditions the inertia constants of SGs, VSGs, and

VPPs. Ambient responses are generated for 65 s, by applying

small random variations to the power consumption of all

loads connected to the TS, i.e., loads A, B, and C of Fig. 2.

The applied power variations are lower than 2% of the rated

power of the loads, thus ensuring small frequency fluctuations,

imitating ambient (normal) operating conditions. Indicative

frequency responses, as recorded at the connection buses of

G1, G2, and G3, are plotted in Fig. 3.

For all the installed SGs and VSGs, frequency deviations

and active power variations at the point of interconnection

(POI) with the utility grid are recorded. Frequency and active

power fluctuations are also recorded at the point of common
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Fig. 3. Frequencies of buses B1, B5, and B9 of the system of Fig. 2.

10 15 20 25 30 35 40 45 50 55 60 65

Time (s)

0

2

4

6

8

10

12

P
E

 (
%

)

G1

G2

G3

VSG1

VSG2

VSG3

VSG4

VPP

Fig. 4. IEEE 9-Bust Test System. Evolution of PE with respect to time.

coupling (PCC) of the VPP with the TS (PCC is located

at Bus MV1 of Fig. 2). All responses are acquired with a

sampling rate of 100 sps. Responses, recorded from each

generation device, are forwarded as inputs to the proposed

method and the corresponding inertia constants are identified.

For the identification the following settings are used: n = 2,
∆trr = 0.5 s, tw = 5 s, MN = 5.

To quantify the accuracy of the estimates, the following

prediction error, PE, is introduced:

PE(%) =
|Htrue −Hrep|

Htrue

· 100% (11)

Here, Htrue is the actual inertia of the examined device; Hrep

is the inertia constant reported by the proposed method.

The time evolution of PE, for all examined devices, is

presented in Fig. 4. As shown, for each one of the examined

devices, the proposed method starts providing inertia estimates

at different time moments. For instance, for G1, G2, and G3

inertia estimates are provided 10 s after the triggering of the

method; For VSG4 and VSG2 after 17 s and 20 s, respectively.

Finally, for VSG1, VSG3 and for the VPP the inertia estimates

are provided 40 s after the triggering of the method. In fact,

this is the time required for the initialization of each one of

the corresponding databases, i.e., the time needed to obtain

the initial MN observations that are required for the statistical

analysis applied at Step-6 of the proposed method (Step-6

of Fig. 1). Once the databases are initialized, the proposed

method converges very fast to the actual inertia constant,

resulting, for all examined devices, in PE lower than 2.5%.
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TABLE I
IMPACT OF APPROXIMATION ORDER ON PE (%).

n = 2 n = 3 n = 4 n = 5 n = 6

µ 0.60 1.45 1.55 1.68 1.71

std 0.34 1.23 1.21 1.16 1.12

TABLE II
IMPACT OF WINDOW LENGTH ON PE (%).

tw = 2.5 s tw = 5 s tw = 10 s

Order µ std µ std µ std

n = 2 0.62 0.36 0.60 0.34 0.80 0.61

n = 3 1.60 1.36 1.45 1.23 1.67 0.98

n = 4 1.60 1.55 1.55 1.21 1.73 2.10

n = 5 1.62 1.75 1.68 1.16 1.68 1.01

n = 6 1.70 2.03 1.71 1.12 1.56 0.97

C. Impact of Approximation Order

The impact of the approximation order on the accuracy of

the proposed method is quantified by means of MC analysis.

In particular, 100 discrete MC simulations are performed as

follows: For each MC, 65 s of ambient data are generated

by applying small variations to the power consumption of

TS loads. During each simulation, more than 100 power

variations are imposed. To ensure normal operation conditions,

the maximum applied power variation is lower than 2% of the

rated power of the loads. During the 65 s of each simulation,

the grid frequency remains between 49.9 Hz and 50.1 Hz.

For each MC simulation, frequency and active power vari-

ations of all installed SGs are acquired at a sampling rate

of 100 sps. These responses are forwarded as inputs to the

proposed method and inertia constants are identified using the

following settings: ∆trr = 0.5 s, tw = 5 s, MN = 5, n = 2.
The approximation order, n, ranges from 2 up to 6.

The mean (µ) and the standard deviation (std) of the result-

ing PE across the 100 MC, for all examined approximation

orders, are summarized in Table I. Results reveal that the

performance of the proposed method is practically unaffected

by the approximation order. Indeed, in all cases, the mean

value for the PE is lower than 2%.

D. Impact of window length

The impact of window length on the accuracy of the

proposed method is quantified using the ambient responses

generated during the MC analysis of Section IV-C. However,

here, three discrete cases are considered for tw, namely

tw = 2.5 s, tw = 5 s, and tw = 10 s. In all cases, n varies

from 2 up to 6, while ∆trr = 0.5 s and MN = 5.
Results across the 100 MC for all examined cases are

summarized in Table II. As shown, in all combinations of

model orders and window lengths the mean value of the PE
is lower than 2%, verifying the accuracy of the method.

E. Impact of refresh rate

Ambient responses, generated at Section IV-C, are also used

to evaluate the influence of refresh rate on the accuracy of the

TABLE III
IMPACT OF REFRESH RATE ON PE (%).

∆trr = 0.25 s ∆trr = 0.5 s ∆trr = 1 s

Order µ std µ std µ std

n = 2 0.60 0.33 0.60 0.34 0.61 0.37

n = 3 1.43 1.19 1.45 1.23 1.60 1.19

n = 4 1.54 1.19 1.55 1.21 1.61 1.22

n = 5 1.62 1.15 1.68 1.16 1.62 1.15

n = 6 1.62 1.10 1.71 1.12 1.60 1.16

proposed method. For the identification of inertia constants,

the following settings are used: tw = 5 s, MN = 5, n varies

from 2 up to 6. Three refresh rates are tested, i.e., ∆trr can

be 0.25 s, 0.5 s, or 1 s. Results across the 100 MC simulations

are reported in Table III. It is evident that the impact of refresh

rate on the accuracy of the proposed method is rather trivial.

F. Impact of noise

The impact of noise on the performance of the proposed

method is evaluated by distorting the simulated ambient re-

sponses with additive white Gaussian noise (AWGN). The

variance of the AWGN is adjusted to replicate two levels of

signal-to-noise (SNR) ratios. The examined SNR levels are

45 dB and 30 dB. For each SNR level, 100 MC simulations

are performed, representing discrete instances of noise. For

each MC simulation, ambient responses of all installed SGs

are used to identify the corresponding inertia constants. For

the identification procedure, the following settings are used

∆trr = 0.5 s, tw = 5 s, MN = 5, n = 2.
Indicative results are presented in Fig. 5 by means of

boxplots. The boxplots contain estimates resulted from all SWs

that were examined across the 100 MCs. As shown, for both

SNR levels the median value of the PE is well below 5%,

verifying the accuracy of the method under noisy conditions.

G. Computational performance

The computational performance of the proposed method

is quantified by analyzing the required execution time, i.e.,

the time needed for the completion of Algorithm-1 and the

updating of the database. Several scenarios are examined,

assuming discrete window lengths and approximation orders.
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Fig. 5. Performance of the proposed method under noisy conditions.
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Fig. 6. Computational performance of the proposed method.

Concerning the length of the analysis window, five cases are

considered, namely tw = 1 s, tw = 2.5 s, tw = 5 s,

tw = 10 s, and tw = 30 s. Regarding the approximation order,

the following cases are examined: n = 2, n = 3, n = 4, n = 5,
and n = 6. For each combination of tw and n a set of 100 MC

simulations is performed using an i7-8750H, 2.2 GHz, 12 GB

RAM personal computer. For each set of MC simulations,

the resulting mean execution time is computed and reported

in Fig. 6. As shown, as n increases, the average execution

time increases as well. Nevertheless, in all cases, the average

execution time is lower than 0.5 s. This low computational

burden renders the proposed method appropriate for close-to-

real-time monitoring applications.

H. Discussion of the Results

The presented analysis reveals that the proposed method

performs satisfactorily under noisy conditions. Additionally,

the results of Sections IV-C, IV-D, and IV-E, indicate that the

approximation order (n), the length of the SW (tw), and the

refresh rate of the data (∆trr) do not affect considerably the

accuracy of the method. This is an important remark, since all

the above-mentioned parameters are user-defined. Moreover, it

is worth noting that in all examined cases the mean execution

time of the proposed method is lower than 0.5 s.

Based on the presented analysis, the following settings are

suggested for the implementation of the proposed method:

n = 2, tw = 5 s, and ∆trr = 0.5 s. Indeed, the most accurate

estimates are derived when n = 2. Theoretically, a first-order

transfer function should be sufficient, since the swing equation

is described by (3). Nevertheless, as discussed in [14]–[16],

higher order models are generally required to account the

impact of additional system dynamics such as the intra-area

and inter-area oscillations. tw is set to 5 seconds to ensure

that only the most recent data are used for the identification of

inertia constants. Additionally, for tw = 5 s the execution time

is always lower than 0.5 s. Thus, a refresh rate of 0.5 s, i.e.,

∆trr = 0.5 s, is sufficient for the application of the method.

V. APPLICATION OF THE PROPOSED METHOD IN THE

IEEE 39-BUS TEST SYSTEM

The proposed method is also tested on the IEEE 39-

bus Test System [22]. The examined system is simulated in
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Fig. 7. IEEE 39-Bus Test System. Frequencies recorded at the terminals of
SGs.
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Fig. 8. IEEE 39-Bus Test System. Evolution of PE with respect to time.

DIgSILENT and consists of 10 generators, 19 loads, 39 buses,

12 transformers, and 34 lines. Generator 1 is an equivalent

generator that is used to represent the external power grid. All

other generators, i.e., G2 up to G10, belong to the internal (the

examined) power system and they are equipped with automatic

voltage regulators and governors. Ambient data are generated

for 65 s by applying small random variations to the power

consumption of all system loads. The frequency responses at

the connection buses of G2-G10 are reported in Fig. 7.

The proposed method is used to identify inertia constants

of all SGs of the examined system. Additionally, the overall

power system inertia is computed (using Eq. (8) of [11]) and

compared with the estimate provided by the proposed method.

The resulting PE with respect to time is depicted in Fig. 8.

As shown, for all examined SGs as well as for the overall

inertia constant, i.e., the system inertia, the corresponding PE
converge to values lower than 5%, verifying the accuracy of

the proposed method.

VI. COMPARISONS WITH CONVENTIONAL TECHNIQUES

Here, the proposed method is compared against the method

of [13]. Similar to the proposed method, the approach of [13]

uses the SW concept to identify inertia constants from ambient

data. Nevertheless, the approach of [13] presents fundamental

differences compared to the proposed method.

In particular, the method of [13] uses the N4SID technique

to identify the parameters of the required transfer functions.

The optimal order of the transfer functions is defined through

a grid search approach. In fact, transfer function models with

orders varying from 1 up to 10 are tested. The model that
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Fig. 9. CDFs of the PE for the proposed method (assuming discrete model
orders) and the method of [13].

results in the maximum fitting accuracy is used for inertia

estimation. Inertia estimates are derived for each SW by

computing the initial slope of the unit step response of the

identified transfer functions [18]. Finally, inertia constants,

reported to the system operator, are computed using (12).

Ht =

{

ξkt · ht + (1− ξkt ) ·Ht−1, if stable,

Ht−1, if unstable
(12)

Where, Ht and Ht−1 are the inertia constants reported during

the current and the previous SW, respectively. ht is the inertia

constant identified using measurements obtained only from the

current SW. ξt is a fitting coefficient, computed at the current

SW. In this paper, ξt is equal to EI divided by 100. k is an

exponent used to smooth the impact of low quality estimates

on the final reported inertia constant value. According to [13],

k can vary between 20 and 80. For the comparisons, two cases

are considered, i.e., k = 20 and k = 80.
Comparisons are performed using the ambient responses of

Section IV-C. Results are summarized in Fig. 9 by means of

cumulative distribution functions (CDFs). More specifically,

the CDFs are composed using the PE resulted from all SWs

that were examined across the 100 MC simulations. For the

proposed method, ∆trr = 0.5 s, tw = 5 s, and MN = 5,
while n varies from 2 up to 6. For each discrete approximation

order, a dedicated CDF is computed. As shown in Fig. 9 in

all cases the proposed method presents superior performance

compared to the conventional approach of [13].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a new method is proposed for the identification

of inertia constants from ambient responses. The proposed

method is tested by means of simulations on two benchmark

power system models, namely the IEEE 9-Bus Test System

and the IEEE 39-Bus Test System. The impact of several fac-

tors, such as the noise level, the length of the analysis window,

and the approximation order, is thoroughly tested by means of

MC simulations. Analysis reveals that the proposed method

can accurately estimate inertia constants of SGs, VSGs, and

VPPs, while presenting low computational complexity.

The proposed method can be used by system operators for

the development of on-line applications that aim to quantify

the contribution of different generation devices to the provision

of inertial response. These applications will ensure the fair

remuneration of all participants in inertia AS markets. Further

research will be performed to develop new methods, aiming

to quantify the effective inertia of active distribution net-

works that host: frequency-dependent loads, storage systems

equipped with fast frequency response functionalities, and

RESs that provide virtual inertia.
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